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Abstract: In this article, the local fractional variational iteration method is employed to obtain approximate analytical solution to 

differential fractional equations of Bernoulli. Some examples are given to illustrate the efficiency and accuracy of the proposed method to 

obtain analytical solutions to differential equations within the local fractional derivatives. 
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I. INTRODUCTION 

Recently the local fractional variational iteration method 

[2] has been widely applied to analytically solve fractional 

differential equations. The method is derived from local 

fractional operators ([9], [10], [11], [12], [13], [14], [15], [16] 

). 

which accurately computes the solutions in a local fractional 

or in an exact form, presents interest to applied sciences for 

problems where the other methods cannot be applied 

properly. 

The structure of the paper is as follows. In Section 2, we give 

the concept of local fractional calculus. In Section 3, we give 

analysis of the local fractional variational iteration method. In 

Section 4, the proposed method is implemented to obtain 

approximate analytical solution to differential fractional 

equations of Bernoulli. In Section 5, we consider some 

illustrative examples. Finally, we present our conclusions.  

II. PRELIMINARIES 

  In this section, we introduce some definitions and properties 

that will be used later. 

Definition 1 The local fractional derivative of   of order 

at x=x₀ is given by 

 
(2.1) 

where  

 
 

 

 

Definition 2 The local fractional integral of  of order α 

in the interval [a,b] is given by 

 

 
 (2.2) 

where the partitions of the interval are denoted as 

 with  and 

. 

Definition 3 The Mittage Leffler function is defined as 

 
(2.3) 

According to local fractional derivative and local 

fractional integral , we have: 

 
(2.4) 

 
(2.5) 

 
(2.6) 

 
(2.7) 

    For more details, we refer the interested reader to  

([2], [3], [4], [5], [6], [7], [8]). 
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III. ANALYSIS OF THE LOCAL FRACTIONAL VARIATIONAL 

ITERATION METHOD 

    The local fractional variational iteration method 

structured in [2] was applied to deal with the local fractional 

diferential equations arising in mathematical physics [3, 4, 5, 

6, 7, 8]. 

    To clarify the basic ideas of LFVIM, we consider the 

following nonlinear local fractional differential equations: 

 
(3.1) 

where  is the linear operator,  is the nonlinear 

operator and  f(t) is inhomogeneous term. 

According to LFVIM, we can write down a correction 

local fractional functional as follows: 

 

 
(3.2) 

where  is a fractal Lagrange multiplier. 

Taing the local fractional variation of Eq(3.2) with respect 

to the independent variable we find that 

 

 
(3.3) 

The extremum condition of requires that . 

This yields the stationary conditions 

 

 

 

 
(3.4) 

So, from (3.5), we get 

 
(3.5) 

The function should be selected by using the initial 

conditions as follows 

 
(3.6) 

We can obtain a correction local fractional functional, 

which reads 

 

 
(3.7) 

Consequently, the solution is obtained as: 

 
(3.8) 

IV. APPLICATION OF LTVIM METHOD 

Consider the problem 

 
(4.1) 

    where the operator  stand for the local fractional 

derivative and f,g are continuous functions on the real line. 

    Take the initial condition as 

 
(4.2) 

By using Eq. (3.7) we structure a local fractional iteration 

procedure as 

 

 
(4.3) 

The initial value u₀(t) is given by 

 
(4.4) 

Hence, we can derive the first approximation term 

 

 
(4.5) 

The second approximation term 

 

 
(4.6) 

The third approximation term 

 

 
(4.7) 

 

V. ILLUSTRATIVE EXAMPLES 

Example 5.1 

    Consider the problem 

   
 (5.1) 

Take the initial condition as 

         
 (5.2) 

The exact solution of Eq(5.1) for the special case α=1 is 

          
(5.3) 

In order to obtain numerical solution of equation (5.1), using 

the expression (4.3), we can obtain: 

 
(5.4) 

By the above iteration formula (5.4), we can obtain directly 

the other components as 
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(5.5) 

 
(5.6) 

 

 

 
(5.7) 

The LTVIM gives the solution for Eq(5.1) in the case of α=1: 

 
(5.8) 

Example 5.2 

    Consider the problem 

   

 (5.9) 

Take the initial condition as 

 
(5.10) 

The exact solution of Eq(5.9) for the special case α=1 is 

 
          

(5.11) 

In order to obtain numerical solution of equation (5.9), using 

the expression (4.3), we can obtain:  

 
(5.12) 

By the above iteration formula (5.12), we can obtain directly 

the other components as 

 
(5.13) 

 

 
(5.14) 

The LTVIM gives the solution for Eq (5.9) in the case of 

α=1: 

 
(5.15) 

VI. CONCLUSIONS 

The local fractional variational iteration method has been 

applied to differential fractional equations of Bernoulli in 

order to find its approximate analytical solutions. The results 

show that the applied method is suitable and inexpensive for 

obtaining the approximate solutions. 
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