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The prime objectives of this paper are to establish Feigenbaum bifurcation universality on the population model : 
)1()( xpxxxf p  

where ]3/4 ,0[x  and ]3 ,0]p  is a positive parameter; and to obtain topological entropy on unimodal map:  f(x) = (1-x),      
x  ,  (1,4] 
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1.0 INTRODUCTION        1.01 Feigenbaum Theory:    Chaos theory began at the end of nineteen century (around 
1890) with some great initial ideas, concepts and results of 
the famous French mathematician, Henri Poincare. Also the  
recent path of the theory has many fascinating successful 
stories. Probably, the most beautiful and important one is the 
route from order into chaos, i.e., the Feigenbaum university. 
Mitchell J. Feigenbaum, a renowned American particle 
theorist is known as the founder of the period-doubling 
bifurcation that may be described as a universal route to 
chaos  an exciting discovery in nonlinear dynamical system. 
Many new universal properties have been discovered by 
Feigenbaum for families of maps which depend on a 
parameter .  One of his fascinating discoveries is that if a 

- doubling bifurcation then there 
is an infinite sequence  n } of bifurcation values such that 

 = 
nn

nn
n 1

1lim  
where  is a universal number known as the Feigenbaum 
constant, which does not  depend at all on the form of the 
specific family of maps. The value of  is 

observation suggests that there is a universal size scaling in 

the period- doubling sequence  designated as the 
Feigenbaum - value 
  ...........5029.2lim

1n
n

n d
d  

where dn n  
just before it gives birth to  period 2n+1 . 
Bifurcation theory is a method for studying how solutions of 
a nonlinear problem and their stability changes as the 
parameter varies .The  onset of chaos is often studied by  
bifurcation theory. For example,  in certain parametrized 
families of one dimensional maps, chaos occurs by infinitely 
many period- doubling (P-D ) bifurcations . In the case of a 
diffeomorphism f, P-D bifurcations (or Flip bifurcations or 
Sub harmonic bifurcations ) occur when one of the eigen 
values of the derivative Df (x) equals  -1, [1,3,6,10, 13]. 
 
 symbolic dynamics is the practice of modeling a topological 
or smooth dynamical system by a discrete space consisting of 
infinite sequences of abstract symbols, each of which 
corresponds to a state of the system, with the dynamics 
(evolution) given by the shift operator. Formally, a Markov 
partition is used to provide a finite cover for the smooth 
system; each set of the cover is associated with a single 
symbol, and the sequences of symbols result as a trajectory of 
the system moves from one covering set to another, 
[2,4,9,12]. 
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1.02Topological Dynamical System: A dynamical system is 
a particular type of function used to model time-varying 
processes. Further, a topological dynamical system is a pair 
(X, f) where the phase space X is a compact or a locally  
compact metric space and f : X X is a continuous 
transformation or homeomorphism. 
That is, topological dynamics concerns itself with groups of 

homeomorphisms or semi groups of continuous maps of 
phase spaces.  
1.03 Shifts: Two-sided and One-sided : 
  Shifts are basically viewed as digital coding of information 
of different nature. The problem of encoding in various 
practical situations has been simplified through shifts. Shift 
space, compact and shift invariant subsets of the full shift, are 
mainly used to model smooth dynamical systems through 
Markov Partitions. 
  Let A be a finite set. The set of all infinite two-sided 
sequences of symbols from the finite set A is denoted by AZ 
and is known as the two-sided or bi-sided full A-shift or 
simply the full A-shift. In this case, the finite set A and its 
elements are referred to as the alphabet and letters 
respectively. Generally, A contains typical symbols like 0, 1, 

-1} is termed as the full m-shift and  it is 
generally denoted by m or X[m]. A typical point x in a shift 
denoted as  
                   x x-3x-2x-1 · x0x1x2x3  

alphabet 
A finite sequence of symbols from the alphabet A of the type 

1 2 3 .... kx x x x  is called a word or a block of length k or 
simply a k-block over A. For i, j ( , denotes the 
block xixi+1xi+2 j of the typical point -3x-2x-1 · x0x1x2x3  from the position i to the position j. Further, the 
block x[-k, k] = x-kx-k+1 k, k N , is generally known as 
the central (2k + 1)  block of x and the role of the central 
block of points are very essential in studying the dynamics of 
the full shifts as well as other shift spaces. Symbolic 
representation of invertible maps gives rise to bi-sided shifts. 
On the other hand, if ( 2)m N  and A = {0, 1, 2, 3, 

m  1}, then Am denotes the set of all one-sided right-
infinite sequences of symbols in A. It is also denoted by the 
symbol m or simply by the symbol m . That is, 

{0,1,2,3...., 1}N N
m A m  

={( {0,1,2,3,...., 1}}m . is 
known as the one-sided full A-shift. Symbolic representation 
of non-invertible maps gives rise to one-sided shifts. 
Restricting finite number of words as in bi-sided shifts, we 
also get one-sided shift spaces. 
1.04:  Topological Partition: 

Let ( , )M  be a topological dynamical system. A 
topological partition of M is a finite collection 

0 1 1{ , ...., }mP M M M  of disjoint non-empty open sets 
of M such that 

1

0

m
i

i
M M , i.e., 

0 1 2 1{ , , ,......, }mP M M M M  covers M .  By virtue of 
this partition, we get a symbolic representation of the TDS ( , )M  in the alphabet A m - 1}, If 

,PL ,denotes the collection of all the allowed words of the 
form 1 2 3.... nw a a a a  for ,P , then it is the language of 
a unique shift space which is denoted by ,PX . This shift 
space ,PX is the symbolic dynamical system corresponding 
to ,P  and represents the system ( , )M . It can be proved 
that w = a1a2a3 nis allowed for ,P if 1

1 ( )j

n
aj P . 

If  is not necessarily invertible, then the one-sided shift 
space ,PX is the one-sided symbolic dynamical system 
corresponding to ,P . 
 
1.05 Markov Partition 
 
  Let ( , )M  be an invertible dynamical system and P = 
{M0,M1 m-1} be a topological partition of M . Then P 
gives a symbolic representation of the invertible dynamical 
system ( , )M  if for each pointa ,the intersection 

0 0( ) ( )( )k

k n k
n an n k nD a P a  consists of exactly 

one point, If P gives a symbolic representation of ( , )M  
and  is a shift of finite type, the topological partition P is 
called a Markov partition for ( , )M . 
For non-invertible dynamical systems, replacing ( )nD a  
with ( )nD a , where 0( ) ( )( )k

n k
n akD a P a  and 

,PX  with ,PX , we have a one-sided Markov partition. 
1.06 Symbolic dynamics: Let Q be a topological partition. 
Suppose :f X X  is monotone continuous on each 
element of L. 
The lower symbolic dynamics ( , )f Q of f is the set of 
sequences s  such that , there exists 

-perturbations f of f with the 
same monotone branches, f has an orbit whose Q-itinerary 
has the same m-prefix of s . 
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 The upper symbolic dynamics ( , )f Q of f is the 
set of all sequences s  such that s  for all > 0, 
there exists an -perturbation f  of f with the same 
monotone branches such that f has an orbit with Q-
itinerary s . 
 
 

1.07 Topological entropy:  
The topological entropy of a map :f X X  is defined 
as: 

0( ) lim limsup log ( , )
n

h f N nn    
 

where ( , )N n  = ,( , ) max | |nS VN n S  and 

, { | , max{ ( ( ), ( )) : 0 } }i i
nV S X x y S d f x f y i n
1.08 Kneading Theory: Let f be a multimodal map defined on the interval I = [a, b] 
with critical points a < c1 l-1< b. Let IJ = [cj-1, cj] for  j= 

l, where we take c0 = a and cl = b. For,let j  be the 
sign of f over the interval Ij.For a sequence 

, denoted by  or 0 1 1, ,...., js s s  the 
product 0 1 1... js s s . 
We define an ordering on the itineraries of f. Suppose s  and 
t  are sequences, andj = min{ | }i ii s t , and suppose sj<tj. 
Then s t iff , where , ,s j t j . 
We now consider whether there exists an orbit with a given 
itinerary. Suppose the itineraries of the images of the critical 
points c1 1-1 are kj, that is ( ( ))j jk f c . Suppose t  
is the itinerary of a point x. Then if ci< x < ci+1j, then either 
f(ci) < f(x) < f(ci+1) or f(ci+i) < f(x) < f(ci) depending on the 
sign of 1i . Since ( ( ))f x  is ( ( ))x , where ( )x  is 
the itinerary of x , We deduce that t  is an itinerary and only 
if, 1

1( ) [ , ]n n
n

t tt k k , where the endpoints of the 
interval may be reversed. We may also consider the 
endpoints of the intervals. 
1.09 Computing Symbolic Dynamics using Covering 
Relations: 
  We will consider the computation of symbolic dynamics for 
a P-continuous mapf with respect to the partition Q. We let B 
be the boundary points of Q, C the critical points of f and D 
the discontinuity points of f. 
Our basic strategy for computing symbolic dynamics is as 
follows 

Algorithm Scheme : Compute the topological partition L 
such that f is monotone and continuous on each piece of L. 

 Refine the partition L V Q to obtain a partition R. 
 
 
 
 
 
 

 on the refined partition R, compute the symbolic 
dynamics by considering covering relations ( ) , ( )f R R f R R  and 

( ) 0f R R . 
 
 

1.10 Covering relations: 
   The simplest way to extract symbolic dynamics is directly 
via covering relations. Given a partition R and covering 
relations between its elements we want to construct sofic 
shifts under- and over-approximating the symbolic dynamics. 
 
  Let :f X X  be a P-continuous map and Q a partition 
of X. Let R be a partition of X refining Q and P. Let R be the 
partition L into monotone continuous pieces of f. 
Define covering relations R R  and R R  on 
R R  by R R  if ( )f R R  and 

iff(R)  
  Armed with these concepts and by using MATHEMATICA, 
we now proceed for our principal results. 
 2.00 The Main Results: 
   This section is primarily concerned with the birth and 
flowering of the beautiful phenomena of period-doubling 
bifurcations leading to chaos and subsequent achievement of 
Feiegenbaum universality on theVerhulst population 
model: 
 )1()( xpxxxf p  
where ]3/4 ,0[x  and ]3 ,0]p  is a positive parameter. 
 To find points of Period-one, it is necessary to solve the 
equation given by 

xxpxxxf p )1()(  
 which gives the points that satisfy the condition nn xx 1  
for all n. The solutions are 0*

1x and 1*
2x . These two 

fixed points are the intersection of the graphs 
of )(xfy p and xy .The periodic points *

1x   and *
2x   

are shown in the figure 1.1.The stability of the critical points 
may be determined using the following theorem: 
Theorem: suppose the map )(xf p  has a fixed point 
at .*x Then the fixed point is stable if 

1)( *xfdx
d

p  
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and unstable if 
1)( *xfdx

d
p  
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 Fig 1.1 Graphs of y= fp(x) and y= x for p= 1.8 
Using the above theorem, we have pxfdx

d
p 1)( *

1 . 
Thus the fixed point 0*

1x  is always unstable 
as .0p Again pxfdx

d
p 1)( *

2 , the point 1*
2x  

stable for 20 p .Having studied the dynamics of the 
quadratic iterator pf  in detail for parameter values between 0 
and 2, we continue to increase p beyond 2. For such large 
parameter values the fixed point *

2x  is not stable anymore, it 
is repellor. Hence, the first bifurcation value is 21p .  
To find points of period-two, we consider the iterated 
map )(2 xf p . Here,   

))1()()1(1()1()(2 xxpxxxpxpxxpxxf p
The periodic points of )(2 xf p are given by the equation 

(2.1)                                                           )(2 xxf p
 
 Here, *

1x and *
2x  are two solutions of (2.1), since points of 

period-one repeat on every second iterate. So, the equation  
factorizes as follows: 0)22)(1( 22323 ppxpxpxpxx  
The equation 022 22323 ppxpxpxp  
has roots at

 
p

ppx 2
4)2( 2

*
11  and 

p
ppx 2

4)2( 2
*
12   

These four points are the intersection of the graphs 
of )(2 xfy p  and y=x, see figure1.2. The periodic 

points *1x , *2x , *11x and *12x  marked as A1, A2, B1 and B2 in 
the figure 1.2 
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Fig 1.2 Graphs of )(2 xfy p  and y= x for p= 2.4 

 
Stability of the first two fixed points is already discussed. We 
now discuss the stability of the new points: *

11x and *
12x . 

Considering only parameters between 0 and 3, we note that 
these new solutions are defined only for 2p . Moreover, 
at 2p , we get p

pxx 2
2*12*11 , i.e. these two 

solutions bifurcate from the fixed point *2x . Thus, at 
parameter value 2p , our map orbits undergo period-
doubling bifurcations. Just below 2p  the orbits converge 
to a single value of x. Just above 2p , the orbits tend to 
this alteration between two values of x. 
These two points form a two-cycle, one being the image of 
the other. Let us see how the derivatives of the map 
function )(xf p  and of the second iterate function )(2 xf p  
change at the bifurcation value. The equation: 

pdx
xdf

xx
p 1)(

*2
      tells us that function dx

xdf p )(  
passes through the value -1 as p increases through 2. Next we 
can evaluate the derivative of the second iterate function by 
using the chain-rule of differentiation:               

x
p

xf
p

pp
p

dx
df

dx
dfxffdx

d
dx

xdf
p )(

2
))](([)(  

If we now evaluate the derivative at one of the above two 
new fixed points, say *

11x  then we find 
(2.2)                            )()(

*12
*11*12*11

22

x

p

x

p

x

p

x

p
dx

xdf
dx
df

dx
df

dx
xdf
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In arriving at the last result, we made use of )( *11*12 xfx p  
for the two fixed points.     The derivative of )(2 xf p  are the 
same at both the fixed points that are actually part of the two-
cycle. This result implies that both of these fixed points are 
either attracting or both are repelling, and that they have the 
derivative of )(xf p   equals -1 for the parameter 2p , 
equation 2.3  tells us that the derivative of )(2 xf p equals +1 
for 2p . As p increases further, the derivative of 

)(2 xf p decreases and the fixed points become stable. 
Besides, the unstable fixed point of )(xf p  located at *2x  is 
also an unstable fixed point of )(2 xf p . Fig 1.2 shows the 
graph of )(2 xf p for a value of p just above parameter value p 
= 2.13. For p, just greater than 2, we see that the slope 
of )(2 xf p  at the fixed point *

11x and *12x is less than one, and 
hence they are stable fixed points of )(2 xf p . 

x11

x12

x2

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x

Parameter p 2.13

 
Fig 1.3 Graph of )(2 xf p  

The 2-cycle fixed points of )(2 xf p continue to be stable fixed 
points until ...834494897427.22p We have values of 

*
11x  and *12x  as 0.619573155869 1.196923425058

respectively at parameter value ...834494897427.22p  
. Also for this value of p

    1     1,
5819692342501

2

...6961957315580

2

....... x 

p

. x 

p
dx

(x)df
dx

(x)df

    The above results guarantee that if a system is stable or 
unstable at a periodic point, then the system is so at any other 
periodic point. So our study will be complete if we study the 
dynamics at any of the periodic points. 

We can find that for values of p larger than 2p , the derivative 
is more negative than -1. Hence for p values greater than 2p , 
the 2-cycle points are repelling fixed points. We find that for 
values just greater than 2p , the orbits settle into a 4-cycle, 
that is, the orbit cycles among 4 values which we can label as 

*24*23*22*21  ,  , , xxxx . 
These points are the intersection of the graphs of )(4 xfy p  
and xy in the above fig.1.3. To determine these periodic 
points analytically, we need to solve an eight degree 
equation, namely xxf p )(4  which is manually 
cumbersome and time consuming. Therefore, for finding 
periodic points, bifurcation values of 4pf  as well as for 
higher iterated map functions, we have to write a computer 
program. We write here a C-program for our purpose. Of 
course, with the help of MATHEMATICA, for the 
parameter value 5.2p  the approximate values of the fixed 
points *25*23*22*21  ,  , , xxxx  are calculated as 0.537(A), 
0.703(B), 1.159(C) 1.227(D) respectively. 
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Fig 1.4 Graphs of )(4 xfy p  and y= x for p= 2.5 
Then using the relation (2.3), an approximate value 3p  of 

3p  is obtained. Since the Secant method needs two initial 
values, we use 3p and a slightly larger value, say, 4

3 10p  
as the two initial values to apply this method and ultimately 
obtain 3p . In like manner, the same procedure is employed to 
obtain the successive bifurcation values 4, 5....p p etc. to our 
requirement. Through our numerical mechanism, we obtain 
some periodic points and bifurcation values. In Table 1.1 the 
first nine bifurcation points together with their corresponding 
periodic points are shown:  
 

Table2.1 
One of Periodic points Bifurcation values 

1 1x  1 2p .00 
2 0.619573155869....x 2 2.449489742783.....p
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3 0.506088071014...x

 
3 2.544090359552.....p

 
4 0.481986116641...x

 
4 2.564407266095....p

 
5 0.477095904017...x

 
5 2.568759419544....p

 
6 0.477109948703...x

 
6 2.569691609801....p

 
7 0.475897082...x  7 2.569891259378....p

 
8 0.4771477219...x  8 2.569934018374.....p

 
9 0.476002501444...x

 
9 2.569943176048....p

 
(Here we denote the value of p for the k th bifurcation by pk) Based on these values, the ratios of successive separations of 
bifurcation points are given by, 

kk
kk
pp

pp
pp
pp

pp
pp

pp
pp

pp
pp

pp
pp

1
1

67
56

56
45

45
34

34
23

23
12 ...

and have a particular scaling associated with them. We see 
that

2 11
3 2

4.7514...,p p
p p

3 22
4 3

4.6562...,p p
p p

4 33
5 4

4.6682...p p
p p

5 44 5
6 5

4.6687..., 4.6691...,p p
p p and so on. 

The ratios tend to a constant as k tends to infinity: more 
formally 

...669201.4lim
1

1
kk

kk
k pp

pp  
The nature of is universal i.e. it is the same for a wide 
range of different iterators 
2.1 The unimodal map: 
Consider the unimodal map:    f1(x) = (1-x)   with    
3.92    Let a = 0 and b = 1 be the endpoints of the interval I 
and c = 0.5 be the critical point. Let I0 = [a, c] and I1 = [c, b]. 
The orbit of the critical point is given by (c) = ci with 

0 1 2 3 40.5, 0.98, 0.077, 0.278, 0.787c c c c c  

5 6 7 8 90.657, 0.883, 0.405, 0.945, 0.204c c c c c

 The itinerary of f1(c) is therefore      itin (f1(c)) = 
 

 Consider the partition into six intervals with 
boundary points 
   p0 = a,p1 = c2, p3 = c3, p4 = c0, p5 = 
c4, p6 = c1, p7 = b. 
Note that 5 4 5( ) ( , )f p P p . Taking 1[ , ]i i iJ p p  we 
have 
  
 

1 1 2 3 1 2 4 1 3 4 1 4 1 2( ) ; ( ) ; ( ) ; ( )f J J J f J J f J J f J J J
 
and also        1 3 3( ) 0f J J  and 4 3( ) 0f J J . 
Now consider the computation of entropy. Using the lower 
and upper symbolic dynamics on the partition, we obtain 
entropies of 0.41962 and 0.73286. The upper shift on the 
refined partition has multiple orbits with the same itinerary 
on I0 and I1. If we consider the entropy of the shift itself (by 
using additional states J12 and J34) we obtain 0.583 . 
 

                             Figure 1.5 Unimodal map  
 

Steps Entropy 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

[0:0.69314] 
[0.48121:0.69315] 
[0.48121:0.60938] 
[0.54353:0.60938] 
[0.54353:0.58356] 
[0.54353:0.56240] 
0.54761:0.56240] 
[0.55642:0.56240] 
[0.55643:0.56099] 
[0.55842:0.56099] 
[0.55990:0.56099] 
[0.55990:0.56073] 
0.55990:0.56026] 
[0.55998:0.56026] 
[0.56014:0.56026] 

 
Table 2.2: Entropy of the unimodal map 

         Improvement of entropy using kneading theory: 
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If we use the kneading theory, we see that by setting f1(c4) = 
c4 we have itin (f1unimodel order, and setting f1(c4) = c0 we have itin(f(c)) = 

0
11001 100

corresponding lower and upper entropies are 0.54354 and 
0.571. 

Consider a unimodal map with kneading invariant 0
11001 , 

so c is periodic and 5
1 ( )f c c . The images of c are 

ordered 
2 3 4

1 1 1 1( ) ( ) ( ) ( )a f c f c c f c f c b . We 
can compute the topological entropy of the shift, and obtain a 
value of 0.57058. 
Now consider a unimodal map with kneading invariant 

10011....k . From the kneading theory, we know 
0
110011 1001  so we have 1( ) 0.64toph f . Define 

2 3
1 1 1[ ( ), ( )],R f c f c

and 
4

4 1 1[ ( ), ( )]R f c f c . When using the forward refinement 
strategy, since 5

1 3( ) ,f c R  the interval R3 maps to 
5

1 1[ ( ), ( )]f c f c  and the interval 4[ ( ), ( )]f c f c  maps to 
2 5

1 1[ ( ), ( )]f c f c  which together cover R3, but neither does 
individually. Hence neither of the transitions 3 3R R  nor 

4 3R R  in the automaton for the lower symbolic 
dynamics. The entropy bound obtained drops to 0.41962. 

transition, either 3 3R R  or 4 3R R , to put in the 
lower symbolic dynamics, while still ensuring that the 
dynamics is a lower bound. The chosen transition is the one 
giving least entropy. 
Steps Entropy Running 

time 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
15 
20 
25 

[0:0.7093147180559] 
[0:0.7023147180559] 

[0.491213225059:0.6931471805599] 
[0.4932211825059:0.6093778634360] 
[0.5382135072497:0.5705796667792] 
[0.541235072497:0.5705796667792] 
[0.549794599694:0.5623991486459] 
[0.55231930430:0.5623991486459] 
[0.55567519816:0.5623991486459] 
[0.56014256097:0.560988810813] 
[0.56022219753:0.560259207813] 
[0.56023564272:0.560235821005] 

[0.5602357435170:0.560235669923] 

0.01 
0.04 
0.06 
0.07 
0.09 
0.10 
0.10 
0.10 
0.12 
0.15 
0.19 
0.26 
0.28 

30 
35 
40 

[0.56023589560:0.560235638765] 
[0.56023597749:0.560235636490] 
[0.560236846370:0.560235636375] 

0.29 
0.39 
0.45 

 
Table 2.3: Entropy of the unimodal map with kneading 
algorithm 
 
 
 
CONCLUSION      The study of chaos in symbolic dynamical models is quite 
interesting. Although there are so many methods for finding 
bifurcation values, we have developed own numerical 
mechanism for establishing Feigenbaum tree of bifurcation 
values leading to chaotic region the study of which is 
intrinsically marvelous. Our method seems to be applicable to 
all the chaotic models.  Topological entropy is the measure of 
chaos. Here our results indicate the existence of chaos in our 
nonlinear model. 
 
 
References: 
[1] Aoki.N and K.Hiraide, Topological Theory of Dynamical Systems, 

Recent Advances.North-Holland Mathematical Library,1994. 
[2] Balibrea F., Snoha L., Topological Entropy of Devaney Chaotic 

Maps, Topology Appl, 133, pp 225-239,2003. 
[3] Bhaumik I. and Choudhury B.S.,The Shift Map and the Symbolic       

Dynamics and Application of Topological Conjugacy, Journal of          
Physical Sciences, vol.13, 149-160, 2009. 

[4] Bowen R.,  Topological Entropy and Axiom A, Global Analysis, 
ProcSympos, Pure Math ,Amer. Math. Soc, 14: pp23-42, 1970. 

[5] Bowen R., Topological entropy for  non  compact  sets,  Trans. Amer. 
Math. Soc.184; 125-136, 1973. 

[6] Chow, S. N. and Hale, J. K., Methods of Bifurcation Theory, Spinger- 
Verlag,  1982.   

[7] Clark R., Dynamical Systems: Stability, Symbolic Dynamics, and 
Chaos, CRC Press,  Inc 1995 

[8] -6):735 746. ISSN 0166-8641, 
2005 

[9] Douglass Lind and Brian Marcas,   An Introduction to Symbolic 
Dynamics and         Coding,Cambridge University Press,1999. 

[10] Kurka P,  Topological and Symbolic Dynamics, SocieteMathematique 
de France, 2003. 

[11] Kitchens B. P,.Symbolic Dynamics-One Sided, Two Sided and 
Countable State Markov Shifts, Universitext, Springer Verlag, 
Berlin.1998 

[12] SmitalJ ., Chaotic Functions with Zero Topological Entropy, Trans. 
Amer. Math.Soc, 297 : pp269-282,1986. 

[13] Vul, E. B., Ya. G. S. and Khanin, K. M., Feigenbaum Universality 
and the   thermodynamic Form,alism, and UsphekiMat.Nauk 
39:3(1984)3-37, Russian Math  Surveys 39:3(1984),1-40 

 
 
 
 
 
 
 
 


