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Abstract : Progression in computing powers and parallelism technology are creating obstruction for credible security 
especially in electronic information swapping under cryptosystems, this led to this paper presenting the several ways in 
which group theory can be used to construct various key agreement protocols and finally presented the secure signatures 
with RSA, which enable identity verification during encryption and decryption of information. 
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I. INTRODUCTION 

    Cryptography can be categories as a branch of mathematics 
and computer science which further relates with information 
security and computer engineering. Krptos (�hidden�) is a 

Greek word gives birth to English word called cryptography- 
an art of changing the actual face look of information as well 
as converting it into unreadable form. Cryptography further 
relies on encryption techniques (symmetric and asymmetric) 
to encode the actual text message (Plain Text) with the use of 
secret code called key. The process of encoding or encrypting 
the plain text is referred as enciphering or encryption and the 
vise versed process is called deciphering or decryption.  
Symmetric encryption requires a single shared secret code 
known as private key and asymmetric encryption is based on 
two key(s); private key and public key where private key 
remains secret and public key is publicly available. In 
asymmetric encryption public key is used to encrypt the 
message and private key is used to decrypt the same message. 
Group based cryptosystems have not yet led to practical 
schemes to rival Rivest Shamir Adlenman (RSA) and Diffie-
Hellman, however the ideas are interesting and different 
perspective leads to some worthwhile group theory. As 
asserted by (Laurence, 2008) on cryptography using elliptic 
curves is excellent follow-up, elliptic curve-based 
cryptography is becoming the norm for the current generation 
of public key cryptosystems. However, our paper is mainly 
on mathematical aspect of cryptography consciously aim to 
consider group theory in encryption and decryption of 
information transmission. 
 

A. GROUP THEORY 
     Group theory is the branch of pure mathematics which 
emanate from abstract algebra. Due to its abstract nature, it  

 
was considered as an arts subject rather than a science 
subject. In fact, it was seeming to be pure abstract and not 
practical (Tsok, 2013).   
 

   Modern group theory is a very active mathematical 
discipline which studies groups in their own rights. To 
explore groups, mathematicians have defined certain terms 
that are analogous to those of sets for a better understanding 
of the concept. These terms include subgroups, quotient 
groups and simple groups. In addition to their abstract 
properties, group theory also studies the different ways in 
which a group can be represented in such a way that it can be 
appreciated by those who dread it (Tsok, 2013). This is called 
group representation. The study of groups arose early, in the 
nineteenth century in connection with the solution of 
equations. Originally a group was a set of permutations with 
the property that the combination of any two permutations 
again belongs to the set. Subsequently this set, not 
necessarily of permutations, together with a method of 
combining its elements that is subject to a few simple laws. 
The theory of groups occupies a central position in 
mathematics. Modern group theory arose as an attempt to 
find the roots of a polynomial in terms of its coefficients. 
Groups now play a central role in number of apparently 
unconnected subjects as in Crystallography and Quantum 
Mechanics, Coding theory and Cryptography, Physics, 
Chemistry, Biology as well as non- sciences like Games and 
Sociology (Anthropology). Although groups arose in 
connection with other disciplines, the study of groups is so 
exciting. Currently there is vigorous research in the subject, 
and it attracts the interest of many great Mathematicians. For 
this very reason this work wishes to explore how group 
theory can benefit the field of Cryptography in the area of 
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encryption and decryption of information transmission. One 
of the main methods of encrypting data is the RSA 
encryption system. The algebraic structure that is at the heart 
of this method is that of a group. To motivate the definition 
of a group, let discuss the main terms used in the RSA 
encryption system. Let R be a ring. Recall that a unit of R is 
an element having a multiplicative inverse. Recall also that if 
a,b are units of R, then so is ab, since ab has  as its 

multiplicative inverse.  Then   is the set of all units of R. In 

other words.  
By the statement above, if two elements are multiply which   
are of  , the result is another element of  .  Therefore, 

multiplication induces a binary operation on the set, .   
Note three properties of this binary operation multiplication 
on  is associative,  , so  has an identity; and each 

element of  has an inverse in . It is these properties that 
make up the definition of a group. 
 

Definition 1. Let G be a nonempty set together with a binary 
operation . Then the pair (G,  is said to be a group if;  
(i).    for all  
(ii).

(iii).  

 

B. ENCRYPTION AND DECRYPTION 
 

     Encryption is a mechanism by which a message is 
transformed so that only the sender and recipient can see. For 
instance, suppose that Alice wants to send a private message 
to Bob. To do so, she first needs Bob�s public-key; since 
everybody can see his public-key, Bob can send it over the 
network in the clear without any concerns. Once Alice has 
Bob�s public-key, she encrypts the message using Bob�s 

public-key and sends it to Bob. Bob receives Alice�s message 

and, using his private-key, decrypts it. 
 

    Cryptography is about communication in the presence of 
an adversary. It encompasses many problems (encryption, 
authentication, key distribution to name a few). The field of 
modern cryptography provides a theoretical foundation based 
on which might be understand what exactly these problems 
are, how to evaluate protocols that purport to solve them, and 
how to build protocols in whose security one can have 
confidence. 
 

II. METHOD 
 

A. PUBLIC-KEY ENCRYPTION 
 

    The idea of a public-key cryptosystem (PKC) was 
proposed by Diffie and Hellman in their pioneering paper 
(Whitefield, 1976). Their revolutionary idea was to enable 
secure message exchange between sender and receiver 
without ever having to meet in advance to agree on a 
common secret key. They proposed the concept of a trapdoor 
function and how it can be used to achieve a public-key 
cryptosystem. Shortly thereafter Rivest, Shamir and Adelman 

proposed the first candidate trapdoor function, the RSA. The 
story of modern cryptography followed. 
The set up for a public-key cryptosystem is of a network of 
users u1, un   rather than a single pair of users. Each user u in 
the network has a pair of keys <Pu; Su>associated with, the 
public key Pu which is published under the user�s name in a 

�public directory" accessible for everyone to read, and the 
private-key Su which is known only to u. The pairs of keys 
are generated by running a key-generation algorithm. To send 
a secret message m to u everyone in the network uses the 
same exact method, which involves looking up Pu, computing 
E(Pu ,m) where E is a public encryption algorithm, and 
sending the resulting ciphertext c to u. Upon receiving 
ciphertext c, user u can decrypt by looking up private key Su 

and computing D(Su ,c) where D is a public decryption 
algorithm. Clearly, for this to work there is need that 
D(Su,E(Pum)) = m. 
   

 
   Plaintext           Ciphertext  Plaintext 
 
 
 
Figure 1: Public key (Asymmetric) cryptography, PKC uses 
key one for encryption while key two for decryption. 
A particular PKC is thus defined by a triplet of public 
algorithms. This is the key �generation, encryption and 

decryption� algorithms (G,E,D). Now let formally define a 
public-key encryption scheme. For now, the definition will 
say nothing about �security" of a scheme. 
 

Definition 2 A public-key encryption scheme is a triple, 
(G,E,D), of probabilistic polynomial-time algorithms 
satisfying the following conditions 
 

(i) key generation algorithm: a probabilistic expected 
polynomial-time algorithm G, which, on input 1k (the 
security parameter) produces a pair (e, d) where e is 
called the public key, and d is the corresponding private 
key. (Notation: (e, d) G(1k)). Let also refer to the pair 
(e, d) a pair of encryption/decryption keys. 

(ii). An encryption algorithm: a probabilistic polynomial 
time algorithm E which takes as input a security 
parameter 1k, a public-key e from the range of G(1k) and 
string m called the message and produces as 
output string c called the ciphertext. the 
notation c E(1k, e, m) is used to denote c being an 
encryption of message m using key e with security 
parameter k. When clear, shorthand is also use as  
c Ee(m), or c E(m).  

(iii) A decryption algorithm: a probabilistic polynomial time 
algorithm D that takes as inputs a security parameter 1k, 
a private-key d from the range of G(1k), and a ciphertext 
c from the range of E(1k, e, m),and produces as output a 

string  such that for every pair (e,d) in the 
range of G(1k), for every m, for every c D(1k, e, m), the 
prob(D(1k,d, c) ) is negligible. 

(iv). Furthermore, this system is �secure"  
 

To use a public-key encryption scheme (G, E, D) with 
security parameter 1k, user A runs G(1k) to obtain a pair (e, d) 

Key 
1 

Key 
2 
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of encryption/decryption keys. User A then "publishes" e in a 
public file, and keeps private d. If anyone wants to send A a 
message, then need to lookup e and compute E(1k, e, m). 
Upon receipt of c  E(1k, e ,m), A computes message m = 
D(1k, d, c). 

B. PRIVATE-KEY ENCRYPTION 

  The symmetric setting considers two parties who share a 
key and will use this key to imbue communicated data with 
various security attributes. The main security goals are 
privacy and authenticity of the communicated data.  
 

 
Plaintext              Ciphertext             Plaintext 
 
 
Figure 2: Secret key (Symmetric) cryptography, SKC uses 

single key for both encryption and decryption.  
 

In single or private key cryptosystems, the same key is used 
for both encryption and decryption messages. To encrypt a 
plaintext message, then apply to the message some function 
which is kept secret say f. This function will yield an 
encrypted message. Given the encrypted form of the 
message, this can recover the original message by applying 
the inverse transformation   The transformation f must be 

relatively easy to compute, as must  ; however, f must be 
extremely difficult to guess at, if only examples of coded 
messages are available. 
 

Example 1: One of first and most famous private key 
cryptosystems was the shift code used by Julius Caesar. First 
Digitize the alphabet by letting A = 00, B = 01, . . ., Z = 25. 
The encoding function will be     f(p) = p + 3mod26  that is  

  The decoding function is the 
 . 

 

Suppose that one received the encoded message DOJHEUD. 
To decode this message, first digitize it as 3,14,9,7,4,20,3 
next apply the inverse transformation to get 0, 11, 6,4, 1, 
17,0, or ALGEBRA. Notice here that there is nothing special 
about either of the number 3 or 26. One can use a larger 
alphabet or a different shift. 
 

III. RESULTS 
 

    Schemes base on Group - Based Cryptography 
 

   Considering other several ways in which group theory can 
be used to construct various key agreement protocols. Since 
Diffie�Hellman key agreement protocol uses a cyclic 
subgroup of a finite group G, one approach is to search for 
examples of groups that can be efficiently represented and 
manipulated, and that possess cyclic subgroups with a DLP 
that seems hard. Various authors have suggested using a 
cyclic subgroup of a matrix group in this context, but some 
basic linear algebra shows that this approach is not very 
useful: the DLP is no harder than the case when G is the 
multiplicative group of a finite field; as cited by Menezes and 
Vanstone (Alfred, 1992) and details by Biggs, 
(Norman,2007) has proposed representing an abelian group 
as a critical group of a finite graph; but Blackburn has shown 
that this protocol is insecure (Blackburn, 2010). An approach 
(from number theory rather than group theory) that has had 

more success is to consider the group of points on an elliptic 
curve, or Jacobians of hyper elliptic curves. According to 
Galbraith and Menezes (Steven,2005) has survey of this area. 
All the works discussed use representations of abelian 
(indeed, cyclic) groups. What about non-abelian groups? The 
first work to use non-abelian groups that we are aware of is 
due to (Neal,1985). (Gonz´alez Vasco and Steinwandt 

(Maria, 2004)  
 

A. Diffie�Hellman Key Agreement Protocol 
 

(Whitfield, 1976) asserted that. Let G be a cyclic group, and 
 a generator of G, where both g and its order d are publicly 

known. If Alice and Bob wish to create a shared key, they 
can proceed as follows: 
(i)   Alice selects uniformly at random an integer a (2 d − 

1), computes a, and sends it to Bob. 

(ii)    Bob selects uniformly at random an integer b (2 d − 
1), computes b, and sends it   to Alice. 

(iii)  Alice computes ka = ( b)a, while Bob computes kb = 
( a)b. 

(iv)  The shared key is thus k = ka = kb G. 
 

  The security of the scheme relies on the assumption that, 
knowing G and having observed both a and b, it is 
computationally infeasible for an adversary to obtain the 
shared key. This is known as the Diffie�Hellman Problem 
(DHP). The Diffie�Hellman problem is related to a better-
known problem, the Discrete Logarithm Problem: 
 

Discrete Logarithm Problem (DLP). Let G be a cyclic 
group, and a generator of G. Given h G, find an integer t 
such that t = h. Clearly, if the DLP is easy then so is the 
DHP and thus the Diffie�Hellman key agreement protocol is 
insecure. So, as a minimum requirement interested in finding 
difficult instances of the DLP. Difficulty of the DLP depends 
heavily on the way the group G is represented not just on the 
isomorphism class of G. For example, the DLP is trivial if G 
= Z/dZ is the additive group generated by  = 1. However, if 
G is an appropriately chosen group of large size, the DLP is 
considered computationally infeasible 
 

B. Ko�Lee�Cheon�Han�Kang�Park Key Agreement 
Protocol 
 

Let G be a non-abelian group. For x G then write  for 
x−1 x, the conjugate of  by x. The notation suggests that 
conjugation might be used instead of exponentiation in 
cryptographic contexts. So, we can define an analogue to the 
discrete logarithm problem: 
 

Conjugacy Search Problem. Let G be a non-abelian group. 
Let , h G be such that h =  for some x G. Given 
the elements  and h, find an element y G such that h = y. 
If we can find a group where the conjugacy search problem is 
hard (and assuming the elements of this group are easy to 
store and manipulate), one can define cryptosystems that are 
analogues of cryptosystems based on the discrete logarithm 
problem. Ko et al. proposed the following analogue of the 
Diffie�Hellman key agreement protocol. 
 

   As cited by (Ki, 2000). Let G be a non-abelian group, and 
let  be a publicly known element of G. Let A, B be 

Key Key
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commuting subgroups of G, so (a, b) = 1 for all a A, b B. If 
Alice and Bob wish to create a common secret key, they can 
proceed as follows: 
(i). Alice selects at random an element a A, computes a = 

a−1 a, and sends it to Bob. 

(ii). Bob selects at random an element b B, computes b = 
b−1 b and sends it to Alice. 

(iii). Alice computes ka = ( b)a, while Bob computes kb = 
( a)b. 

(iv). Since ab = ba, we have ka = kb, as group elements 
(though their representations might be different). For 
many groups, we can use ka and kb to compute a secret 
key.  

 

For example, if G has an efficient algorithm to compute a 
normal form for a group element, the secret key k could be 
the normal form of ka and kb. The interest in the paper of Ko 
et al. (Ki, 2000) centred on their proposal for a concrete 
candidate for G and the subgroups A and B, as follows. Take 
G to be the braid group Bn on n strings ((Emil, 1947), for 
example) which has 

presentation

2

1
,...,, 121




  jifor

jifor
B

ijji

jijiji
n

n




  

Let l and r be integers such that l + r = n. Then we take     

121 ,...,,  nA  and 121 ,...,,  rlllB  . 
 

  The braid group is an attractive choice for the underlying 
group (a so called �platform group�) in the Ko et al. key 

agreement protocol: there is an efficient normal form for an 
element; group multiplication and inversion can be carried 
out efficiently; the conjugacy problem looks hard for braid 
groups. Note that we have not specified the cryptosystem 
precisely. Of course, chosen the values of n, l and r have not 
being chosen. But have also not specified how to choose the 
element g G (it emerges that this choice is critical). Finally, 
since the subgroups A and B are infinite, it is not obvious 
how the elements a A and b B should be chosen. 
 

C. Anshel�Anshel�Goldfeld Key Agreement Protocol 
 

   This beautiful key agreement protocol, due to Anshel, 
Anshel and Goldfeld has an advantage over the Ko et al. 
protocol: commuting subgroups A and B are not needed, Iris, 
(1999), According to (Iris,1999). Let G be a non-abelian 
group, and let elements a1, . . . ,ak, b1, . . . , bm G be public.   
 

(i)  Alice picks a private word x in a1, . . . ,ak and sends 
x
m

x bb ,...,1  to Bob. 

     (ii) Bob picks a private word y in b1, . . . ,bm and sends 
y
m

y aa ,...,1  k to Alice. 

    (iii) Alice computes xy and Bob computes yx. 

    (iv)  The secret key is (x, y) = x−1y−1xy. 
 

Note that Alice and Bob can both compute the secret 
commutator: Alice can premultiply xy by x−1 and Bob can 

premultiply yx by y−1 and then compute the inverse: (x, y) = 
(y−1yx)−1. 
 

  The Anshel et al. protocol is far from well specified as it 
stands. In particular, nothing has being said about the choice 
of platform group G. Like Ko et al., Anshel et al. proposed 
using braid groups because of the existence of efficient 
normal forms for group elements and because the conjugacy 
search problem seems hard. See (Alexei, 2008) for a 
discussion of some of the properties a platform group should 
have; they discuss the possibilities of using the following 
groups as platform groups: Thompson�s group F, matrix 

groups, small cancellation groups, solvable groups, Artin 
groups and Grigor chuck�s group. 
 

D. The Stickel Key Agreement Protocol 
 

Replacing conjugation: The Ko et al. scheme used 
conjugation in place of exponentiation in the Diffie�Hellman 
protocol, but there are many other alternatives. For example, 
one can define  and  for any 
fixed functions (including the 
identity maps) and the scheme would work just as well. More 
generally, one may replace a and   by unrelated elements 
from A: there are protocols based on the difficulty of the 
decomposition problem, namely the problem of finding 

 such that  where  and h are known. 
See Myasnikov et al. (Alexei, 2008) for a discussion of these 
and similar protocols; one proposal we find especially 
interesting is the Algebraic Eraser. As an example of such a 
protocol, will be briefly describe as a scheme due to Stickel, 
(Arkdius, 2006).  
 

As cited in (Eberhard, 2005). Let G = GL(n, Fq), and let 
G. Let a, b be elements of G of order  

respectively and suppose that ab ba. The group G and the 
elements a,b are publicly known. If Alice and Bob wish to 
create a shared key, they can proceed as follows: 

 

(i)    Alice chooses integers l, m uniformly at random, where 
0 < l < na and 0 < m < nb. She sends to 
Bob. 

(ii)   Bob chooses integers r, s uniformly at random, where 0 
< r <na and 0 < s <nb. He sends  to Alice. 

(iii)  Alice computes  . Bob 
computes  

. 

(iv)   The shared key is thus k = ka = kb. 
 

E. Secure Signatures with RSA 
 

     One issue of data transmission is the ability to verify a 
person�s identity. If one sends a request to a bank to transfer 

money out of an account, the bank wants to know if the 
person who sends the request is really the owner of the 
account. If the request is made over the internet, how can the 
bank check the owner�s identity? The RSA encryption system 

gives a method for checking identities, which is one of the 
important features of the system. 
As cited, in David R. (2007). Suppose that person A 
transmits data to person B, and that person B wants a method 
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to check the identity of person A. To do this, both person A 
and B get sets of RSA data; person A has a modulus nA and 
an encryption exponent eA. These are publicly available. That 
person also has a decryption exponent dA that remains 
private. Person B similarly has data nB, eB, and dB. In 
addition, person A has a signature, a publicly available 
number S. To convince person B of his identity, person A 
first calculates  and then . 
He then transmits R to person B. Person B then decrypts R 
with her data, recovering . Finally, she 
encrypts T with person A�s data, obtaining . By 
seeing that this result is the signature of person A, the identity 
has been validated. For example, suppose that the data for 

person A is                    = 2673157         = 23 

= 2437607         S = 837361 

and the data for person B is   = 721864639      = 19823   

= 700322447 Person A then calculates 8373612437607 
mod2673157 = 1216606; and then 121660619823 

mod721864639 = 241279367: Person A then transmits 
241279367 to person B. When person B receives this, she 
calculates   241279367700322447 mod721864639 = 1216606; 
and finally recovers S as                               S = 121660623 
mod2673157. 
 

  To explain why this works, let denote by encryptA(M) and 
decryptA(M) the integers MeA mod  and MdA mod , 
respectively. Similarly, one would have encryptB(M) and 
decryptB(M). 
 

   The validity of the RSA system says that 
decryptA(encryptA(M)) = M; encryptA(decryptA(M))= M 
Similar equations hold for B. With this notation, person A 
calculates 
 

R = encryptB(decryptA(S)) and then person B calculates 
encryptA(decryptB(R)):  Therefore, person B will calculate 
encryptA(decryptB(encryptB(decryptA(S)))) = 
encryptA(decryptA(S))= S as the consequence of the two 
immediate equations above. Therefore, person B does recover 
the signature of person A. The reason that this method 
validates the identity of person A is because only person A 
can calculate decryptA(S). If another person tries to claim he 
is person A, tries to substitute a number F in place of 
decryptA(S), he will transmit encryptB(F) to person B. Person 
B will then calculate encryptA(decryptB(encryptB(F))) = 
encryptA(F): However, in order to have encryptA(F) = S, we 
must have decryptA(S) = decryptA(encryptA(F))= F; Which 
means that this person must have the correct decrypted 
number decryptA(S); he cannot send any other number 
without person B realizing it is a fake number. 
 

IV. CONCLUSION 
 

  If RSA algorithm is implemented correctly then the 
algorithm is effective and useful in cryptography.  But there 
are some other issues also related to fear of security of RSA 
algorithm used in Cryptography. A well known attack on 
RSA is discovered by Paul Kocher.  He demonstrates that it 
is possible to discover the decryption exponent by carefully 
timing the computation times for a series of decryptions. 
Efforts can be made to use finite group based cryptography. 
Although finite group based cryptography have many 

difficulties during implementation, but it has the more 
advantageous than the infinite group cryptography. 
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