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Abstract-The aim of this paper is to present a study on the representations of coordinate, momentum and dispersion operators in the
framework of a phase space representation of quantum mechanics that we have introduced and studied in previous works. We begin in the
introduction section with a recall about the concept of representation of operatorson wave function spaces. Then, we show that in the case
of the phase space representation the coordinate and momentum operators can be represented either with differential operators or with
matrices. The explicit expressions of both the differential operators and matrices representations are established.Multidimensional
generalization of the obtained results areperformed and phase space representation of dispersion operators are given.
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. INTRODUCTION

In our previous work [1] we have performed a study on a
phase space representation of quantum theory.For the case of
one dimensional quantum mechanics we have introduced a
basis denoted { |n, X, P, )} of the state space to define this
phase space representation [1],[2]. A vector basis|n, X, P, &)
designates an eigenstate of operators called coordinate and
momentum dispersion operators denoted X, and Z,:

1(a)?
(1.1)

_1x=-x%  (-P)?
L= Par T or
_1x-x)?% | (-P)? 2
%= P T e 1O
2. nX,P, &)= (2n+ 1)(a)?|n,X,P, &)
2,InX,P,6) = 2n+ 1)(6)?|n, X, P, &)

at =" (1.3)
In these expressons,xand pare the coordinate and
momentum operators [1],[2],[3].X and P are respectively the

mean values of xand pin astate |n, X, P, )

(1.2)

{X =(n,X,P,&|x|n,X,P, &) (1.4)

P =(nX,P,&|pnX,P, &)

and the eigenvalues (2n + 1)(a)? and (2n + 1)(&)? of X,
and X, are the coordinate and momentum statistical variance
(statigtical dispersion) for astate |n, X, P, 4)

{(Zn + 1) (a)? = (n, X, P, 6|(x — X)?|n, X, P, &) L5
@Cn+ 1)) =nX,P,6|(p - P)Zln,X,P,{y)( )
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Let us denote |x) an eigenstate of the coordinate operator x
and |p)an eigenstate of the momentum operator p. The basis
{Ix)} and {|p)}define respectively the coordinate and
momentum representations.

Let £be the state space of the particle.For any element |)of
£ we have the decomposition[1],[4],[5].[6]

W) = [lx)xl)dx = [ P(x) [x)dx (1.6)
= [IpXplw)ydp = [¥(p) Ip)dp .7

Y(x) = (x|yY) and Y(p) = (p|yY) are the wave functions
corresponding to the state |i) respectively in coordinate and
momentum representation. We will denote £and £ the wave
function spaces i.e the sets of wave functions respectively in
coordinate and momentum  representation £ = {1} and
&=}
Let A be a quantum observable of the particlei.e a
hermitianlinear operatoron the space state£[3],[7],[8],[9]. We
may write

Aly) = Jlx)(xIAlllJ) dx = j[ﬁlp(x)]lx) dc« (1.8

- [wlawyap = [EE@IPIay  19)

The relations defining the concept of representations of the
operator Aon wave functions spaces are

(x|Alp) = AY(x) (1.10)
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(plAly) = AP (p) (1.11)

In these expressionsis a linear operator over the wave
functions space £ (coordinate representation) and 4 a linear
operator over the wave functions space & (momentum
representation).So Aisthe representation of Aover € and 4 its
representation over £. For the case of the coordinate and
momentum operator xand pthemselves, we have

x|yp) = Jlx)(xlxlllf)dx = J[xlp(x)] lxydx  (1.12)

= [Ip)plxtwy dp = [[in ™22 |p)dp  (1.13)

plp) = [l)xIply) dx = [[~in ™22 |xydx (1.14)

= [ ap = i@y @15)

= 17}
T=x (¥=inl
{A__ihi{x " (116)
P=""l B=p

we have for al the operator couples(x,p), (X,p) and
(%, p)[3],[10],[11],[12]

[x,p]- =ih
[%,P]- = ih (1.17)
(% P]- =i

If we consider now the case of the phase space representation
defined with the basis {|n, X, P, #)}, following our previous
works [1],[2], we have for any state [i)of the particle and
for any fixed value of n

) = [Inx, P, 6)n, X, P, 61 0
Yy = | In,X,P,6)nX,P, ¢2nh

= [InX,P,&)¥"(X,P,6)5 50 (118)

Y'(X,P, &) =(nX,P, &) being the wave function
corresponding to the state|y). Let us denote€ the set of the
Y For any quantum observable Aof the particle, we may

introduce the representation Aof Aover € such as

dXdP
AlyY) = In,X,P,f')(n,X,P,Z'lAlll))m

—jﬁwxpfm XP&)dXdP 1.19
- [ ( oy ]n: , 21'[h ( . )
(n,X,P, 6|Alp) = AY™(X,P,6)  (1.20)

In our work [1], we have also established that another
possible expression for the decomposition of the state [y) in
the phase space representation is

[¥) = ) InX, P, 6)n, X,P, 61)

n
= > X P WK, P, ) (1.21)
n
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So we may also define a matrix representation [A] of an
observable Ainthe basis{|n, X, P, )},

A= AninX,P,6)(mX,P,8] (122)
n m

AlY) = z z ARY™(X, P, &) |n, X, P, &) (1.23)

n

withAR, the elements of the matrix [A]
Ar = (n,X,P,6|Alm, X, P, &) (1.24)

Alm, X, P, &) = ZA; In,X,P, ) (1.25)
n

Il. DIFFERENTIAL OPERATOR REPRESENTATION
OF THECOORDINATE AND
MOMENTUMOPERATORS

Let ¥ and P be the representations of the coordinate and

momentum operators x and p over the phase space wave
functions space g
(n, X, P, &|x|p) = *Y(X,P, &) .1
n,X,P,&|p|ly) =PpY(X,P,6) (2.2)
Asin our work [2] we may also introduce the operators
xandpdefined by the relations

x—X
x =
2
e, (23)
P= e

and their representation % andg overs
(n, X, P, &|x|p) = WY (X, P, 6) (2.4)
(n,X,P,&|plp) =PY"(X,P, &) (2.5)

P=——
Y28 (26)
- X=X
= —\/fa,
In the work [2] ,we establish that for the operators
1 1
r=—lp-il [p=—lz +2']
\/1? e \/I,E 2.7)
z+=ﬁ[p+ix] kx=ﬁ[z‘—z+]
we have
{ z |n,X,P,4) =+nln—1,X,P, 4) 2.8)
2zt n X, P, 6)=vn+ 1|ln+1,X,P, &) '
so we can deduce
9
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(pin, X, P, 4) = T [Wa|n —1,X,P,6) + Va + 1|n + 1,X, P, 6)] =2 (ih>—X) + =
i 29 2=2(-inl-P)+al @17
¥ X, P, 4) = T WVa|n—1,X,P,6)—Vn+1ln+1,X,P,4)] h x op
inwhich § and a are constant numbers.
n,X,P,&|plyY) =PY(X, P, 6) Taking into account the relations
1 (. p-P
=—[nn—1,X,P,&1Y) +Vvn+1(n+ 1,X,P, &|Y)] |p="— " "
@ f V26 @{p=\/§fr—p+P (2.18)
1 o> X o - .
= —[Vaw™ (X, P, 6) + Vn + 19" (X, P, 4)]  (2.10) le= ® = ViaR+X
V2 \ 2a
(n, X, P, 6|x|p) =W (X,P,4) we may deduce the expressions of P and ¥ which satisfy the
_ %[ﬁ(n— 1L,X, P, 6|) — VA Ln + 1,X, P, 6|1)] commutation relation[x, p]_ = ik :
= 1[&\11"—1()(,13,45«) —Vn+ 1Y, P, 8)]  (2.11) \[_ (lh_ -X)+ \/—M’— +p
NG X
(2.19)
_ 3?:\/‘ (= Lh——P)+\/_a,a—+X
From the expressionof¥™ [1],[2] aoP
Y'(X,P, &) =(nX,P b)) = J(n,X, P, &x) (x|y)dx inwhich,asin[2],B = (#)?and A = (a)? and g = %a,
In particular for the casef = 0and @ = 0,we obtain the
= j on(x, X, P, 6) Y(x)dx evident relations
HaCr) _(ﬂ)z_ipx 2
= e e Ydx - (212) B =22l —X)+P
— f;l (2.20)
we can deduce x=v2i( lhﬁ_PH’X
n,X,P, I&Ipllp) PY(X,P,6) I1l. MATRICES REPRESENTATIONSOF THE

COORDINATE AND MOMENTUMOPERATORS
— VWX, P, 6) +Vn + 1Y (X, P, 6)]

\f In the first section, we have established that for an observable
Iy(thi—X)]‘P"(X P, 4) (2.13) A, we can aso have a matrix representation [A4] in the basis
{In, X, P, &)}. The expression of the element A%, of [A]is given
(n, X, P, &lxlp) = RY™(X, P, &) by
=%[x/ﬁ(n—1,X,P,{”r|1,b)—\/n—+1(n+ 1,X, P, 6] Am = (n, X, P, &|4Im, X, P, &) G
We have obtained

-2 'fla P)HIY'(X,P, & 2.14
= [} (=ih e = P)W"(X, P, 6) 214)

1
(p|n,X,P,1r> =—[Nnln-1,X,P,6)+Vn+1n+1,X,P,6)]
by identificationwe obtain ‘/E (3.2)

P kxln,X,P,l&)=%[\/ﬁ|n—1,X,P,1})—\/n+1|n+1,X,P,1r)]
=— (ih— -X)
(2.15) - .
( h a P) For the matrix representations [p] and [x] of pand , the
xXr=— in——

elements pj,andx; are

weverify that the commutation relation for 2 and B is
=(nX,P,&plmX,P,6)

®Ppl=i 2.16 1
%Pl (2.16) = E(\/E(s’,;_l +Vm+168p,,) (3.3)
we also remark that more general expressions of € and  wich
satisfy this commutation relation is xm = (n,X,P,&|x|m,X,P, &)
i
=5 (VméZ_y —Vm + 168%,4) (3.4)

ISSN:2278-5299 10
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Taking into account the relations

x—X
- >x=V2ax+X
V2a
pz—p_P:»p=\/ZZVp+P
V24

we can deduce for the elementspl, andx;;, of the matrices

representations [p] and [x] of pand x

=26pL + PS5,

= & (Vm&r_y +Vm + 18%,) + PSY, (3.5)
=V2axp + X5},
= ia(Nmsp_, —Vm + 18%,,) + X6, (3.6)

We may verify that we have the relation
XpPm — Pum = 1h8,,(3.7)

IV.MULTIDIMENSIONAL GENERALIZATION

As in our previous works [1], [2], [6], we use in this section
notations based on [4].

For the multidimensional case, the commutation relation is

[rﬁu !lsev]— = ihnuv (4.1

wheren,,, are the components of the metric tensor on
Minkowski space

lifu=v=0
Nw =4-1ifp=v=123
0ifu+v

Asin [2], we introduce the operators
V2
pﬂz?a’z(pp_Pp) :ﬁﬁ/}fpp-*-Pp

(4.2)
X, = \/faZ%p +X,

| * —\/—frp(x X,)

in which af and 6, are the multidimensional generalization
of a =Ax and & = Ap as defined in [2]. They satisfy the
relation

v/B,P_hav
d,p #_E# (43)

whered,, isthe usual Kronecker 's symbol

5v_{1ifu=v
ET0ifu+v

The commutation relation for the phase space

representati onﬁu and %, 0f p,and x,is

ISSN:2278-5299

[gﬂ !5@1/]— = inuv (44)

It may be verified that general expressions satisfying this
relation are

L d d
) P
P, = —( lhﬁ p)+ﬂum

in which g7 and a; are constant numbers. It may be chosen

in particularBf = 0 and a;, = 0, inthat case

SR
pp. = ?(—Lhm—xp)

: (4.6)
~ ay .
*, = 7(lhm - PA)
And taking into account (4.2), we obtain for p_and,, :
u
. B .0
p,= «/E—”(—mapg - X,)+B,
a (4.7
%, =2 —( h—=—P)+X
u aX/l A u

inwhich, asin[4],Bf = 66 and A} = ala}.

V. DISPERSION OPERATORS

In our previous works [2], we have introduced the generators
2.2y @nd 2,0f the dispersion operators al gebra:

A, = 46, 603;,
2, = wf‘M;;,l (5.1)

iy = 40063,
in which
f 3, = %(mm + %,%,)
2y = %(mm — ¥ %,) (5.2)
gy = %(m%v + %,Py)

Then, we have in the phase space representation

ot 1 e ~ o
| ;'uv - Z (pp_ pv + *u 7\dv)
o 1 ) "~ ™
{ w = Z(p”' L, X xy) (5:3)
|'*‘X 1 ) e R
kg‘uv =7 (PP_ %, + %, pﬂ)
If we use the expression (4.5) of ”p?ﬂ and %, we obtain
s % 0 [ ]
v h ( l aPp ) apo— - 0')
= &5&5 h? 0 9 +in(X, — g + X, X
= h M Gpegpe T e Gpp X0 5p0) ol

11



International Journal of Latest Research in Science and Technology.

o a0 PR,
%”%V— 7(lhm—PA) ?(lhm—Pp)

_ n? 99 ih(P, =7 o +P 0 + PP,
nz U gxigxe ~ U Gxa t Pagy) T Rah

/&P
B8 = [ cings | [ Mlaﬂ

by ay 2 d
h? aPP 9x*

d
+Lh( A+PA BV Xpm)-'rxppﬂ

2P = a—ﬂ(ihi—P) [’—“p(—ihi—X) -
vPy = | Woxa = Ty aper P

bal 0 0 d
nz I axagpe ~ 1O + X 53— Pagpp) TPkl
So we have
ot ~ o
2 —(p +x,%,) =

MM h? i ih(X 9 X g XX
4{ =R gpoapa T MK gps t % gpn) + XoXal
+“““3 [—h? o — ih(P. i o —) +B,P]}

72 aXPoxA 2 axe TP gxa 4
o 1 -~ e B
2 _(pp_ ﬂp-‘v —%,%,) =

1 6767 iy 92 " a ]

Z{ flz [— aPpaPl-l—l (XAW+XPW)+XPXA]
apay . 09? N 0. op
Tz T Gxeaxa — Mgy + By + Rl

X

1 - -
guv = Z(p“ ﬂ*-‘v + gvpu) =
16 a} 92

d d
——t—[h? ——— + ih(P PX
2 1 U gpogxa t B g, = Xo gy) + Pao]
Then, using the relation (5.1), we obtain

Tt £p 0
JMV = 46’[1'&1/ 389

B BA a 9
_ KTV 22
= hz R gpegpa T i gps +
1 a 0

Z[—h2 —
+4[ h 3XE IX +ih(B

- ~
Yy = 46560 3,

a
pm) + XpXA]

9 9 + B,P,
kaxv V(?X”) iz

_BﬁBWI} 32 0

e T 50 aP7L + lh(X’l are T

P apl) +X Xﬂ.]

[ 2 -2 +zh(P—+P—)+PP]

axHaxv Haxv Voaxu

X

o
Yy = 46568 3,
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B 02

= h?—— g +PX
[ dPPOXY ax) ol

i}
+ih(P, = 3pr X, X7

V1. CONCLUSION

From our previous works [1],[2] we have shown in this
paper that there are two possibilities for the representation of
coordinate and momentum operators in the framework of the
phase space representation. The first is a representation with
differential operators and the second one is matrices
representation.

These possibilities are linked with the fact that there are
twoways to expand a state in the basis{ |n,X,P,4)} as
givenintherelations (1.1) and (1.2) .

The establishment of the expressions of the differentia
operator representations are performed in the section 2 and
the matrices one in the section 3. The results are presented in
(2.19), (3.5) and (3.6).

Multidimensional generalization of the differentia
operators representation of coordinate and momentum are
established in the section 4 and the representations of
dispersion operator are given in section 5.

As expected, the main results in this works are the
establishment of the new representation of coordinate,
momentum and dispersion operators which correspond to the
phase space representation.
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