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SOLVING THE (0 -1) KNAPSACK PROBLEM BY 
AN ADAPTED TRANSPORTATION ALGORITHM 

 

Boudjellaba H., Gningue Y. and Shamakhai H. 
 

 

Abstract - In this paper we link the zero-one knapsack problem to the linear transportation problem then solve it by using an adaptation of 
the transportation algorithm. The Vogel Approximation Method is applied to find an initial solution. It consists in assigning to each row 
and column a penalty which is the difference between the two least costs.  The largest penalty indicates the line to be allocated first. Then 
the variable with the least cost on that line is assigned. For the zero-one knapsack problem, the Vogel method is shown to be equivalent to 
the Greedy Algorithm.  That initial solution is then improved by using the dual variable and resulting reduced cost. We detect conditions 
which indicate that the optimal solution is reached. We also prove that when no further cost�s reduction is possible, then an optimal 
solution is obtained. This approach opens a new field of research which treats the zero-one knapsack problem as a transportation problem. 
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1. INTRODUCTION  

Given a set of ݊ items ݆ = 1,� ,݊, each having a weight ݓ௝   and inducing a unit profit ௝ܲ , the knapsack problem (KP) 
consists in selecting some items to load a knapsack with a 

total capacity ܹ in order to maximize the total profit. The 

most common problem is called the ሺ0 − 1ሻ knapsack 
because it selects at most one item and can be formulated as  

 ܲܭ
۔ۖۖەۖۖ
ۓ maxܼ = ෍ ௝ܲ ௝ܺ௡

௝ୀଵ෍ݓ௝ ௝ܺ ≤ܹ௡
௝ୀଵ௝ܺ ∈ ሼ0, 1ሽ ;       ݆ = 1,⋯ ,݊

� 
 
Without loss of generality, the following conditions for the 
KP are usually assumed 
 

(a) ௝ܲ > ௝ݓ ,0 > 0 ;     ݆ = 1,⋯ ,݊ 

(b) ݓ௝ ≤ W  ;      ݆ = 1,⋯ ,݊ 

(c) σ ௝ݓ >௡௝ୀଵ W > 0 

  The zero-one knapsack problem is considered as the 
simplest linear programming problem and appears in many 
applications found in the industry and financial management 
[6, 10]. It is an NP combinatorial optimization problem and 
can obviously be solved by enumerating all possible subset of  ݊ items. This naïve approach with a complexity order of 

O(૛࢔) becomes inefficient when the number of items 
increases. Techniques of sampling [11] and parallel [8] 
computing have been developed to facilitate that approach for 
solving the KP. 
 

 

   Actually there are four main classes of algorithm solving 
the zero-one knapsack problem. Bellman [1] introduced in 
1957 the first algorithm using dynamic programming which 

improved the complexity to ܱ(ܹ݊). Since then, numerous 
algorithms to solve the knapsack problem using dynamic 
programming have been developed [9]. However the capacity  ܹ can be an exponential function of  ݊. 
 
   The second class of method uses the branch and bound 
algorithm which is firstly introduced in 1967 by Kolesar [7].  
Between 1970 and 1979  many types of branch and bound 
algorithms were developed in order to solve large dimension 
KP [10]. The most well known approach of this period is due 
to Horowitz and Sahni [5]. In 1975, Sahni introduces the first 
polynomial time algorithm for the zero-one knapsack 
problem [13].  
 

   The algorithms of these first two classes are all exact 
methods while the last two are heuristics. The third class of 
algorithm provides near optimal solution. The most popular 
is the Greedy Algorithm introduced in 1957 by Dantzig [3]. 
The remaining class describes the evolutionary algorithms 
and particularly the genetic algorithms [4, 15] which behave 
very well when applied to some types of knapsack problem. 
 
   In this paper we introduce a fifth class which link the ሺ0 − 1ሻ knapsack problem to the linear transportation 
problem. The resulting method is solved by an adaptation of 
the transportation algorithm and provides an optimal solution. 
The link between the knapsack problem and the 
transportation problem is the subject of the section 2. Then 
the adapted transportation algorithm is introduced in section 
3. Finally, an example is presented for illustration. 
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2. Knapsack Problem and  Transportation 
  The zero-one knapsack problem can be formulated as a 
linear transportation problem. We associate to the knapsack 
the vector ܺଵ,௝ = ܺ௝ ;       ݆ = 1,⋯ ,݊ 
 
In order to have a transportation formulation, we proceed to a 

change of variables ௜ܻ௝ = ௝ݓ ௜ܺ௝  and consider a dummy 

knapsack  associated to variables ଶܻ,௝ ;       ݆ = 1,⋯ ,݊ 
  Their coefficients in the maximization objective are equal to 

zero, ܭଶ,௝ = 0 ;  ݆ = 1,⋯ ,݊ which make these variables 
less attractive.  Since the knapsack problem is not usually 

balanced, we also add a dummy surplus item ݊ + 1 with 
zero coefficients and its weight equal to an unknown buffer ܤ which is the non-allocated knapsack capacity i.e. ݓ(௡ାଵ) =  The total capacities of the knapsack and the  .ܤ

dummy knapsack 2  are equal to 

ଵܹ = ܹ    and     ଶܹ = ܤ + ෍ݓ௝௡
௝ୀଵ −ܹ 

 
  All these transformations imply a balanced knapsack 
problem (BKP) 
 

 ܲܭ
ەۖۖ
۔ۖۖۖ
ۖۖۖ
ۓ maxܼ = ෍ ௝ܲݓ௝ ଵܻ,௝௡

௝ୀଵ෍ ଵܻ,௝ = ଵܹ௡ାଵ
௝ୀଵ and  ෍ ଶܻ,௝௡ାଵ

௝ୀଵ = ଶܹ
෍ ௜ܻ,௝ = ௝ଶݓ
௜ୀଵ  ;   ݆ = 1,⋯ , (݊ + 1)

௜ܻ,௝ ∈ ൛0,ݓ௝ൟ ;  ݅ = 1,2 ;   ݆ = 1,⋯ , (݊ + 1)
� 

  
The items are ordered in the decreasing of the efficiency rate 
with the largest being ܭଵ,ଵ = max௝ ቊ ௝ܲݓ௝ቋ 

Then we subtract all the coefficients from that largest value 
to obtain new coefficients ܭଵ,௝ = ଵ,ଵܭ − ௝ܲݓ௝   and   ܭଶ,௝ = ; ଵ,ଵܭ     ݆ = 1,⋯ ,݊ 

   
This transforms the knapsack problem to the following 
minimization Transportation KP (TKP) 

 ܲܭܶ
ەۖۖ
۔ۖۖۖ
ۖۖۖ
ۓ minܼ௅ = ෍෍ܭ௜,௝ ௜ܻ,௝௡ାଵ

௝ୀଵ
ଶ
௜ୀଵ෍ ଵܻ,௝ = ଵܹ௡ାଵ

௝ୀଵ and  ෍ ଶܻ,௝௡ାଵ
௝ୀଵ = ଶܹ

෍ ௜ܻ,௝ = ௝ଶݓ
௜ୀଵ  ;   ݆ = 1,⋯ , (݊ + 1)

௜ܻ,௝ ∈ ൛0,ݓ௝ൟ ;  ݅ = 1,2 ;   ݆ = 1,⋯ , (݊ + 1)
� 

 
It can be solved by an adaptation of the transportation 
algorithm presented in the next section. 
 
3. Adapted Transportation Algorithm 
3.1. Initial solution  

  To obtain an initial solution, we use the Vogel 
Approximation Method (VAM). Since the items are ordered 
in the decreasing efficiency rate, it consists on assigning 

successively the item ݆ if feasible. We note by  ௝ܸ  the 

remaining capacity after the assignment of the variable ଵܻ,௝ 
and establish the procedure as follows. 
 
Set ଵܻ,ଵ = ଵ  and   ܸ1ݓ = ܹ−  1ݓ 

For ݆ = 2,� ,݊ 
If  ݓ௝ ≤  (ܸ௝ିଵ)  then  ଵܻ,௝ =  ௝ݓ −௝   and     ௝ܸ = (ܸ௝ିଵ)ݓ 
Else     ଵܻ,௝ = 0 ,  ଶܻ,௝ = ௝ݓ     and     ௝ܸ  = (ܸ௝ିଵ) 
EndFor 

 
Remark 1.The approach by the Vogel method is equivalent 
to the Greedy Algorithm for the knapsack problem with ܱ(݊ ln (݊)) order of complexity.  
 
3.2. Dual  Variables and test of optimality 

  The dual variables ݑ௜   and  ݒ௝  associated to the current 
solution is provided by the following system of equations  ܭ௜,௝ − ௜ݑ − ௝ݒ = 0 ;        ∀ ௜ܻ,௝ ∈  ௏ܤ
  The set ܤ௏  is defined as the basic variables which induce ݉ + ݊ − 1  equations. Since there are ݉ + ݊ unknown 

variables, by setting ݑଵ = 0 we can determine a solution of 
dual variables and reduced costs of all non-basic variables  ܭ෡௜,௝ = ௜,௝ܭ − ௜ݑ − ;   ௝ݒ      ∀ ௜ܻ,௝ ∉ ௏ܤ  
 
  We can notice that the current solution might be improved if  
there exist at least one non-basic variables ௜ܻ,௝  such that  ܭ෡௜,௝ = ௜,௝ܭ − ௜ݑ − ௝ݒ < 0 
 
  In the case of the zero-one knapsack problem, the reduced 
costs of such non-basic variables verify  
 ଵܻ,௝ = 0,  ଶܻ,௝ = ௝ݓ     and   ܭ෡ଵ,௝ = ଵ,௝ܭ − ଵ,ଵܭ < 0 
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This indicates the possibility to decrease the objective cost by 

considering the move from  ଶܻ,௝ to  ଵܻ,௝  called the ݆-move 
which will decreases the cost by  ௝ܴ = ෡ଵ,௝  ଶܻ,௝ܭ < 0 . 
 
  Since the first constraint is limited by the knapsack capacity ܹ the ݆-move implies the use of the remaining capacity 

which will not be sufficient because ௝ܸ < ௝ݓ . Therefore it 

will also need minimal necessary moves of variables ଵܻ,௞  to ଶܻ,௞ with  ݇ < ݆. 
 
Proposition 1. If  ଵܻ,௞ = ௞ݓ > ௝ݓ   then the move of  ଵܻ,௞ 

to ଶܻ,௞ cannot be induced by any improving ݆-move of the 

weight ݓ௝  from the variable ଵܻ,௝  to ଶܻ,௝. 

Proof.  Since ଵܻ,௞ = ௞ݓ > ௝ݓ    andܭଵ,௝ > ଵ,௞ܭ    then  หܭ෡ଵ,௝ห = ଵ,ଵܭ − ଵ,௝ܭ < ෡ଶ,௞ܭ = ଵ,ଵܭ −  ଵ,௞ܭ
and   ܭ෡ଶ,௞  ∙ ܺଵ,௞ + ෡ଶ,௝ܭ  ∙ ଵܻ,௝ ≥ 0 

Therefore the move of  ଵܻ,௞ to ଶܻ,௞  cannot be induced by any 

improving and feasible ݆-move. 
 

Proposition 2. Let�s consider ܺଵ,௞ = ௞ݓ  and the move of 

the weight ݓ௞  from  ଵܻ,௞  to  ଶܻ,௞  such that ௝ܴ + ௝ܫ   + ෡ଶ,௞ܭ )  ∙ ଵܻ,௞)  ≥ 0. 
 
 Then that move cannot be induced by any improving 

improving ݆-move. 

Proof. If the move of  ଵܻ,௞  to  ଶܻ,௞  is induced by the ݆-
move then the objective cost will increase by  ௝ܴ + ௝ܫ  +  ൫ ܭ෡ଶ,௞  ∙ ଵܻ,௞൯  ≥ 0 
and will not improve it. 
 
Let�s define  ௝ܷ ≥ ௝ܸ  as the total capacity induced by all the 
admissible move of the basic variables to non-basic variables 

associated to an increase ܫ ҧ௝  of the objective function then we 
have the following remark. 
 

Remark 2. Let�s consider ଵܻ,௞ = ௞ݓ   such that  ݓ௞ +  ௝ܷ < ௝ݓ   and   ௝ܴ + ܫ ҧ௝ + ൫ ܭ෡ଶ,௞  ∙ ଵܻ,௞൯ < 0. 

Then the move of the weight ݓ௞  from the basic variable ଵܻ,௞ 

to ଶܻ,௞ is admissible on the ݆-move.  

 
Proposition 3. Let�s consider ଵܻ,௞ = ௞ݓ   such that  ݓ௞ +  ௝ܷ  ≥ ௝ݓ   and  ௝ܴ + ܫ ҧ௝ + ൫ ܭ෡ଶ,௞  ∙ ଵܻ,௞൯ < 0. 

 Then the ݆-move is accepted. Moreover if the ݆-move is such 
that  ݓ௞ + ௝ܷ ௝ݓ− = 0  
then the current solution yield by the ݆-move is optimal. 
 

Proof. Since  ݓ௞ +  ௝ܷ  ≥ ௝ݓ   then the move of the basic 

variables associated to  ௝ܷ   provides a feasible݆-move which 

yields an improved current solution. Therefore the ݆-move is 
accepted.  

With the second condition, all variables ݎ > ݆  are non-basic 
variables with negative reduced cost i.e. ଵܻ,௥ = 0,  ܺଶ,௥ = ௥ݓ    and   ܭ෡ଵ,௥ = ଵ,௥ܭ − ଵ,ଵܭ < 0 

Therefore, any ݎ-move will involve the move of a total 

weight at least equal to  ݓ௥  from basic variables ଵܻ,௞ ;  ݇ <݆ to ଶܻ,௞ . Since the minimal reduced cost associated to these 
moves are higher to the absolute value of the negative 

reduced cost of any non-basic variables ݎ > ݆ then the 
objective function can no longer be improved. 
 
These results motivate the improvement of the initial solution 
by using the approach organized and summarized in the 
following procedure. 
 
Procedure 1. Improving the  current solution 
Let   ଵܻ,ఙሺ௧ሻ ; ݐ   = 1,� ,ܶ  be the basic variables such that  ߪሺݐሻ > ௝ܫ ݆ =  ෍ܭ෡ଶ,ఙሺ௧ሻ ∙ ଵܻ,ఙሺ௧ሻ்

௧ୀଵ > 0 

For ݇ = (݆ − 1),� , 1 

If  ݓ௞ > ௝ݓ    then continue  

Else  (ݓ௞ ≤   (௝ݓ 

        If  ݓ௞ +   ௝ܸ  ≥ ௝ݓ     then  

if  ܴ݆ + ݆ܫ < 0  then the  ݆ − move is admissible. 

else the move of   ܺଵ,௞  is discarded 

        Else  ( ݓ௞ +  ௝ܸ < ௝ݓ  ) 

If  ݓ௞ +   ௝ܷ  ≥ ௝ݓ     then  

  if ௝ܴ + ܫ ҧ௝ < 0  then the  ݆ −move is admissible.  

  else the move of   ଵܻ,௞  is discarded 

Else  ( ݓ௞ +   ௝ܷ < ௝ݓ   ) 

  if ௝ܴ + ܫ ҧ௝ < 0  then  set  ௝ܷ = ௞ݓ +  ௝ܷ   and ܫҧ݆ = ҧ݆ܫ ݇,෡2ܭ+  ∙ ܻ1,݇ 
  else    then the move of   ଵܻ,௞  is discarded 

EndIf 
EndFor 
 

3.3. Adapted Transportation Algorithm 

In this subsection, we present the adapted transportation 
algorithm 
 
Step 0. Listing the items 

List the items in the decreasing efficiency rate  
௉ೕ௪ೕ  

Update the coefficients to change the KP into minimization  ܭ௜,௝: = ଵ,ଵܭ − ;௜,௝ܭ     ݅ = 1,2 ;      ݆ = 1,� ,݊ 
Step 1. Initial solution and reduced costs 
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Set ଵܻ,ଵ = ,ଵݓ ଵܸ = ܹ −  ଵ and  s=0ݓ

For ݆ = 2,� ,݊  do  

 If  ݓ௝ ≤ ௝ܸ then set ܺଵ,௝ = ௝ݓ ,  (ܸ௝ାଵ) = ௝ܸ − ௝ݓ   and  ܭ෡ଶ,௝ = ܭ −  ଵ,௝ܭ
 Else    set  ଶܻ,௝ = ௝ݓ ෡ଵ,௝ܭ , = ଵ,௝ܭ −  ,ܭ

Set  (ܸ௝ାଵ) = ௝ܸ  ,  s:=s+1  and  ܶܥሺݏሻ = ݆    
  EndIf 

Endfor 

Set  ଵܻ,(௡ାଵ) = ܤ = and     ଶܻ,(௡ାଵ)  (௡ାଵ)ݓ = 0 
Step 2. Decreasing the objective function 

For ݇ = 1,� ,   do  ݏ

Set ݆ =  ሺ݇ሻ and  apply Procedure 1ܥܶ

If the ݆-move  is accepted go to step 3 
Else continue  

EndFor 
Go to step 4 
 
Step 3. Update the current solution 

If  ݓ௞ + ௝ܷ ௝ݓ− = 0 then  

the ݆-move is optimal and  go to step 4 
 
Else   update the current solution and go to step 1 
 

Step 4. Perform the optimal move  
Find the optimal solution. 

 
 

4. Example of Illustration  

  Let�s consider the Knapsack Problem [14] defined by the 
following parameters ݊ = 7,  ( ௝ܲ) = (70, 20, 39, 35, 7, 5, (௝ݓ) (9 = ሺ31, 10, 20, 18, 4, 3, 6ሻ    and    ܹ = 50 
The KP can be represented by the following table 
 70 20 39 35 7 5 9 50 

31 10 20 18 4 3 6  
 

To balance the problem with ܹ = 50 < σݓ௝ = 92, we 

need to add a dummy knapsack  and a dummy item  with 

its weight being equal to the unknown buffer ܤ i.e. ଼ݓ =  .ܤ
The supply of the dummy knapsack  is equal to 

ଶܹ = ܤ + ෍ݓ௝଻
௝ୀଵ −ܹ = ܤ + 42 

The coefficient associated to the dummy knapsack and 
dummy item are equal zero.  
 

Now, by using the change of variable ௜ܻ,௝ = ௝ܺ௜,௝ݓ  the 
associated table representation becomes 
 7031 

2010 
3920 

3518 
74 

53 
32 

0 50 

+࡮ 0 0 0 0 0 0 0 0 ૝૛ 
  ࡮ 6 3 4 18 20 10 31
By subtracting the coefficients from the highest efficiency   ଻଴ଷଵ,  the formulation becomes the minimization and  yields to  

the following  transportation problem 
 0 831 

191620 
175558 

63124 
5593 

4762 
7031 

50 7031 
7031 

7031 
7031 

7031 
7031 

7031 
7031 

+࡮ ૝૛ 
  ࡮ 6 3 4 18 20 10 31
 
To solve the transportation problem, we first find an initial 
solution by using the VAM.  

Assignment 1. Since the largest penalty is ݍଵ = ଻଴ଷଵ,   the 

variable to be assigned is ଵܻ,ଵ = 31      and  ଵܸ = 50 − 31 = 19 
Then  column 1 is crossed out from the table. 
 
Assignment 2. Since the efficiency rate is decreasing, the 
next variable to be assigned is  ଵܻ,ଶ = 10       and   ଶܸ = 19 − 10 = 9 
The column 2 is cross out from the table. Since the remaining 

supply is lower than the weight ݓଷ and ݓସ the associated 

variables ଵܻଷ and ଵܻସ cannot be assigned and   ଷܸ =   ସܸ =9. Therefore, we  set ଶܻ,ଷ = 20   and    ଶܻ,ସ = 18 
Then columns 3 and 4 are crossed out from the table. 
 

Assignment 3. The next variable to be assigned is ଵܻ,ହ =4  and   ହܸ = 9 − 4 = 5 
Then the column 5 is crossed out from the table. 
 

Assignment 4. The next variable to be assigned is ଵܻ,଺ =3   and   ଺ܸ = 5 − 3 = 2 
Then column 6 is crossed out from the table. Since  ܵସ =2 < ଻ݓ = 6 then the remaining variable ଵܻ଻ cannot be 

assigned. We set ଶܻ,଻ = 6  and fill the remaining variable by 
setting  ଵܻ,଼ = 2 ;  ଶܻ,ଷ = 20 ;  ଶܻ,ସ = 18 ;  ଶܻ,଻ = 6 ; ଶܻ,଼= 0  
 
The initial solution is presented in the following table with 
the total profit ܼ = 102     with    ܤ = 2  

 ૜૚ ૚૙ −1.95 −1.94 ૝ ૜ −1.5 ૛ 2.26 2 ૛૙ ૚ૡ 1.75 1.67 ૟ ૙ 

 
The values of all basic variables are presented on bold face 
while the reduced costs occupy that space for the non-basic 

variables. Since  ܭ෡ଷ,ଵ = −1.95 < 0, then the move of  
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ଶܻ,ଷ = 20  to ଵܻ,ଷwill also implies the move of  ଵܻ,ଵ = 31  

to ଶܻ,ଵ. Since  ଶܻ,ଷ = 20 < ଵܻ,ଵ = 31 the move of ଶܻ,ଷ = 20  is discarded. 
Since the next least reduced cost is  ܭ෡ସ,ଵ = −1.94,  then 
the move of  ݓସ = 18 from ଶܻ,ସ to ଵܻ,ସ will reduce the 
objective by  ܴସ = 18 × ሺ−1.94ሻ = −35 
 

This will forces at least the moves of  ଵܻ,଼ = 2,  ଵܻ,଺ = 3, ଵܻ,ହ = 4  and  ଵܻ,ଶ = 10  then implies an increase ܫସ = (10 ×  2) + (4 ×  1.75) + (3 ×  1.67) = 30 

Since the sum  ܴସ + ସܫ = −5 < 0, then the move of ଶܻ,ସ = 18 can be performed to provide a new solution 
which, from proposition 1, is optimal with the total profit  ܼ∗ = 105. 
 ૜૚   ૚ૡ    ૚ 50 
 ૚૙ ૛૙  ૝ ૜ ૟ ૚ 44 
 
   The example is used by Teghem [14] to illustrate the 

Branch and Bound method where  17 branching iterations 
and 6 backtracking are needed to reach the optimal solution. 

At first they prove that the optimal satisfies ܺଵ = 1  and ܺଷ = 0 which is equivalent to ଵܻ,ଵ = 31  and   ଵܻ,ଷ = 0. 
Then they applied the Branch and Bound method to the 
remaining variables. So the Adapted Transportation 
Algorithm (ATA), using 2 tests on the initial solution in order 
to reach the optimal solution, seems very promising.  
However, more testing, complexity analysis and comparison 
are needed to get a true validation of the algorithm.  
 
CONCLUSION 
 

   In this paper, we have presented the zero-one knapsack 
problem (KP) as a Linear Transportation Problem and 
provide a new approach to solve it. To find an initial solution 
the Vogel Method (VAM) is used and shown to be equivalent 
to a Greedy Algorithm for the knapsack problem. Then an 
Adapted Transportation Algorithm (ATA) is applied to find 
an optimal solution. The approach opens a new field of 
research which formulates the zero-one knapsack problem as 
a transportation problem. It can also be extended to some 
variants of the knapsack problem such as the subset-sum 

problem (݌௝ = ௝ݓ ) [2], the bounded knapsack problem and 
the knapsack-like problems. It also can be generalized to 
solve the zero-one Multiple Knapsack Problem (MKP) and 
the multiple subset-sum problems.   
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