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Abstract �  In this paper, we use the center of gravity interpolation collocation method to the well-known problem which is called 
singularly perturbed problem. It means that we should find a more effective way to simulate the boundary layer effect. Through the results 
of the three examples in paper, we can make sure that the center of gravity interpolation collocation method is efficient and accurate 
method. 
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1. INTRODUCTION 
  In the study of fluid mechanics and heat conduction 
problems in Engineering, we often need to solve the highest 
derivative with a small parameter singular perturbation 
boundary value problems. The solution of the singular 
perturbation boundary problems has the characteristics of 
rapid changes in a small range, which is also the boundary 
layer effect in singular perturbation problems.Therefore, a 
more effective numerical method is needed to simulate the 
effect of the boundary layer. And we found that we can take 
advantage of the great numerical stability of barycentric 
interpolation,and then encrypt the computing nodes, use the 
barycentric interpolation collocation method to simulate of 
the boundary layer effect of singular perturbation problems. 
    Singular perturbation of two order boundary value problem 
general form is: 

  )()()()()()( xfxyxqxyxpxy  , ],[ bax    (1.1)         

 Initial conditions is ba ybyyay  )(,)(                                      

  In this function:  is a very small parameter 10   , 
p(x), q(x), f(x) are sufficiently smooth function which are 
definited in section [a,b]. 
 

2. The barycentric interpolation collocation method 
 

2.1 Differential matrix barycentric interpolation 
  In order to use barycentric interpolation collocation method 
to solve(1.1), we need to know some point about differential 
matrix for barycentric interpolation. 

  For the nodes bxxxa n  21  in the section 

[a,b],the function u(x) exists )( jj xuu  , therefore, the 

center of gravity interpolation function of u(x) is 
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where: (2.2) is the basis function of the center of gravity type 

interpolation; j  is thecenter of gravity interpolation, and it 

only depends on the distribution of interpolationnodes. The m 

order derivative of function u(x) at node nxxx ,,, 21   can 

be describedas 

 
 

and its matrix form is  
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Matrix )(mD is called m order differential matrix, and its 
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  In (2.2),both side multiply )( jixx i  ,then we can get  
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  In order to be easy , make it  
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Type (2.5) both sides seek derivatives of variables,we get  
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  Type(2.6) seeks derivative of the variable x,and 

substitute ixx  to it, we get 

 
  Let type(2.9) substitute to(2.7) and (2.8), we 

notice jixL jj  ,0)( , we get  
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Then we can know first order differential matrix and two 
order differential matrix 
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  Using mathematical induction, we can get the recurrence 
formula of the m order differential matrix 
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2.2 Using in singularly perturbed two order boundary 
value problem 
 

  Using the mark of the differential matrix,the discrete form 
of(1.2) can be turned into a matrix as  
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  Just use displacement method to exert boundary 
condition(1.2), then solve the algebraic equation(2.15), the 
numerical solution of the problem can be obtained. 
 

3.  Numerical experiment 
Example 1 , Let�s consider the following function. 
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of reproducing center of gravity interpolation collocation 
method are shown in Figure 1，Table 1.. 

 
 

Figure 1: The left is relative error with center of gravity 
interpolation collocation method.The second one is numerical 
solution and exact solution when we choose 

410,200  n . 

Table 1. Comparison of the numerical results of Example  

 
 
 



 
International Journal of Latest Research in Science and Technology. 

ISSN:2278-5299                                                                                                                                                                                115 
 

Example 2,  Considering the following one. 
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The exact solution is 
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reproducing center of gravity interpolation collocation 
method are shown in Figure 2. 
  

 
Figure 2: The first is relative error with center of gravity 
interpolation collocation method. The second one is 
numerical solution and exact solution when we choose  

410,200  n . 
Table 2. Comparison of the numerical results of Example 
2 

x )(xuT  )(200 xu  )()( 200 xuxuT   

     0 0 0 0 

0.0001 0.0596 0.0596 0 

0.0050 0.9862 0.9862 0 

0.2800 0.6401 0.6401 0 
0.3530 0.5211 0.5211 0 
0.4140 0.4134 0.4134 0 
0.5000 0.2490 0.2490 0 
0.7200 0.2389 0.2389 0 
0.8002 0.4409 0.4409 0 

0.9999 0.9998 0.9998 0 

     1    1.0000 1.0000 0 

Example 3, The last example. 
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The exact solution is x
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of reproducing center of gravity interpolation collocation 
method are shown in Figure3. 

 
Figure 3: The first is relative error with center of gravity 
interpolation collocation method.The second one is numerical 
solution and exact solution when we choose 

410,200  n . 
Table 3. Comparison of the numerical results of Example 
3 

x )(xuT  )(200 xu  )()( 200 xuxuT   

     0 1.0000 1.0000 0 

0.0001 0.9999 0.9999 0 

0.1002 0.9047 0.9047 0 

0.1520 0.8590 0.8590 0 
0.2190 0.8034 0.8034 0 
0.4140 0.6610 0.6610 0 
0.5000 0.6065 0.6065 0 
0.7200 0.4868 0.4868 0 
0.8480 0.4283 0.4283 0 

0.9999 1.3080 1.3080 0 

1 1.3629 1.3629 0 
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4. CONCLUSIONS AND REMARKS 
 

  Singularly perturbed problem widely exists in engineering 
problems, because it is difficult to get a more effective way to 
imitate boundary layer effect. As people focus onthese 
problems, many numerical methods have been 
proposed.Through this paper, we found that center of gravity 
interpolation collocation method could simulate the boundary 
layer effect very well, and it is such an effective for 
singularly perturbed problem. 
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