ON DIFFERENTIABILITY OF λ-RIESZ POTENTIALS AND THEIR APPLICATION.

INAN CINAR

Yüzüncu Yıl University, Faculty of science, Department of Mathematics, 65080 VAN, TURKEY
Abstract- In this work the λ-Riesz potentials are given and the problem of its totally differentiability is investigated. Numerical experiments support theoritical results.

Keywords - Nonizotropic distance, differentiability

I. INTRODUCTION

Let $0<\alpha<n, x, y \in \square^{n}, f$ belonging to $L_{l o c}\left(\square^{n}\right)$ spaces.

$$
R_{\alpha} f=\int_{\square^{n}} R_{\alpha}(x-y) f(y) d y
$$

Define the integral operator called Riesz potential [1] where $R_{\alpha}(x-y)$ is the kernel of Riesz potential and defined

$$
R_{\alpha}(x)=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{\frac{\alpha-n}{2}}
$$

For positive $\lambda_{1}, \ldots, \lambda_{n}, x \in \square^{n}$ and $|\lambda|=\lambda_{1}+\cdots+\lambda_{n}$

$$
\|x\|_{\lambda}=\left(\left|x_{1}\right|^{\frac{1}{\lambda_{1}}}+\cdots+\left|x_{n}\right|^{\frac{1}{\lambda_{n}}}\right)^{\frac{|\lambda|}{n}}
$$

is the non-isotropic distance between points x and 0 [2]. It is obvious that the Euclidean distance is a special case of this distance corresponding to $\lambda_{j}=\frac{1}{2}, j=1, \ldots, n$.

For $0<\alpha<n$, let's define the Riesz potential depending on λ-distance as [3].

$$
\Lambda_{\alpha} f(x)=\int_{\square^{n}}\|x-y\|_{\lambda}^{\alpha-n} f(y) d y
$$

In this article, totally m times differentiability of λ-Riesz potentials is investigated. But, firstly, some basic properties of λ - Riesz potentials are given [2], [4], [5].
Lemma 1.1. For $k \in \square, j=1, \ldots, n$

$$
\frac{\partial^{k}}{\partial x_{i}^{k}}\|x\|_{\lambda}^{\alpha-n}=\sum_{s=1}^{n}\left(\operatorname{sgn} x_{j}\right)^{s}\left|x_{j}\right|^{\frac{s}{\lambda_{j}}-k}|x|_{\lambda}^{\frac{|\lambda|}{n}(\alpha-n)-s}
$$

where

$$
\left(\operatorname{sgn} x_{j}\right)^{s}=\left(\operatorname{sgn} x_{1}\right)^{s_{1}} \cdots\left(\operatorname{sgn} x_{n}\right)^{s_{n}},\|x\|_{\lambda}^{\left\lvert\, \frac{n}{\lambda \mid}\right.}=|x|_{\lambda}
$$

II. RESULTS

For any positive α and $j=1, \ldots, n$
i) $\left|x_{j}\right|^{\alpha} \leq\|x\|_{\lambda}^{\alpha \lambda_{j} \frac{n}{|\lambda|}}$
ii) $\quad|x|^{\xi} \leq\|x\|_{\lambda}^{\xi\left|\lambda_{j}\right| \frac{n}{|\lambda|}}$
where $|\xi \lambda|=\xi_{1} \lambda_{1}+\cdots+\xi_{n} \lambda_{n},|x|^{\xi^{\xi}}=\left|x_{1}\right|^{\xi_{1}} \cdots\left|x_{n}\right|^{\xi_{n}}$.
Lemma 2.1. For a positive natural m denote

$$
K_{m}(x, y)=E_{\alpha}(x-y)-\sum_{|\xi| \leq m}(\xi!)^{-1} x^{\xi}\left[\left(\frac{\partial}{\partial x}\right)^{\xi} E_{\alpha}\right](-y)
$$

where $y \in \square^{n}-B_{\lambda}\left(0,2\|x\|_{\lambda}\right)$. Then there exist a positive constant C such that

$$
\left|K_{m}(x, y)\right| \leq \sum_{|\xi|=m+1} C\|x\|_{\lambda}^{\frac{n}{|\lambda|}|\xi \lambda|}\|y\|_{\lambda}^{(\alpha-n)-\frac{n}{|\lambda|}|\xi \lambda|}
$$

where $E_{\alpha}(x-y)=\|x-y\|_{\lambda}^{\alpha-n}$ is the kernel of λ - Riesz potentials and $B_{\lambda}(x, r)$ is the λ-ball centered at x with radius r. That is

$$
B_{\lambda}(x, r)=\left\{y \in \square^{n}:\|x-y\|_{\lambda} \leq r\right\}
$$

Lemma 2.2. The integral

$$
\int_{B_{\lambda}\left(x_{0}, 1\right)} E_{\alpha}(x-y) d y
$$

is infinitely differentiable in $B_{\lambda}\left(x_{0}, 1\right)$.
Lemma 2.3. Let f be a nonnegative and locally integrable function in \square^{n}. In order $\Lambda_{\alpha} f(x) \neq \infty$ it is necessary and sufficient that

$$
\begin{equation*}
\int_{\square^{n}-B_{\lambda}(x, 1)}\|x-y\|_{\lambda}^{\alpha-n} f(y) d y<\infty \tag{2.1}
\end{equation*}
$$

for some $x \in \square^{n}$, moreover (2.1) is equalent to

$$
\int_{\square^{n}}\left(1+\|y\|_{\lambda}\right)^{\alpha-n} f(y) d y<\infty
$$

Lemma 2.4. Let f be a nonnegative measurable function in $\square^{n}, \alpha p=n$ and $p p^{\prime}=p+p^{\prime}$. Then there exist a positive constant M such that for any $a>0$

$$
\begin{array}{r}
\int_{\{y: f(y) \geq a\}} \Lambda_{\alpha} f(y) d y \leq M\left(\int_{a}^{\infty} \omega^{-\frac{1}{p-1}}(t) t^{-1} d t\right)^{\frac{1}{p}} \\
\cdot\left(\int_{\{y: f(y) \geq a\}} f^{p}(y) \omega^{\frac{1}{p}}(f(y)) d y\right)^{\frac{1}{p}}
\end{array}
$$

Definition 2.5. The function u is totally m times differentiable at point x_{0} if there exist a polinomial $P(x)$ of degree at most m such that

$$
\lim _{x \rightarrow x_{0}}\left\|x-x_{0}\right\|_{\lambda}^{-m \Lambda \frac{n}{\mid \bar{\lambda}}}\{u(x)-P(x)\}=0
$$

where

$$
\Lambda= \begin{cases}1 & , \quad \min _{1 \leq j \leq n} \lambda_{j}>1 \\ \lambda_{\min } & , \quad \min _{1 \leq j \leq n} \lambda_{j}<1\end{cases}
$$

Theorem 2.6. Let $f \in L_{l o c}\left(\square^{n}\right), \alpha p=n$ and the following conditions hold:

$$
\begin{aligned}
& \int_{\square^{n}}\left(1+\|y\|_{\lambda}\right)^{\alpha-n} f(y) d y<\infty \\
& \int_{\square^{n}} f^{p}(y) \omega(f(y)) d y<\infty
\end{aligned}
$$

where ω is function from Lemma 2.4. Let also

$$
\begin{gathered}
E_{1}=\left\{x \in \square^{n}: \lim _{r \rightarrow 0} r^{2\left[(\alpha-n) \frac{|\lambda|}{n}-\lambda_{\max } m\right]}\right. \\
\left.\cdot \int_{B_{\lambda}(x, r)}\left|f(y)-f\left(x_{0}\right)\right| d y>0\right\} \\
E_{2}=\left\{x \in \square^{n}: \limsup _{r \rightarrow 0} \sup ^{2\left[(\alpha-n) \frac{|\lambda|}{n}-\lambda_{\max }(m+1)\right]}\right. \\
\left.\cdot \int_{B_{\lambda}(x, r)}\left|f^{p}(y) \omega(f(y))-f^{p}(x) \omega(f(x))\right| d y>0\right\}
\end{gathered}
$$

$$
\begin{aligned}
E_{3} & =\left\{x \in \square^{n}: \lim _{r \rightarrow 0} \int_{\square^{n}-B_{\lambda}(x, r)}\left(\frac{\partial}{\partial x}\right)^{\xi}\right. \\
& \left.E_{\alpha}(x-y)\left[f(y)-f\left(x_{0}\right)\right] d y=\infty\right\}
\end{aligned}
$$

Then the λ-Riesz potentials are totally m times differentiable at any point of set $\square^{n}-E$ where $m \leq \alpha$ and $E=E_{1} \cup E_{2} \cup E_{3}$.
Proof. Using the function $K_{m}(x, y)$ from lemma 2.1. for

$$
\begin{gathered}
E_{\alpha} f(x)=\int_{\square^{n}} \frac{f(y) d y}{\|x-y\|_{\lambda}^{n-\alpha}} \\
\left\{E_{\alpha} f(x)-P(x)\right\}=\int_{\square^{n}-B_{\lambda}\left(x_{0}, 1\right)} K_{m}(x, y) f(y) d y
\end{gathered}
$$

$$
+\int_{B_{\lambda}\left(x_{0}, 1\right)-B_{\lambda}\left(x_{0}, 2 \mid x-x_{0} \|_{\lambda}\right)} K_{m}(x, y)[f(y)-f(x)] d y
$$

$$
-\sum_{|\xi|=m}(\xi!)^{-1}\left(x-x_{0}\right)^{\xi} \lim _{r \rightarrow 0} \int_{B_{\lambda}\left(x_{0}, 2\left|x-x_{0}\right| \mid\right)-B_{\lambda}\left(x_{0}, r\right)}\left[\left(\frac{\partial}{\partial x}\right)^{\xi} E_{\alpha}\right]
$$

$$
\left(x_{0}-y\right) d y+f\left(x_{0}\right) \int_{B_{\lambda}\left(x_{0}, 1\right)}\left[K_{m-1}(x, y)-\right.
$$

$$
\left.\sum_{|\xi|=m}(\xi!)^{-1}\left(x-x_{0}\right)^{\xi}\left[\left(\frac{\partial}{\partial x}\right)^{\xi} E_{\alpha}\right]\left(x_{0}-y\right)\right] d y
$$

$$
+\int_{B_{\lambda}\left(x_{0}, 2\left\|x-x_{0}\right\|_{\lambda}\right)} E_{\alpha}(x-y)\left[f(y)-f\left(x_{0}\right)\right] d y
$$

$$
=I_{1}+I_{2}+I_{3}+I_{4}+I_{5}
$$

where
$P(x)=\sum_{|\xi| \leq m}(\xi!)^{-1}\left(x-x_{0}\right)^{\xi} \lim _{r \rightarrow 0} \int_{\square^{n}-B_{\lambda}\left(x_{0}, r\right)}$
$\left[\left(\frac{\partial}{\partial x}\right)^{\xi} E_{\alpha}\right]\left(x_{0}-y\right) f(y) d y+\sum_{|\xi| \leq m}(\xi!)^{-1}\left(x-x_{0}\right)^{\xi}$
$\lim _{r \rightarrow 0} \int_{B_{\lambda}\left(x_{0}, r\right)}\left[\left(\frac{\partial}{\partial x}\right)^{\xi} E_{\alpha}\right]\left(x_{0}-y\right) f\left(x_{0}\right) d y$.

Consider I_{1}. Since in this integral domain $\left\|x-y_{0}\right\|_{\lambda}>1$, by lemma 2.1. We have
$I_{1} \leq \lim _{x \rightarrow x_{0}}\left\|x-x_{0}\right\|_{\lambda}^{m \frac{n}{|\lambda|}\left(\lambda_{\min }-\Lambda\right)+\lambda_{\min } \frac{n}{|\lambda|}}$
$\int_{\square^{n}-B_{\lambda}\left(x_{0}, 1\right)}\left\|y-x_{0}\right\|_{\lambda}^{\alpha-n} f(y) d y$
$m \frac{n}{|\lambda|}\left(\lambda_{\min }-\Lambda\right)+\lambda_{\min } \frac{n}{|\lambda|}>0$ and from (2.1) it follows that this integral is finite an so
$\lim _{x \rightarrow x_{0}}\left\|x-x_{0}\right\|^{-\Lambda m \frac{n}{\lambda \lambda}} I_{1}=0$.
Now by lemma 2.1 we obtain ($\Lambda=\lambda_{\text {min }}$)

$$
\begin{aligned}
& \left\|x-x_{0}\right\|_{\lambda}^{-\lambda_{\min } m \frac{n}{|\lambda|}} I_{2} \leq\left\|x-x_{0}\right\|_{\lambda}^{\lambda_{\min } m} \frac{n}{|\lambda|} \int_{B_{\lambda}\left(x_{0}, 1\right)-B_{\lambda}\left(x_{0}, 2\left\|x-x_{0}\right\|_{\lambda}\right)} \\
& \sum_{|\xi|=m+1}\left\|y-x_{0}\right\|_{\lambda}^{\frac{n}{\lambda \lambda \mid}(\alpha-n)-|\xi \lambda|}\left[f(y)-f\left(x_{0}\right)\right] d y \\
& \leq\left.\left\|x-x_{0}\right\|_{\lambda}^{\lambda_{\min } m \frac{n}{|\lambda|}} \rho^{2\left[\frac{n}{|\lambda|}(\alpha-n)-m \lambda_{\max }-\lambda_{\max }\right]} F(\rho)\right|_{2\left\|x-x_{0}\right\|_{\lambda}} ^{1} \\
& -\int_{2 \mid x-x_{0} \|_{\lambda}}^{1} F(\rho) d \rho^{2}
\end{aligned}
$$

where
$F(\rho)=\int_{0}^{\rho} \int_{s^{n-1}}\left[f\left(x_{0}-t \theta\right)-f\left(x_{0}\right)\right]\left|I_{\lambda}(t, \theta)\right| d t d \theta$,
$I_{\lambda}(t \theta)=\rho^{2\|\lambda\|-1} \Omega_{\lambda}(\theta)$,
$\Omega_{\lambda}(\theta)=2^{n} \lambda_{1} \cdots \lambda_{n}\left(\cos \theta_{1}\right)^{2 \lambda_{1}-1} \ldots\left(\cos \theta_{n-1}\right)^{2 \lambda_{n-1}-1}$
$\cdot\left(\sin \theta_{1}\right)^{2\left(\lambda_{2} \cdots \lambda_{n}\right)-1}\left(\sin \theta_{2}\right)^{2\left(\lambda_{3} \cdots \lambda_{n}\right)-1} \cdots\left(\sin \theta_{n-1}\right)^{2 \lambda_{n}-1}$
[2]. Since $f \in L_{\text {loc }}\left(\square^{n}\right)$ and from the definition of E_{2} we see that
$\lim _{x \rightarrow x_{0}}\left\|x-x_{0}\right\|_{\lambda}^{-\Lambda_{m}} I_{2}=0$.
Using the lemma 2.1 for derivatives of kernel $E_{\alpha}(x-y)$ we obtain
$\lim _{x \rightarrow x_{0}}\left\|x-x_{0}\right\|_{\lambda}^{-\Lambda m \frac{|\lambda|}{n}} I_{3}$
$\leq f\left(x_{0}\right) \sum_{|\xi|=m}(\xi!)^{-1}\left\|x-x_{0}\right\|_{\lambda}^{\left(\lambda_{\text {min }}|\xi|+1\right) \frac{n}{|\lambda|}}$
$\cdot \int_{B_{\lambda}\left(x_{0}, 1\right)}\left(\frac{\partial}{\partial x}\right)^{m+1} E_{\alpha}(s-y) d y$
and from the definition E_{2} we see that for any point
$x_{0} \in \square^{n}-E_{2}$
$\lim _{x \rightarrow x_{0}}\left\|x-x_{0}\right\|_{\lambda}^{-\Lambda m} \frac{|\lambda|}{n} I_{3}=0$.
Consider the term I_{4}. Applying the mean-value theorem we have
$\left.\left\|x-x_{0}\right\|_{\lambda}^{-\Lambda m} \frac{|\lambda|}{n} I_{4} \leq\left\|x-x_{0}\right\|_{\lambda}^{\left[(\alpha-n) \frac{|\lambda|}{n}-\lambda_{\text {min }} m\right.}\right] \frac{|\lambda|}{n}$
. $\int_{B_{\lambda}\left(x_{0}, 2| | x-x_{0} \|_{\lambda}\right)-B_{\lambda}\left(x_{0}, 1\right)}\left|f(y)-f\left(x_{0}\right)\right| d y$
and lemma 2.2 the integral on the right side finite and
$\lim _{x \rightarrow x_{0}}\left\|x-x_{0}\right\|_{\lambda}^{-\Lambda m} \frac{|\lambda|}{n} I_{4}=0$.
Finally consider the term I_{5}. For

$$
y \in B_{\lambda}\left(x_{0}, 2\left\|x-x_{0}\right\|_{\lambda}\right) \text { and } x \rightarrow x_{0} \text { we have }
$$

$$
\left\|x-x_{0}\right\|_{\lambda}^{-\Lambda m \frac{|\lambda|}{n}} I_{5}=\left\|x-x_{0}\right\|_{\lambda}^{-\Lambda m \frac{|\lambda|}{n}}
$$

$\cdot \int_{B_{\lambda}\left(x_{0}, 2\left\|x-x_{0}\right\|_{\lambda}\right)}\|x-y\|_{\lambda}^{(\alpha-n) \frac{|\lambda|}{n}}\left[f(y)-f\left(x_{0}\right)\right] d y$
$=\left\|x-x_{0}\right\|_{\lambda}^{-\Lambda m} \frac{|\lambda|}{n} \int_{\left\{y \in B_{\lambda}\left(x_{0}, 2\left\|x-x_{0}\right\|_{\lambda}\right): \psi(y)<a\right\}} \psi(y)\|x-y\|_{\lambda}^{(\alpha-n) \frac{|\lambda|}{n}} d y$
where a is any positive number and
$\psi(y)=f(y)-f\left(x_{0}\right)$.
The first integral may be easily calculated and since $m \leq \alpha$ the first term tends to zero as $x \rightarrow x_{0}$. Applying lemma 2.4 to second term on righthand side we can see that by definition of set E_{3}. The second term also tends to zero as $x \rightarrow x_{0}$ for any $x_{0} \in \square^{n}-E_{3}$. The prof is completed.

III EXAMPLES

In this section, theoritical results is supported examples. The following potential

$$
I=\iint_{D} \frac{\sin (x y)}{\left(|x-y|^{\frac{1}{\lambda_{1}}}+|x-y|^{\frac{1}{\lambda_{2}}}\right)^{\frac{\left(\lambda_{1}+\lambda_{2}\right)(n-\alpha)}{n}}} d x d y
$$

[5] I. Cinar, H. Duru, On Continuity Properties of Potentials Depending on -distance, Applied Math. and Computation,139 (2003) 531-534.

E-MAIL ADDRESS: INANCINAR@MYNET.COM
was considered in domain
$D=\{(x, y): 0 \leq x \leq 1,2 \leq y \leq 3\}$.
This integral was evaluatedfor various λ_{1}, λ_{2} and α values in two dimensional space by Simpson Formula. The choices $N=20$ and $M=20$ are used in Simpson Formula. The results indicates as following: for $\lambda_{1}=2, \lambda_{2}=3$ and $\alpha=1.5$ integral $I \approx 0.21558873, \lambda_{1}=\frac{1}{2}, \lambda_{2}=\frac{1}{4}$ and $\alpha=1.5$ integral $I \approx 0.42459130$. Furthermore, at figure 1 and 2 , one is drawn graphic of integrand for these values by mathematica:

Figure 1. The graphic of integrand for $\lambda_{1}=2, \lambda_{2}=3$ and $\alpha=1.5$

Figure 2.The graphic of integrand for $\lambda_{1}=\frac{1}{2}, \lambda_{2}=\frac{1}{4}$ and $\alpha=1.5$

REFERENCES

[1] Y. Mizuta, On the Differentiability of Riesz Potentials of functions, Hiroshima Math. J., 17,355-359 (1987).
[2] I. Cinar, On Non-Isotropic Riesz Potential, Indian Journal of Pure and Applied Mathematics, 28 (9), 1197-1205,(1997).
[3] I. Cinar, The Hardy-Littlewood Sobolev Inequality for NonIzotropic Riesz Potentials, Turkish Journal of Mathematics, Volume 21, Number 2, 153-157,(1997).
[4] I. Cinar, On Differentiability of Generalized Riesz Potentials, Pure and Applied Mathematika Science, Vol. LIV, No. 1-2, 8189, (2001).

