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I.  INTRODUCTION 

Let  0 , , nn x y    , f  belonging to ( )n
locL   

spaces. 
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Define the integral operator called Riesz potential [1] where 

( )R x y   is the kernel of Riesz potential and defined  
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is the non-isotropic distance between points x  and 0  [2]. It 
is obvious that the Euclidean distance is a special case of this 

distance corresponding to 
1

, 1,...,
2j j n   . 

    For  0 ,n  let�s define the Riesz potential 

depending on  �distance as [3]. 

    ( ) ( )
n

n
f x x y f y dy



 


  



 

In this article, totally m times differentiability of  -Riesz 
potentials is investigated. But , firstly, some basic properties 
of  - Riesz potentials are given [2], [4], [5]. 
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II.  RESULTS 
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Lemma 2.1. For a positive natural m  
denote
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where  0, 2 .ny B x 
   Then there exist a positive 

constant C  such that  
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    is the kernel of  - Riesz 

potentials and  ,B x r  is the  -ball centered  at x  with 

radius r . That is 

       , : .nB x r y x y r 
     

Lemma 2.2. The integral  

     
 0 ,1B x

E x y dy


   

is infinitely differentiable in  0 ,1 .B x  

Lemma 2.3. Let  f  be a nonnegative and locally integrable 

function in n
 . In order ( )f x    it is necessary and 

sufficient that 
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for some nx , moreover  2.1  is equalent to  
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Lemma 2.4. Let  f  be a nonnegative measurable function in 
n

 , p n   and ' 'pp p p  . Then there exist a 

positive constant  M  such that for any 0a   
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Definition 2.5. The function u  is totally m  times 

differentiable at point 0x  if there exist a polinomial ( )P x  of 

degree at most m  such that 

        
0

0lim 0
n

m

x x
x x u x P x



 


     

where  

    
1

min 1

1 , min 1

, min 1

j
j n

j
j n



 

 

 




  


  

Theorem 2.6. Let   ,n
locf L p n    and the 

following conditions hold: 
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where    is function from Lemma 2.4. Let also 
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Then the   -Riesz potentials are totally m  times 

differentiable at any point of set n E  where  

m   and 1 2 3E E E E    . 

Proof. Using the function  ,mK x y  from lemma 2.1. for 

     
 

,
n

n

f y dy
E f x

x y
 










  

        
 

     
   

   
   

0

0 0 0

0 0 0

,1

,1 ,2

1

0 0
,2 ,

,

,

! lim

n

m

B x

m

B x B x x x

r
m B x x x B x r

E f x P x K x y f y dy

K x y f y f x dy

x x E
x



  

 














 




  

 

   

  
    

   





 



 

     
 

     

0

0 0 1

,1

1

0 0

,

!

m

B x

m

x y dy f x K x y

x x E x y dy
x


















  

  
        





 

     
 0 0

0

,2B x x x

E x y f y f x dy
 





      

1 2 3 4 5I I I I I      

 
 where  

     
 

       

   
 

0

0

1

0 0
,

1

0 0

0 00
,

! lim

!

lim .

n
r

m B x r

m

r
B x r

P x x x

E x y f y dy x x
x

E x y f x dy
x



























 







 

  
    

   

  
  

   

 







  

 
 



 
International Journal of Latest Research in Science and Technology. 

ISSN:2278-5299                                                                                                                                                                                  72 
 

Consider 1I  . Since in this integral domain 0 1x y
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by lemma 2.1. We have  
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Now by lemma 2.1 we obtain ( min   ) 

   

 

   

 

 

 
 

min min

0 0 0

max maxmin

0

max

0

0 2 0

,1 ,2

0 0
1

2 1

0 2

1 2

2

n n
m m

B x B x x x

n
n

m

nn n mm

x x

n
n m

x x

x x I x x

y x f y f x dy

x x F

F d

  





 
 

 

 





  




 


 

 



 

 

 

 
   

  



 
  

  



  

   

 









  

where  

       

   

     

 
 

 
 

 

1

1 1

2 3

0 0

0

2 1

2 1 2 1

1 1 1

2 1 2 1 2 1

1 2 1

, ,

,

2 cos ... cos

sin sin sin

n

n

n n n

s

n
n n

n

F f x t f x I t dtd

I t







 

 



    

   

  

    

  







 



    



    

 

  

   

 

  

[2]. Since  n
locf L   and from the definition of 2E   we 

see that 
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Using the lemma 2.1 for derivatives of kernel  E x y   

we obtain 
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and from the definition 2E  we see that for any point 

0 2
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Consider the term 4I  . Applying the mean-value theorem we 

have  
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and lemma 2.2 the integral on the right side finite and 
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Finally consider the term 5I  . For  

 0 0, 2y B x x x 
    and 0x x   we have 
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where a  is any positive number and 

     0y f y f x    . 

The first integral may be easily calculated and since m   

the first term tends to zero as 0x x  . Applying  lemma 2.4 

to second term on righthand side we can see that by definition 

of set 3E  . The second term also tends to zero as 0x x   

for any 0 3
nx E   . The prof is completed. 

III  EXAMPLES 
In this section,  theoritical results is supported examples. The 
following potential 
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was considered in domain 

  , : 0 1, 2 3D x y x y     . 

This integral was evaluatedfor various 1 2,   and   values 

in two dimensional space by Simpson Formula. The choices 
20N   and 20M   are used in Simpson Formula. The 

results indicates as following: for 1 22, 3   and 

1.5  integral 0.21558873I  , 1 2

1 1
,

2 4
   and 

1.5  integral 0.42459130I  . Furthermore, at figure 

1 and 2, one is drawn graphic of integrand for these values by 
mathematica: 

 
Figure 1. The graphic of integrand for  1 22, 3   and 1.5   

 

 

Figure 2.The graphic of integrand for 1 2

1 1
,

2 4
   and 1.5   
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