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Abstract- A mathematical modeling approach based on the continuation power flow (CPFLOW) analysis method is proposed for locating 
the Type-1 load-flow solutions of a power system. Importantly, the proposed method enables all of the Type-1 load-flow solutions to be 
obtained by tracing just a small number of homotopy curves. The validity of the proposed approach is demonstrated using 5-bus and 7-bus 
power systems for illustration purposes. The results show that the proposed method not only has the ability to locate all of the Type-1 load-
flow solutions, but also has a lower computational complexity than existing schemes. 
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I. INTRODUCTION 
Voltage instability is one of the leading causes of network 

collapse worldwide [1]-[3], and has therefore attracted 
significant attention in the literature. It was shown in [4] that 
the voltage collapse phenomenon is associated with the 
nonlinearity of the load-flow equations, which results in 
multiple potential load-flow solutions. Various methods have 
been proposed for determining the voltage stability limits of 
power networks using load-flow analysis techniques [5]-[8]. 
For example, the authors in [6]-[8] evaluated the voltage 
stability limit by inspecting the distance between the operable 
load-flow solution and an appropriate low-voltage load-flow 
solution. 

The literature contains many proposals for identifying 
some (or all) of the load-flow solutions for a power system 
[9]-[14]. In [9], a special probability-one homotopy method 
was tailored to find all the load-flow equations of 5-bus and 
7-bus systems. However, the proposed method requires the 
tracing of a large number of homotopy curves, and is 
therefore computationally intensive. In [10], the authors 
proposed a algorithm to locate all the load-flow solutions by 
tracing a large number of homotopy curves. However, the 
method is computationally complex, and is therefore feasible 
only for small-scale power systems. Furthermore, while both 
methods in [9] and [10] have the ability to locate all of the 
load-flow solutions, the relationship between these solutions 
and the voltage stability of the power system is unclear. 

In the power systems field, a Type-1 solution simply 
means that the Jacobian matrix of the load-flow solution set 
has exactly one eigenvalue with a positive real part, while the 
remainder of the eigenvalues have negative real parts. In 
general, a solution is considered to be Type-k when there 
exist k positive values for the real parts of the eigenvalues, 
where these eigenvalues can be either complex numbers or 
real numbers. It was shown theoretically in [11] and [12] that 
only Type-1 load-flow solutions are associated with the 
voltage instability phenomenon. Thus, it is reasonable to infer 
that the task of identifying the voltage stability properties of a  

 

 
power system can be simplified by searching for only the 
Type-1 load-flow solutions. Accordingly, several methods 
have been proposed for solving Type-1 load-flow problems 
[13] [14] [15]. However, these methods do not guarantee the 
discovery of all the Type-1 solutions. 

To address this problem, the present group previously 
proposed a method for identifying all of the Type-1 solutions 
for a power network using a continuation power flow 
(CPFLOW)-based algorithm [16]. The present study 
performs a systematic theoretical analysis of the proposed 
method and compares its performance with that of two 
existing methods [9] [10]. It is shown that the proposed 
method not only has the ability to identify the complete set of 
Type-1 solutions, but also has a significantly lower 
computational complexity than existing methods. The 
remainder of this paper is organized as follows. Section 2 
formulates the load-flow equations and solution manifolds. 
Section 3 describes the manifold-tracing method used by the 
CPFLOW algorithm to locate all of the Type-1 load-flow 
solutions. Section 4 presents and discusses the simulation 
results. Finally, Section 5 provides some brief concluding 
remarks. 

II. MATHEMATICAL MODELING OF LOAD-FLOW 
EQUATIONS AND SOLUTION MANIFOLDS 

The load-flow problem may now be stated with some 
precision. The formulation is based on operational 
considerations of the power industry as well as mathematical 
considerations. We will dicuss some of these considerations 
and terminology. 
Some buses are supplied by generators; we can call these 
generator buses. Bus 1 is called a slack bus or swing bus; the 
other generator buses are called PV  buses. Other buses 

without generator s are called load buses or PQ  buses. We 

consider a power system S  with N  buses, including m  

PV  buses and a slack bus, n  PQ  buses,. Let 

],,,,[ 21 nvvvV   ],,,[ 21 nq    be the vectors 
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of the bus voltages and bus angles on the PQ  buses, 

respectively. Furthermore, let ],,,[ 21 mv   , 

],,,[ 21 mv qqqQ   be the vectors of the bus voltages and 

reactive power on the PV  buses, respectively. The real and 

reactive power balance equations of the PQ  buses can be 

written in the following vector forms: 

 0),,(  PVf vqp                              (1) 

 

0),,( QVf vqq                              (2) 

where P  and Q  are the real and reactive bus powers of 

the PQ  buses, respectively. Similarly, the real and reactive 

power balance equations of the generator buses can be 
expressed as 

0),,(  vvqpv PVf                           (3) 

 

0),,(  vvqqv QVf                           (4) 

Where vP  is the real bus power of the PV  buses. 

Let the following assumption be made.  
Assumption 1: At least one of the solutions to the load-

power equations is known. 
Note that this assumption is reasonable given the 

extensive attention paid to the load-flow problem by the 
power systems community in recent decades. Moreover, if 
not even one solution for the load-power equations can be 
found, there is little point in searching for "other" solution 
points. 

In performing a load-flow study, the aim is to find a 
suitable operating point for the power system, i.e., an 
operating point which ensures that the system satisfies all of 
the specified operational constraints (e.g., a limited generator 
reactor power capability, the voltage mainitude bounds, and 
so on.) Having found such an operating point, the next step is 
to find all of the other solutions to the same system. Notably, 
all of these solutions should satisfy the same load-flow 
equation as the original solution, and hence their 
implementation should require no further adjustments to be 
made to the system. Furthermore, since the power system is 
not actually expected to operate at these subsequent solutions, 
the operational limits bear no significance to them. That is, 
given an interest in a particular solution, one can easily 
invoke a load-flow study at this solution point, after all the 
solutions have been found, in order to check if it represents a 
suitable operating point. Hence, the following assumption can 
be made: 

Assumption 2: No reactive power limit is imposed on the 
PV buses when solving for other solutions. 

Note that Assumption 2 allows the dimension of the load-
flow equations to be reduced. In addition, it is noted in Eq. 

(4) that the unknown vQ is separated from the other unknown 

variables, and does not appear in any other equation. As a 
result, Eq. (4) imposes no constraint on the other unknown 
variables, and can therefore be removed when solving for 

them. Accordingly, in the following discussions, vQ  is 

excluded from the unknowns and Eq. (4) is removed from the 

formulations. Hence, the load-flow equations comprise only 
Eqs. (l), (2) and (3). Let the number of unknowns be equal to 

mnK  2 , and write the unknown variables, V , q  and 

v , into a single K-dimensional vector x , i.e., TVx ],[  . 

Thus we first consider the load-flow equation defined as: 

  0)(  ii PxP ,      Ni ,,2                  (5) 

 

0)(  ii QxQ ,   Nmi ,,2               (6) 

where N  is the total number of buses including slack bus, 
m  is the total number of PV  buses excluding slack bus. 

The state variables x is represented as vector TV ],[  . 

Let pi  and qi  be parameter vectors, load parameters 

pi  indicate the variations of the active power of PV  buses 

and PQ  buses, and load parameters qi  indicate the 

variations of the reactive power of PQ  buses. The pi  and 

qi  vectors can be added to Eqs. (5) and (6), respectively, to 

form the following compact-form parameterized load-flow 
equation: 
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where T
qipi ],[   K

 , and F : 

KKD  
  is a smooth function. 

From an engineering point of view, load-flow solutions 
sensitive to small changes in the system parameters bear no 
significance. Hence, the following assumption can be made: 

Assumption 3: All of the solutions to the load-power 
equation are structurally stable. 

In other words, all of the solutions persist under small 
perturbations. Mathematically, this means that all of the 
solutions are isolated solutions. 

It is noted that the parameterized load-power equation 
0),( xF                                 (8) 

is a smooth function. The K  equations in K2  variables 
define an K -dimensional manifold in a K2 -dimensional 
space. Setting 0  yields 

0)(0)()0,(  xfxfxF                  (9) 

That is, the solutions to the load-flow equation (Eq. (5) 
and Eq. (6)) are embedded in the manifold and can therefore 
be derived from this manifold given a suitable processing 
approach. However, dealing with a high-dimensional 
manifold is difficult to deal with efficiently by computers 
involves a high computational complexity. Thus, for 
convenience, the present analysis considers only a very small 
region of this manifold by re-formulating the parameterized 
load-flow equation given in (7) as follows: 
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iii xfxF 
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Note that the superscript i in the term iF  indicates that 

the equation is associated with the i -th parameter i  in 

vector  .The same notation is applied in determining the 

solution set iM  of Eq. (10). Let the following lemma be 

introduced: 
Lemma 1: Generically, the solution set of Eq. (10), i.e., 

iM = }0),(|),{( iii xFx                     (11) 

is a one-dimensional manifold. 
This manifold consists of components which do not 

intersect one another. Thus, the following lemma can also be 
given: 

Lemma 2: Generically, manifold iM  is a disjoint union 

of connected components
k
iC , i.e.,  


kofset

k
ii CM                                  (12) 

Collectively, Lemma 1 and 2 indicate that the solution set 

iM  of Eq. (10) comprises a bunch of several smooth, one-

dimensional curves, 
k
iC , which neither intersect one another 

nor themselves. In the event that iM  violates the said 

characterizations, the following arbitrarily small perturbation 
can be applied to achieve compliance: 

0),(   ii xF                            (13) 

Note that this perturbation amounts to perturbing the 
assigned bus power injections, P  and Q , while leaving the 

basic structure of the load-flow equation unchanged.  

For manifold iM , the following important topological 

characteristic applies:  

Theorem 1: The solution manifold iM  of 

equation 0),( ii xF   is bounded. 

In practice, changing parameter i  amounts to changing 

the real or reactive power on one bus. In other words, 
Theorem 1 simply states that if all of the other bus powers 
remain unchanged, the capability of the network to transfer 
power (real or reactive) to or from a single bus is limited. 

According to the Classification Theorem of Compact 
Manifold [17], a compact one-dimensional manifold is 
topologically equivalent to either a circle or a closed interval. 

From Lemma 1, it will be recalled that iM  comprises a set 

of one-dimensional curves, 
k
iC . Moreover, Theorem 1 states 

that iM  (and hence 
k
iC ') are bounded. In other words, they 

are compact one-manifolds. Since curve 
k
iC  has no endpoint, 

it cannot be topologically equivalent to a closed interval. 
Therefore, the following proposition holds. 

Lemma 3: Each one-dimensional curve 
k
iC  of iM  is 

topologically equivalent to a circle 1S . 

That is, each component 
k
iC  of iM  is a smooth one-

dimensional curve in the shape of an endless loop. And each 

iM  retains the whole solution set of the load-power equation 

given in Eq. (5) and Eq. (6). In other words, from Eq. (10), 

setting i = 0 yields the load-flow equation (Eq. (5) and Eq. 

(6)). 
Lemma 4: Generically, each solution point to Eq. (7) is 

connected to at least one other solution point via a one-

dimensional curve 
k
iC  of manifold iM . 

This can be confirmed by verifying that the solutions of 

Eq.(8) is located at the intersection of manifold iM  with the 

hyperplane 

i
H = }0|),{(  ii Dx                   (14) 

Generically, an endless loop 
k
iC  will intersect this 

hyperplane at an even number of points. Therefore, for each 

solution point at the intersection of 
k
iC  and 

i
H there exists 

at least one other solution point where 
k
iC  intersects 

i
H . 

The following theorem can be defined: 
Theorem 2: If all of the elements in vectors P  and Q  

are non-zero (note that the zero elements can be perturbed by 
an arbitrary small constant in order to make them non-zero, 
if necessary), and all of the voltage magnitudes are positive 

at one point on curve 
k
iC , then the voltage magnitudes are 

positive everywhere on curve 
k
iC . 

The following discussions focus on one-dimensional 

curve 
k
iC  of manifold iM  and assume that all of the voltage 

variables have a positive magnitude. And assume that the 
load-flow equation has t solutions. The number t  is unknown 
until all the solutions has been found, by tracing all the one-

dimensional manifolds, iM , Ni ,,2  , we can locate all 

the solutions. In other words, any solution of the load-power 
equation is reachable from all of the other solutions via the 

manifolds iM , Ni ,,2  . If the manifolds 

corresponding to parameters pi form a connected graph. 

The same inference also holds true for the manifolds 

corresponding to parameters qi . Notably, Theorem 2 also 

implies that any solution of Eq. (7) can reach all of the other 

solutions via manifolds iM , i  

III. MANIFOLD-TRACING METHOD FOR 
LOCATING TYPE-1 SOLUTIONS 
Let the power system be modeled as the following 

differential equation with a vector  of slowly varying 
parameters, i.e., 

),( xFx 


,  KKx  ,               (15) 
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where x  is a state vector which includes both the bus 
voltage magnitudes and the angles, and   is a vector of the 
real and reactive load powers. An assumption is made that 

KKF :  satisfies the conditions required to ensure 

the existence and uniqueness of the solutions. Moreover, a 
point on the manifold curve is said to be an equilibrium point 

of Eq. (15) if 0),( 0 xF . The equilibrium point 0x  is 

�hyperbolic� if the Jacobian matrix ),( 0 xFDx  has no 

eigenvalues with zero real parts, and is said to be �simple� if 

the determinant of ),( 0 xFDx  is non-zero. Finally, the 

�Type� of the hyperbolic equilibrium point 0x  is defined as 

the number of eigenvalues of ),( 0 xFDx  which have a 

positive real part. 

The unstable manifold )( 0xM u
 (stable manifold 

)( 0xM s
) of an equilibrium point 0x  is the manifold in the 

state-space form whose trajectories converge to 0x  as 

t  ( t ) and which is tangent at 0x  to the 

subspace spanned by the eigenvectors associated with 

eigenvalues with positive (negative) real-parts. If 0x  is 

hyperbolic, the dimension of )( 0xM u
 is equal to the 

�Type� of 0x . 

In general, the load of a power network varies with time. 

Consequently,   is a function of time t  and Eq. (15) can be 
regarded as a differential equation parameterized by the 

single parameter t . That is, 

))(,( txFx 


,   tx K ,              (16) 

where x  is an K-dimensional state vector and   is a 
time-varying parameter. The system in Eq. (16) can be 
approximated using the following assumption: 

Assumption 4:   varies quasistatically. 
That is,   varies sufficiently slowly that the system in 

Eq. (16) can be well approximated by keeping   constant 
whileleaving the other system dynamics unchanged. 

Assumption 5: The system in Eq. (18) is in the generic set 

of systems 1S . 

Note that 1S  is a generic set of systems described by 

Sotomayor [18], and consists of systems of the form shown 
in Eq. (16), which (for each  ) all have simple equilibria 
although one of the equilibria may be a non-degenerate 
saddle node equilibrium.  

Lemma 5: Suppose that the system given in Eq. (16) 
satisfies Assumption 6. Consequently, the only way in which 

a stable equilibrium point )(0 x  can disappear is via the 

coalescence with a Type-1 equilibrium point )(1 x at a 

saddle-node bifurcation, where )(1 x  is on the stability 

boundary )(0 x  and )(1 x  is the closest unstable 

equilibrium point to )(0 x [19]. 

Typically, there are two ways in which a stable 
equilibrium point can lose stability, namely it can disappear 
as stated in Lemma 5 above or it can persist but become 
unstable by interacting with a limit cycle in a Hopf 
bifurcation [19]-[21]. Lemma 5 does not exclude Hopf 
bifurcations. However, many power system models do not 
admit limit cycles, and therefore cannot have Hopf 
bifurcations. 

When an equilibrium point )(0 x  is stable, it lies in the 

interior of its stability region. As a result, )(0 x  can only 

disappear by bifurcating with an equilibrium point )(1 x  on 

its stability boundary. Lemma 5 states that )(1 x  must 

therefore be Type-1 and its unstable manifold )]([ 1 xM u  

one-dimensional. )]([ 1 xM u  may thus  be decomposed as 
uuu MxMxM   )}({)]([ 11              (17) 

where uM   lies inside the stability region of )(1 x  and 

joins )(0 x  to )(1 x , while uM   lies outside the stability 

region of )(0 x . 

At the bifurcation point, *  , )(0 x and 

)(1 x coalesce to form the equilibrium point *x = )( *
0 x  

= )( *
1 x . The Jacobian matrix at *x  has a zero eigenvalue 

associated with an eigenvector v  in the direction in which 

)(0 x and )(1 x  coalesced. The other eigenvalues of the 

Jacobian matrix have negative values.  Therefore, *x  has a 

one-dimensional center manifold cM and an 1K  

dimensional stable  manifold )( *xM s . cM  can be 

decomposed as 
ccc MxMM   }{ *                      (18) 

and v  is tangent to cM  at *x . The vector field at *x  

has one-sided stability along cM . Moreover, *x  is stable 

along cM   and unstable along cM  , where cM   is a unique 

system trajectory. Note that uM   becomes cM   when 

bifurcation occurs.  
Based on the discussions above, the following models for 

voltage collapse before and after saddle node bifurcation, 
repectively, can be proposed.  

 

Model 1 
   Before bifurcation, the system has a stable equilibrium 

point 0x  and all the eigenvalues of the Jacobian matrix 

),( 0 xFDx  have negative real parts. As parameter   

slowly varies, the stable equilibrium point 0x  also varies and 

the system state x  tracks 0x  . In other words, 0x  is not 

only a stable equilibrium point, but also  the system operating 
point. Thus, a static (or quasistatic) model ),(0 xF  can 

be used prior to bifurcation.  
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Model 2 

    After bifurcation, *x  is unstable and the system dynamics 
can be approximated by the system state moving along 

trajectory cM  , i.e., the unstable part of the center manifold 

of *x . If cM   points in such a direction in the state space 

that the voltage magnitudes decrease as the system state 

moves along cM  , then voltage collapse can be identified 

with movement along cM  .  

Let )( *
* t   be the critical value of the parameter 

vector at the bifurcation point and let *x  denote the 
corresponding equilibrium point formed by the coalescence 

of 0x  and x . The Jacobian matrix ),( ** xFDx  is singular 

and has a unique simple zero eigenvalue with a 

corresponding right eigenvector *v  such that 

0),( *** vxFDx                             (19) 

where *v  is the direction in state space of the initial 

voltage collapse dynamics. It is noted that *v  is tangent to 
cM   at *x . Moreover, any of the state variables can collapse 

as the system dynamics move in direction *v . 
As well as defining the direction of the initial voltage 

collapse dynamics, *v  also provides a useful interpretation 

role in the static model ),(0 xF . Specifically, when 

bifurcation occurs, the equilibria 0x  and x  coalesce and *v  

indicates the asymptotic direction in which 0x  and x  

approach one another. Note that this can be proven via the 
Liapunov-Schmidt reduction [22], which completely solves 

the local geometry of ),(0 xF  near ),( ** x .  

Near a saddle node bifurcation (i.e.,   near * ), 1x  is 

near 0x  and ),( 0 xFDx  has a unique, simple negative 

eigenvalue w  of smallest absolute magnitude and a 

corresponding right eigenvector v . Furthermore, 0w  

and *vv   as *  . Since v  is a continuous function 

of  , v  lies approximately along the line joining 0x  and 

1x  when the system is close to bifurcation. Thus, given 0x , 

the best estimate for the direction in which to find 1x  is 

given by v  or v . This observation is useful since one can 
then choose initial conditions for the numerical calculation of 

the Type-1 solutions along the line passing through the 0x  

stable equilibrium point (SEP) in the direction of the function 
of  . 

Based on the principles described above, this study uses a 
CPFLOW analysis technique to search for all of the Type-1 

load-flow solutions by varying one load parameter, pi  or 

qi , for each trace and passing through all of the PV and PQ 

buses.  

The CPFLOW analysis technique uses continuation 
methods to trace power system behavior due to load and 
generation variation. The theory of continuation methods has 
been studied extensively and has its roots in Algebraic 
Topology and Differential Topology [23]-[25]. The 
CPFLOW analysis is based on the following three elements 
to solution as one parameter in the compact-form 
parameterized load-flow equation (7) varies each time. 

Continuation parameter element: Every continuation 
method has a particular parameterization scheme (i.e., 
physical parameterization, local parameterization or arclength 
parameterization). The parameterization offers a way of 
identifying each solution in the manifold so that the 
�previous� solution or �next� solution can be quantified. The 

scheme of choosing the continuation parameter used in this 
paper is the local parameter, which uses either the load 

parameter ( Pi  or qi ) or any component of the state vector 

x  to parameterize the solution curve of Eq. (7). The step 

length in the local parameterization is   or x . 
Predictor element: The purpose of the predictor is to find 

an approximation point for the next solution. Suppose we are 
at the i -th step of the the continuation process and the i -th 

solution ),( iix   of Eq. (7) has been found. The predictor 

attempts to find an approximation point for the next 

solution ),( 11  iix  . The quality of the approximation point 

by a predictor significantly affects the number of iterations 
required by a corrector inorder to obtain an exact solution. 

Once a base stable solution point has been found by flat 
start, the prediction of the next solution can be made by 
taking an appropriate step size in the tangent direction of the 
manifold. Therefore, the task in the predictor process is to 
calculate the tangent vector. The tangent vector calculation is 
derived by taking the derivative of both sides of the equation 
(7) and presented in matrix form as 




















F

x

F
  0Tddx                   (20) 

where 


















F

x

F
 is the conventional load flow 

Jacobian augmented by one column 


F  and the number 

of equations remains unchanged. Thus, one more equation is 
needed. This problem can be solved by choosing a non-zero 
magnitude (say one) for one of the components of the tangent 

vector, and the tangent vector is defined as  Tddxt ,�  , 

and it�  is equal to +1 or �1 depending on how the i-th state 

variable variations as the solution curve is being traced. If it 
increases, then the +1 should be used, otherwise the �1 is 
used. Therefore, one equation is added to equation (20) and 
the equation can be modified as 



































1

0
�t

E

F

x

F

i

                        (21) 

where iE is a row vector with all elements equal to zero 

except the i-th element which equals one. t�  has a non-zero 



 
International Journal of Latest Research in Science and Technology. 

ISSN:2278-5299                                                                                                                                                                                  34 
 

norm such that the augmented Jacobian will be nonsingular at 
the saddle-node bifurcation point.  

A predictor, known as the tangent predictor, uses a first-
order polynomial (a straight line) passing through the current 
and previous solutions to predict the next solution. And if the 
tangent vector has been found by equation (21), then the 
predicted point could be written as 

),(),()~,~( 11  ddxhxx iiii               (22) 

where �~� denotes the predicted solution, and h  is an 

appropriate step-size. h  is one key element of affecting the 
computational efficiency of continuation methods. Ideally, 
the h  should be adapted to the shape of the solution curve to 
be traced: a larger step length should be used in the �flat� part 

of the solution curve and a smaller step-length in the �curly� 

part (part with high degree of curvature) of the solution curve. 
Corrector element: Once a predicted solution of the 

manifolds has been found, and the error must be corrected. 
Thus a good predictor gives an approximate solution, 

)~,~( x , which is in the neighborhood of the next solution, 

),( x . So a few iterations is used as the corrector element 

for achieve the accurate solution. The Newton-Raphson 
method is chosen as the corrector. This choice has an 
advantage that the existing load flow computer package 
based on the Newton-Raphson method can be utilized. And 
the accurate point can be expressed as 

),()~,~(),(   xxx                     (23) 

where ),( x is found by Newton-Raphson iterations. 

IV. TEST AND RESULTS 
In this section, the validity of the methodolgy proposed in 

Section 3 is demonstrated by locating all of the Type-1 
solutions for the 5- and 7-bus power systems considered in a 
previous study by the current group [16]. The two test 
examples (5-bus and 7-bus systems) are chosen because all 
load flow solutions have been calculated in [9] and [10]. 
They also serve as a basis for the comparison between 
different methods. 

 
 

Fig. 1 The 5-bus system 
 

Figure 1 presents the one-line diagram of the 5-bus system 
(Note that Bus 1 is the slack bus). Table 1 shows the four 
Type-1 load-flow solutions found for the  system.  

 
 

The Jacobian eigenvalues of the Type-1 solutions are listed 
in Table 2. It is noted that the eigenvalues of the Jacobian 
matrix for the Type-1 load-flow solutions have a single 
positive real part, while the other eigenvalues have a negative 
real part. 

Comparing our results with reference [9] and [10], it is 
clear that all searched Type-1 load flow solutions in the 5-bus 
system by the proposed CPFLOW-based method are 
complete. The CPFLOW manifold tracing process for the 5-
bus system is summarized in Table 3. As shown, the process 
commenced by selecting the variations of the active power of 
Bus 2, and treating the variations of the reactive powers of 
Buses 3, 4 and 5, respectively, as continuation parameters at 
the beginning of each trace. Moreover, the flat point in the 
manifold was taken as the initial state in searching for the 
stable equilibrium point. 

TABLE 1 THE FOUR TYPE-1 LOAD FLOW SOLUTIONS OF THE 

5-BUS SYSTEM 

V
ar

ia
bl

es
 Solutions 

1 2 3 4 

1  0.000000 0.000000 0.000000 0.000000 

2  -138.967855 -16.503994 -12.146784 -16.908807 

3  -134.863861 -81.865310 -13.879429 -37.786156 

4  -141.660453 -23.451893 -71.501631 -23.872760 

5  -129.850916 -26.042191 -12.679258 -69.041445 

1V  1.060000 1.060000 1.060000 1.060000 

2V  1.000000 1.000000 1.000000 1.000000 

3V  0.587894 0.030137 0.740259 0.184600 

4V  0.831660 0.628869 0.057975 0.686517 

5V  0.501169 0.197185 0.793300 0.034177 

 
TABLE 2 THE JACOBIAN EIGENVALUES OF TYPE-

1 SOLUTIONS FOR THE 5-BUS SYSTEM. 
(EIGENVALUES WITH POSITIVE REAL PARTS ARE 
CIRCLED.) 

 

 Solution Number 
1 2 3 4 

E
ig

en
va

lu
e 

-29.1332+4.2405j 

-29.1332-4.2405j 

7.9327 

-9.9385+3.1723j 

-9.9385-3.1723j 

-4.0537+1.5817j 

-4.0537-1.5817j 

-20.7505 

2.7585 

-1.1522 

-3.7614 

-7.1770 

-6.7345 

-2.5251 

-46.6051+14.1799j 

-46.6051-14.1799j 

-23.7529 

3.1191 

-6.2482 

-4.5908 

-1.8625 

-21.3485 

4.7062 

-8.3728 

-4.4286 

-0.9235 

-1.6543 

-6.4539 
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TABLE 3 MANIFOLD TRACING PROCESS FOR 5-
BUS SYSTEM 

Load 
Parameter 

P2+ P2- Q3+ Q3- Q4+ Q4- Q5+ Q5- 

Solution 
Number 

1 1 2 1 3 1 4 1 

 
The first row in Table 3 shows the load bus used in tracing 

the corresponding Type-1 solutions. The �+� sign indicates 

that the search process takes place in the direction of 
increasing load parameters at the beginning of the manifold, 
while the �-� sign indicates that the search process takes 

place in the direction of decreasing load parameters. The 
second row in the table shows the sequence in which the 
traces were performed. 

Figures 2(a) and 2(b) show the manifolds of the first two 

traces for solution number 1 in the 52 VP   plane. The 

remaining manifolds are shown in Figs. 3 ~ 5. 
 

 
 

Fig. 2 Manifold of first trace in 52 VP   plane 
 

 
 

Fig. 3 Manifold of first trace in 53 Vq   plane 

 
 

Fig. 4 Manifold of first trace in 54 Vq   plane 
 

 
 

 

Fig. 5 Manifold of first trace in 55 Vq   plane

(b) 52 VP   plane                          (a) 52 VP   plane 

(b) 53 Vq   plane                                         (a) 53 Vq   plane 

(b) 54 Vq   plane                                     (a) 54 Vq   plane 

(b) 55 Vq   plane                                (a) 55 Vq   plane 
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Fig. 6 The 7-bus system 

 

Figure 6 shows the one-line diagram of the 7-bus system 
(Note that Bus 1 is again taken as the slack bus). Table 4 
shows the two Type-1 load flow solutions found for the 
system. Meanwhile, Table 5 shows the Jacobian matrix 
eigenvalues of the Type-1 solutions. As in the previous 
example, the eigenvalues of the Jacobian matrix for the Type-
1 load flow solutions have a single positive real part, while 
the remaining eivenvalues have a negative real part. Finally, 
Table 6 shows the manifold tracing process for the 7-bus 
system. 

 

TABLE 4 THE TWO TYPE-1 LOAD FLOW 
SOLUTIONS OF THE 7-BUS SYSTEM 

V
ar

ia
bl

es
 

Solutions 

V
ar

ia
bl

es
 

Solutions 

1 2 1 2 

1  
0.000000 0.000000 1V  

1.000000 1.000000 

2  
-5.221185 -6.293491 2V  

0.587562 0.541465 

3  
-52.677524 -19.809837 3V  

0.174508 0.543027 

4  
-14.205551 -11.246364 4V  

0.412175 0.645773 

5  
-3.205593 -3.861835 5V  

0.722940 0.775000 

6  
-4.303086 -5.016062 6V  

0.663768 0.640149 

7  
14.957620 101.82011 7V  

0.731202 0.287970 

 
TABLE 5 THE JACOBIAN EIGENVALUES OF 

TYPE-1 SOLUTIONS FOR THE 7-BUS SYSTEM. 
(EIGENVALUES WITH POSITIVE REAL PARTS ARE 
CIRCLED.) 

 

TABLE 6 MANIFOLD TRACING PROCESS FOR 7-
BUS SYSTEM 

L
oa

d 
P

ar
am

et
er

 

P
2
+ 

P
2 
- 

P
3
+ 

P
3 
- 

P
4
+ 

P
4 
- 

P
5
+ 

P
5 
- 

P
6
+ 

P
6 
- 

P
7
+ 

P
7 
- 

So
lu

ti
on

 
N

um
be

r 

1 1 1 1 1 1 1 1 1 1 2 2 

 
 
As shown in Table 6, the Type-1 solutions for the 7-bus 

system were identified by selecting the variation of the active 
powers of Buses P2, P3, P4, P5, P6 and P7, respectively, at 
the beginning of each tracing process. Figures 7(a) and 7(b) 
show the manifolds of the first two traces of the first solution 

in the 32 VP   plane for Bus 2 in the 7-bus system. Figures 

8~12 show the traced manifolds for Buses 3, 4, 5, 6 and 7, 
respectively. And comparing our results with reference [9] 
and [10], it is clear that all searched Type-1 load flow 
solutions in the 7-bus system by the proposed CPFLOW-
based method are complete. 

 

 
 

Fig. 7 Manifold of first trace in 32 VP   plane 

 

(b) 32 VP   plane                                              (a) 32 VP   plane 
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Fig. 8 Manifold of first trace in 33 VP   plane 

 
 
 
 
 
 

 
 

Fig. 9 Manifold of first trace in 34 VP   plane 

 

 
 

Fig. 10 Manifold of first trace in 35 VP   plane 

 
 
 
 
 
 

 
 

Fig. 11 Manifold of first trace in 36 VP   plane 

 

(b) 33 VP   plane                                      (a) 33 VP   plane 

(b) 34 VP   plane                                             (a) 34 VP   plane 

(b) 35 VP   plane                                             (a) 35 VP   plane 

(b) 36 VP   plane                                        (a) 36 VP   plane 
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Fig. 12 Manifold of first trace in 37 VP   plane 

 
The test results indicate that we only to traces 4 and 5 

manifolds for the 5- and 7-bus power systems to find all of 
the type-1 load flow solutions by CPFLOW-based method, 
and void the fractal phenomenon. 

V. CONCLUSIONS 
    This study has performed a theoretical analysis of the 
CPFLOW-based algorithm proposed in a previous study [16] 
to identify all of the Type-1 load-flow solutions for a power 
system. It has been shown that the proposed method enables 
the complete set of Type-1 solutions to be identified by 
tracing a smaller number of manifolds than the methods 
proposed in [9] and [10], respectively. Specifically, the 
proposed method requires the tracing of just )1(2 N  

manifolds (where N is the number of buses), whereas the 
methods presented in [9] and [10] require the tracing 

of









N

N2  and 
2

SN  manifolds, respectively. Overall, the 

methodology proposed in this study provides a more robust 
approach for voltage stability assessment than existing 
methods, which typically yield only a pair of closely-located 
load-flow solutions or only a sub-set of all the Type-1 
solutions. 
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