

International Journal of Latest Research in Science and Technology ISSN (Online):2278-5299
Volume 4, Issue 6: Page No.10-15, November-December 2015
https://www.mnkpublication.com/journal/ijlrst/index.php

ISSN:2278-5299 10

Publication History
Manuscript Received : 3 November 2015
Manuscript Accepted : 20 November 2015
Revision Received : 10 December 2015
Manuscript Published : 31 December 2015

ANALYZING XPATH REFERENCES IN XML
ACCESS CONTROL

Qassim AlMahmoud1, Ayman Nayef Ahmad Alhalaybeh2
College of Science and Arts, Tanumah

Department of Computer Science
King Khalid University

Kingdom of Saudi Arabia
Email:qassimalmahmoud@gmail.com

aiman68@hotmail.com

Abstract- The trade-off between certain attributes such as efficiency and cost is always present when it comes to developing
applications. Different approaches have been proposed that address the problem of protecting XML documents from
unauthorized access especially at the granularity level. Some approaches deploy documents into memory to deliver fast
runtime results, and some rather to process access requests statically by labeling each node within XML documents to
avoid multiple checks when decisions are made. Web services and e-commerce applications are definitely increasing in day by
day bases, access control approaches are highly encouraged to consider these high demands when developing any model. We
propose an XML access control model that Eliminates the need of accessing XML documents in databases by analyzing
references to XML objects. Giving an access control policy, even with the increase of documents size or access requests, we
show that our model closely costs the same. Case studies are left for future work to insure the completeness of our reference
contexts.
,

Keywords :- XML, XPath, Security, Policy, Granularity.

I. INTRODUCTION

 Sharing Extensible Markup Language (XML) documents is
becoming widely available within e-commerce applications.
The need of access control at a fine-grained levels has pushed
developers and researchers to aggressive battles in choosing
between cost and efficiency. XML access control granularity
is the smallest amount of nodes that can be independently
controlled. Therefore; the XML Path (XPath) [1] is the
common language to refer to these nodes, and to be used as
the object in access control requests.

 Despite the fact that XPath expressions are only used as
references to actual XML nodes in XML access control
policies, current models unfortunately deployed the full
contents for dealing with policy constraints. In these regards;
current proposals can be categorized into two different
solutions. First; there are some models that dealt with XML
documents in the main memory to process access control
decisions in a timely manner. And second; other approaches
labeled nodes in XML documents with their constraints
statically to make decisions before deploying the requested
data.

 Security must not be afterthought, it must be first thought
of [2]. Providing means to ease developing access control
models takes care of this issue. Access control development
should be as simple as the conditional statement (if
Boolean then decision). We propose a method that
eliminates data deployments in XML access controls. The
used XPath references in access requests and policy
constraints will be compared to make access decisions.

 One problem is that there are different ways to express
selecting nodes in XPath. Analyzing XPath expressions is
necessary to achieve 100% access control. As will be seen
later, one may use the full syntax to request an access to a
node, where the policy uses the abbreviated syntax to prevent
this access. Matching these two expressions will return false
which results in allowing the access to the requested data.
From developer�s point of view, the analysis will provide the
terms; algorithms optimization, time efficiency, and logical
development.

 The rest of the paper is organized as follows. After we
give a general overview on access control and XML access
control mechanisms in Section II, we present previous work
in Section III. We then define our mechanism based on using
reference check between objects, issues, and common
functions in using XPath expressions in Section IV.
Experimental analysis is discussed in Section V, where
future work and conclusion are presented in Section VI.

II. ACCESS CONTROL

 The problem of access control is not relatively new, it
has been studied within different applications such as Web
Services (WS), Relational Database Management Systems
(RDBMS), XML documents, and so on. In general, access
control security systems enforce protection by calling
documents called policies. A Policy contains set of rules that
the system must meet before allowing users to access any
critical information. Figure 1 is an example that
demonstrates a policy for a random system.

id21663812 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

https://www.mnkpublication.com/journal/ijlrst/index.php
mailto:Email:qassimalmahmoud@gmail.com
mailto:aiman68@hotmail.com

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 11

Rules are also referred to as constraints. An access control
constraint is generally on the form (Subject, Object, Effect,
Action) [3] where the Subject is the user or role to whom
access is applied to, the Object is the reference expression
that denotes the set of files concerned by the rule, the Effect
specifies whether the operation is allowed or denied, and the

Figure 1. Example of a policy

Figure 2. Expressing Figure 1 example by access

control policy

 Action specifies the operation under concern. The
example illustrated in figure 1 can be expressed by access
control policy shown in figure 2.

Remember that these examples are general and each
security system may express and implement more
complicated cases. Our model represents an access control
that restricts access to XML documents by enforcing
policies specified in section II-A. More complex cases that
were implemented in previous work as demonstrated in
section III can also be extended using our approach.

A. XML Access Control

The major difference between XML access control and
previous applications of access control is that XML always
deals with fine-grained constraints where access is restricted
to the smallest unit contained in the document. Indeed, a
clean model for dynamic access control with granularity
control is needed to allow XML documents to link against
arbitrary XML chunks [4]. Using XPath expressions allows
a finer level of granularity where applications control access
to the tag level of XML documents.

As will be seen in section III, many proposals cover
access control to XML documents. Our proposal is not
intended to change the way constraints are handled in these
approaches, but it suggests a way to use references to
objects to improve the efficiency of their behaviors, and to
reduce the cost associated with results when decisions are
made. The following summarizes some specifications that
are covered by these proposals:

� Two-valued versus three-valued policies: Some
approaches consider the Permit/Deny decisions while
others consider Permit/Deny/Undetermined decisions
when a request does not match any rule within the
policy.

Figure 3. General architecture of In-Memory

approach

Handling domain constraints: Most of these proposals
accept User IDs and Roles as subjects within rules,
and some extend subjects to domain names (DNS),
internet protocols (IP), using the wild card (*), and
so on.

� Support policies specified in other XML
languages: It is important for a system to support
policies ex- pressed in rich policy languages such as
the Extensible Access Control Markup Language
(XACML) with features combining algorithms [5].

B. The XML Path Language (XPath)

XPath is the result of an effort to provide a common
syntax and semantics for functionality shared between XSL
Transformations (XSLT) and XPointer [1]. In XML access
control mechanisms, XPath expressions are used in selecting
requests� resources as well as specifying rules� objects.
The constraint; (Role:Doctor,//record/patient,+,Read);
for example indicates that the record Patient in an XML
document can be read by a doctor. XPath analysis will be
provided in Section IV.

III. PREVIOUS WORK

 Traditional access control models, such as access matrix,
mandatory access control (MAC), discretionary access
control (DAC), and role-based access control (RBAC),
have been proposed to meet different application
requirements for long [6], [7], [8].

In the past ten years, XML access control has reached its
peak of development. Proposals for XML security battled
in providing finer-grained access levels, in providing logical
definitions of deny, permit, and undetermined decisions, in
supporting other XML languages such as the Extensible
Stylesheet Language Transformation (XSLT) and XACML,
in processing access control queries efficiently, etc.

Access control models can be categorized into two
different types in regards to efficiency and cost. These
are illustrated in the following two sections.

A. In-Memory Processing

Where XML trees are placed in-memory in query
processing enabling quick runtime processing beside the
flexibility of visiting nodes as many times as needed. Figure
3 shows the general architecture of In-Memory approach.

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 12

Figure 4. General architecture of In-Document approach

A model [4] that covers access control attributes by using
the Java DOM interface to evaluate request against policies
was proposed. Provisional authorization [9] provided XML
with element-wise access control mechanism namely XML
Access Control Language (XACL). By exploiting the
opportunities offered by XML [10], a fine-grained access
control defined a model for restricting access to Web
documents that takes into consideration the semi-structured
organization of data and their semantics.

OASIS Extensible Access Control Markup Language
(XACML) [11] uses a Policy Decision Point (PDP) that
evaluates statement requests in accordance to the semantics
specified in the given policy. XACML project was also
continued [12] aiming in creating portable and standard
way of describing access control entities beside providing
a mechanism that offers much finer granular control than
simply denying or granting access.

Other approaches used similar mechanisms to deliver
access control for XML documents. Role Based Access
Control (RBAC) for example is applied on XML properties
and carried out an extended access control method [13].
XML-Based Declarative Access Control [14] presents an
engine (Xplorer) to interpret control rules and provide se-
cure searching and browsing for XML repositories. Access
Control for XML Documents [15] proposed a flexible and
powerful model that can effectively protect XML documents
from unauthorized attempts and malicious damages. And
a Distributed Push-Based XML Access Control Model for
Better Scalability [16] presented a scaling strategy that
distributes the increased system workloads to different
servers.

B. In-Document Processing

 Labeling XML nodes; Static Method; with policies�
contents is another way of evaluating access requests. The
rationale for this approach is defining an XML markup for
a set of security elements describing the protection
requirements of XML documents. The security markup can
be used to provide both instance and schema-level
authorizations at the granularity of XML elements. Figure 4
shows the general architecture of In-Document approach.
XML access control using static analysis [17] uses automata
to read the marked up nodes in databases for representing
and comparing queries with access control.

Figure 5. General architecture of Reference Check Model

 policies and schemas. Active XML (AXML) is a
declarative framework that harnesses the emerging standards
for security integration [18] which is based on embedding
calls to web services, parts of the XML data are given
explicitly while other parts consist of calls to web services
by placing them within the <sc> ...</sc> elements.
Proposals [19], [5], [20] encrypted parts of documents to be
retrieved by users who have public keys along with indexing
methods to efficiently support multiple level security
model.

Tree based access control mechanism for XML
databases [21] introduced a tree structure; Policy
Matching Tree (PMT); that pre-processes policies into
trees to be matched with access requests. This approach
performs significantly better than the previous approaches,
it did not however cover the different expressions that
XPath uses where the same node may be selected in
multiple ways as will be seen in Section IV. Another issue
is the limitation of its use by treating access control policies
as a whole structure in constructing tress from objects,
effects, and actions for each user.

IV. REFERENCE CHECK IN XML ACCESS
CONTROL

We propose a mechanism that checks object references
used in access requests against object references used in
policy constraints eliminating database prefetching and
labeling to make access decisions. Previous approaches
fully deploy the actual data to make access decisions despite
the fact that only references are used within requests and
policy rules. Figure 5 shows the general architecture of
our proposed model.

To achieve full security coverage, our model is based
on analyzing the reference language used in requests and
constraints. In our case, we will produce a function that
recognize the full syntax and the abbreviated syntax in
XPath, and convert them to a set of common patterns.
 XPath uses different syntax to express selecting the
same node in a tree. For example; the full
syntax record::child::patient and the abbreviated syntax
record/patient result in selecting group of the Patient
children in a Record node within XML documents. More
information and examples will also be useful by reading the
XPath tutorial in http://www.w3schools.com/Xpath/.

http://www.w3schools.com/Xpath/.

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 13

Figure 6. Selecting any node example

Figure 7. Selecting current node example

Figure 8. Selecting all nodes example

Figure 9. General architecture of Reference Check
with Predicates

A. Expressions Conversion in XPath

XPath expressions that are mostly used will be analyzed
enabling their conversion to sets of patterns. The general
mechanism will be provided.

1) The Absolute Location (NodeName) and (/): The
simplest, easiest, and straight forward expression input is
the absolute expression where the first axis starts from the
root of the tree. The pattern will be constructed by writing
node names simultaneously with navigating through the
XPath expression. For instance; /bookstore/book and book-
store::child::book produce the set [�/bookstore/book�].

2) The Any Node (descendent) and (//):
Descendent and double slash // are used in XPath to
select any node name under the specified path. For
example; book::descendent::price and /book//price are
used to select the price children, children�s children, etc
of the book root. Figure 6 shows the selected nodes to be
returned. To implement this notation, the wild card (*) will
be used to indicate that any pattern in this location is a
match. The set, [�/book/*/price�] is produced.

Note that the wild card located in the set is different from
the wild card located in the original XPath expression which
will be seen in the next sections. The (*) input indicates all
nodes in XPath, where the (*) output indicates any string at
the same location.

3) The Current Node (.): Starting the full path with the
relative axis and the abbreviated path that starts with the
dot symbol (.) are equivalent, they denote navigating from
the current node. The two expressions child::price and
./price select the child price of the current node. The above
expressions result in producing the set [�./price�]. Figure 7
assumes the Book node is the current node, and it shows
the selected node.

4) The All Nodes (sibling) and (*): The (sibling) axis
and the wild card (*) are used in XPath expressing that all
nodes are to be selected in an XML document. Implementing
all nodes would use the same technique that is used in any
node selection. Figure 8 is an example of the two
expressions sibling::book and ./book/*. The set
[�./book/*�] is produced.

5) The Parent Node (..): The axis (Parent) and the
expression (..) indicate selecting the parent of the named
node. The two expressions parent::price and ../price select
price�s parent, and the set [�../price�] is produced.

6) The Multiple Expressions (|): XPath expressions
may use the symbol (|) to select multiple nodes
that are not related. The expression sibling::book |
book::descendent::price and the expression book/* |
book//price produce the set [�/book/*�,�/book/*/price�]

7) Predicates and Conditions: Predicates are used to find
a specific node, a node that contains a specific value, or
a node that conforms to a giving condition. XPath places
predicates and conditions in between the square brackets ([])
to satisfy this requirement. In our model, predicates are the
only type that direct the control to access the actual XML
documents in databases to get values based on the specified
condition. While this may cause a delay, the obtained values
are too little comparing with the other approaches that have
been studied. Figure 9 extends the giving graph shown in
Figure 5 by adding the predicates access to both of the
request and policy objects.

 Our XPath analysis covered most of the used expressions
when selecting nodes in XML trees. To achieve full security
coverage and to avoid permission leakage, we need more

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 14

 case studies to analyze, and to insure there is no expressions
are left without being converted. In our future work, these

Figure 10. Access control algorithm

case studies will be collected, and our system will be tested
in a realtime infrastructure to achieve these requirements.

B. Access Control Algorithm

When access is requested to an object by a user, the
process passes certain information to the access control
model in order to evaluate that access permission or denial.
Access control algorithm is illustrated in figure 10.

The object contained in the input is an XPath expression
that will be converted to a set of patterns as illustrated in
our XPath analysis.

The rule r in a policy is a tuple (Subject, Object, Effect,
Action) where Object is an XPath expression that the rule
is specifying, Effect is a Boolean value; True indicates that
Subject is allowed to perform Action on Object where false
indicates otherwise.

Processing the request results on creating a new set of
patterns; resultSet; that the subject is allowed to access.
Please note that any implementation may refine its outputs
depending on the returned patterns. One may say if resultSet
is empty, the subject is not allowed to proceed with his
request. And another may return new XML document that
has the allowed nodes by calling prune(XML-document)
method which deletes the nodes that are not allowed to be
accessed from the original document.

V. PERFORM ANCE ANALYSIS

Based on our understanding to the reviewed literature, we
constructed three simple models to be compared with our
XPath Reference Check. The first is using Policy Matching
Tree (PMT) where references only use the absolute XPath
expressions to achieve security results. The second is using
in-memory approach where the full XML documents were
deployed. And the third is using in-document mechanism
where user names and constraints are written within our
documents.

Our experiment was done using Pentium 2.53GHz and
1GB of RAM. It is divided into the following four stages
to prove that our model closely cost the same even when
policy and document sizes increase.

Table I
AV E R AG E P RO C E S S I N G T I M E P E R R E QU E S T (MS)

Stage Ref. Check PMT In-Mem In-Doc

1 0.0071 0.0062 90%
2 0.0076 0.0077 95%
3 0.0082 0.0086 87%
4 0.0084 0.0083 93%

1) We used a policy consisting of five rules, XML
document with four levels and a total of 614 nodes,
ten requests without using predicates, and ten requests
using predicates.

2) We used a policy consisting of five rules, XML
document with seven levels and a total of 3060 nodes,
ten requests without using predicates, and ten requests
using predicates.

3) We used a policy consisting of fifty rules, XML
document with four levels and a total of 614 nodes,
ten requests without using predicates, and ten requests
using predicates.

4) We used a policy consisting of fifty rules, XML
document with seven levels and a total of 3060 nodes,
ten requests without using predicates, and ten requests
using predicates.

Table I shows the average request�s processing time
in milliseconds for each stage. PMT performance was as
good as our model, it did not however detect most of the
expressions where the full and abbreviated syntax were used.

VI. CONCLUSION

This paper introduced another access control mechanism
by using reference check between requests and constraints
objects eliminating the expensive runtime needed to access
documents in databases. We focus on these references�
analysis by converting them to sets of common patterns.
From developers point of view, these analysis will
provide the terms; algorithms optimization, time efficiency,
and logical development.

Another advantage is that the mechanism can be used
within other access control models such as RBAC and
RDBMS. We plan to gain more skills into dealing with
these controls, and analyze the references used to cache and
control the required objects.

 More aspects are also left for future work as this paper
could not cover. Case studies and expressions analysis for
example will be conducted to insure accurate decisions, and
to achieve full security coverage. Finally, policy analysis
to overcome repeated objects and conflicts when policies
are updated will enable the integration of our model into
realtime systems.

REFERENCES

[1] J.Clark and S.DeRose, �Xml path language (xpath) version 1.0,�
November 1999.[Online]. Available:
http://www.w3.org/TR/xpath

http://www.w3.org/TR/xpath

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 15

[2] C. Steel, R. Nagappan, and R. Lai, Core security patterns best
practices and strategies for J2EE, Web services and identity
management. Upper Saddle River, NJ, USA: Prentice Hall
Professional Technical Reference, 2005.

[3] F. Irini and M. Sebastian, �Formalizing xml access control for

update operations,� SACMAT07, pp. 169�174, 2007.

[4] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and P.
Samarati, �Design and implementation of an access control
processor for xml documents,� Computer Networks, vol. 33, no.
1-6, pp. 59�75, 2000.

[5] P. Rao, D. Lin, E. Bertino, N. Li, and J. Lobo, �An algebra for

fine-grained integration of xacml policies,� Purdue University,
West Lafayette, IN, USA, Tech. Rep., 2008.

[6] N. Li and M. V. Tripunitara, �Security analysis in role-based

access control,� ACM Trans. Inf. Syst. Secur., vol. 9, no. 4, pp.
391�420, 2006.

[7] X. Zhang, R. Sandhu, and F. Parisi-Presicce, �Safety analysis of

usage control authorization models.� New York, NY, USA:
ACM, 2006.

[8] S. Jha, N. Li, M. Tripunitara, Q. Wang, and W. Winsborough,

�Towards formal verification of role-based access control
policies,� Dependable and Secure Computing, IEEE Trans-
actions, vol. 5, no. 4, pp. 242�255, 2008.

[9] M. Kudo and S. Hada, �Xml document security based on

provisional authorization,� in CCS �00: Proceedings of the 7th
ACM conference on Computer and communications security.
New York, NY, USA: ACM, 2000, pp. 87�96.

[10] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P.

Samarati, �A fine-grained access control system for xml
documents,� ACM Trans. Inf. Syst. Secur., vol. 5, no. 2, pp.

[11] 169�202, 2002.

[12] S. Godik and T. Moses, �Oasis extensible access control 2
markup language (xacml),� cs-xacml-specification-1.0, 2008.

[13] M.Verma,�Xml security:Control in- formation access with
 xacml,� 2004,
http://www.ibm.com/developerworks/xml/library/x-xacml/.

[14] X. Meng and D. Luo, �An extended role based access control

method for xml documents,� Wuhan University Journal of
Natural Sciences, vol. 9, no. 5, pp. 740�744, 2004.

[15] R.Steele,W Gardner, T.S.Dillon, and A.Erradi,�Xml-based
 declarative access control,�vol.3381,pp.310�319,2005,
http://www.springerlink.com/content/66rq8tuwhkfdgm1q/.

[16] Y. Xiao, B. Luo, and D. Lee, �Access control for xml
document,� vol. 5027, pp. 621�630, 2008.

[17] W. Halboob, A. Mamat, and R. Mahmud, �A distributed
push-based xml access control model for better scalability,�
Distributed Framework and Applications, pp. 20�26, 2008.

[18] M. Murata, A. Tozawa, M. Kudo, and S. Hada, �Xml access

control using static analysis,� ACM Trans. Inf. Syst. Secur., vol.
9, no. 3, pp. 292�324, 2006.

[19] S. Abiteboul, O. Benjelloun, and T. Milo, �The active xml

project: an overview,� vol. 17, no. 5, pp. 1019�1040, 2007.

[20] H.-K. Ko, M.-J. Kim, and S. Lee, �On the efficiency of secure
xml broadcasting,� Information Sciences, vol. 177, pp. 5505�
5521, 2007.

[21] Y.Xiao,B.Luo,and D. Lee, �Security-conscious xml indexing,�

vol.4443,pp. 949�954,2007,
http://www.springerlink.com/content/372088578m01883u/.

[22] N.Qi and M.Kudo,�Tree-based access control mechanism for xml
databases,� 2005, http://www.ieice.org/d�
e/DEWS/DEWS2005/procs/papers/5A- o1.pdf.

http://www.ibm.com/developerworks/xml/library/x-xacml/.
http://www.springerlink.com/content/66rq8tuwhkfdgm1q/.
http://www.springerlink.com/content/372088578m01883u/.
http://www.ieice.org/d�

