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Abstract-. Starting from the main equation for calculation of pipe reactor, in which there are differential, i.e. integral links 
between values of ô (volumetric time), rA (reaction rate), XA (level of conversion of reactant) and CA (reactant concentration), 
their graphic dependence has been established using certain mathematical transformations. Basic theorems of differential 
geometry, i.e. differential and integral calculus were used to prove graphic constructions in this process. Using the previous, 
based on a known analytic dependence that has been shown graphically, two other characteristic dependencies have been 
determined by graphic construction. In that way, we obtained more information on the observed process in a relatively simpler 
way compared to the existing methods. For both of the suggested constructions, a special overview has been given for 
determining coefficients of proportionality, since they are crucial for practical application of the suggested method. Verification 
of the method has been performed on a practical example from the area of chemical reaction engineering, where volumetric 
time for the given output was determined by a graphic procedure. The obtained results were verified with two mathematical 
methods, with satisfactory accuracy.   
 

Key words - chemical reaction engineering, graphical methods, designing of plug flow reactors, residence time, subintegral and 
differential functions, scale coefficient  
 

I. INTRODUCTORY DISCUSSION 
Theory and design of chemical reactors is an engineering 

discipline that deals with their application in industry. A 
chemical reactor is an important and essential processing 
unit in every chemical process [1, 2]. It always contains a 
chemical reaction and many physical processes of transfer 
of matter, energy and heat. The final construction shape of a 
chemical reactor is determined by reaction conditions, 
operation type and production capacity. Reaction 
engineering is a part of chemical engineering which focuses 
on the study of chemical reactors [3, 4, 5, 6]. An important 
point at dimensioning of each reactor is an engineering view 
of the problem. Nowadays, mathematical complexity of 
reactor models is no longer an obstacle for their use in 
practice. Numerical methods for solving mathematical 
problems are especially important in this process and are 
based on the use of electronic computers and appropriate 
programs [1, 3, 5, 7]. Here, analytical methods are 
applicable to a very few problems [1, 4, 6, 8, 10]. Due to the 
previous, graphic procedures have an important role in 
reactor design. These procedures will be the subject of the 
paper.  

II. MAIN RELATIONS FOR CALCULATION OF AN 
IDEAL PIPE REACTOR 

 

 

In an ideal pipe reactor (piston flow reactor) fluid 
composition changes from point to point along the flow 
direction. Therefore, the material balance for a specific 
reaction component has to be set for the differential volume 
element dV, according to Fig. 1. [3, 5, 6, 11, 12]. 

 

 
 

Fig. 1. Values for calculation of ideal pipe reactor 
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The level of conversion of reactant A is given depending on 
the distance from the reactor entrance.  
It can be shown that the material balance of reactant A in a 
differential reactor element, of volume dV [2, 3, 7, 13, 14] 
is: 

dV)r(dXF AAA0
          (1) 

For the reactor as a whole, integration of equation (1) has 

to be performed. In flow velocity 
0AF  is constant, while 

reaction rate Ar  in each case depends on the concentration 

of matter or reaction degree.  
By grouping appropriate values, the equation (1) 

becomes: 
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Equations (3) and (4) are used to determine volume of the 
reactor, i.e. volumetric time ô at the given inflow speed and 
desired degree of reaction.  
If input current (index 0), in relation to which we calculate 
degree of reaction, flows into the reactor with a certain 
degree of reaction, marked by index �i�� and output current 

leaves the reactor with degree of reaction described with 
index �f��, we can obtain a more general equation for design 

of ideal pipe reactors: 
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i.e.: 
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For a special case of a system with constant density, it 
follows: 
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so the equation for calculation of a reactor can be expressed 
through concentration:  
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III. GRAPHIC METHOD FOR PROBLEM SOLVING 

From the known diagram )
1

,(
A

A r
X  which is 

applicable to a general case, we can obtain the diagram 

( ),
0A

A C
X


 by a graphic procedure which can be used to 

determine volumetric time [15]. 
According to relation (8), considering that a constant of 

integration is (

0AC


)0, it follows that 

0AC


=   A

A

dX)
r

1
( + (

0AC


)                      (9) 

 

 

Fig. 2. Graphic construction of diagram (XA, 

0AC


) with 

the use of diagram )
1

( ,
A

A r
X   
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Since the curve (XA, 

0AC


) is the integral curve of 

)
1

( ,
A

A r
X  , relation (8), particular integral, i.e. the 

starting point of the curve has to be known, [2, 9], so only 
one integral curve goes through it; the curve represents the 

law of change (

0AC


) of XA, for the given initial condition. 

Let us consider that diagram )
1

( ,
A

A r
X   was drawn in the 

ratio of 
AX for reaction degree XA and 

Ar/1  for 

reciprocal negative value of reaction rate )
1

(
Ar

 , Picture 2. 

We divide the gap on the abscissa into a number of equal 
divisions, where:  
 

 AX 02MO = 10TM = 21TM  = ��. 
 

12TO = 21TT = ���.. 
 

Obviously, adopting a larger number of divisions on the 
abscissa gives a more accurate solution. 
In each division we find a mean abscissa Mi such that an 
ordinate drawn from that point intersects the diagram in 
point Ci so that the area TiAiAi+1Ti+1 equals the area of the 
TiKiCiKi+1Ti+1 rectangle, or, which is the same, that areas of 
AiDiCi and CiGiAi+1 are approximately equal, which is 
separately presented in Fig 3 for better visibility. 
Now according to Fig.2 , to the Leith, onto the adopted 
ordinate, we project the diagram points A0, A1, A2; in that 

way we get points '
0A , '

1A , '
2A . We choose pole Pr at 

distance rPP'
0   = rH  and connect it by rays in points Ai. 

 

 

Fig. 3. Division of gap on the diagram )
1

( ,
A

A r
X   

abscissa 
 

Now we choose a new system )( 1 zO   so that vertical axes 

of both diagrams are collinear. On axis 1O we choose 

point B0  that corresponds to initial value of 

0AC


and from 

it we draw a line parallel to the ray (O) to the intersection 

with the vertical drawn from point C0; we will get point '
0C , 

Fig. 2. From this point we draw a line parallel to the ray (1) 
to the intersection with the vertical drawn from C1; we will 

get point '
1C , etc. Line segments '

1
'
00 CCB  form a 

polygonal line, tangents of the diagram (XA, 

0AC


), because 

tangent of the angle of inclination i of a tangent drawn 

onto this diagram is proportional to  (
Ar

1
 ). Diagram (XA, 

0AC


) should be drawn into polygon of tangents and it has 

to go through points Bi that are points of intersection of the 

verticals drawn from points Ai of the diagram (XA, 

Ar

1
 ) 

with these tangents. 
At this construction we have to pay attention to proportions, 
i.e. coefficients of proportionality. Taking into account the 

ordinate and the scale of the diagram (XA, 

Ar

1
 ) it follows: 

 

Ar

1
 = y

Ar  /1 = ''
0/1 ir AP

A
                 (10) 

Analogously, for abscissa it is true that: 
 

zX
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Replacing (11) and (10) in relation (9) 
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For an arbitrary point of the diagram (XA, 

Ar

1
 ), taking 

into account the angle of the tangent for (XA, 

0AC


) 

diagram, it follows: 

rH

y
tg  = 

dz

d
 dHdzy r                     (13) 

Replacing (13) in (12) it follows that: 
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0AC


 =     dH rr AXA/1                    (14) 

where   is ordinate of the diagram (XA, 

0AC


). 

Solving the integral in relation (14) it follows: 
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
 =    rr H

AXA/1                     (15) 

It can be shown that (15) becomes: 

0AC


 =   

0/ AC                      (16) 

Since the coefficient of proportionality for 

0AC


axis is: 

rrC H
AXAA
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 [
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dm
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3

             (17) 

Also, according to (15) dimension for (

0AC


) is: 

[
0AC


] = 

mol

sdm
dmdm

dmdm
mol

sdm
3

3

1
                    (18) 

Relation (16) enables calculation of volumetric time by 
graphic method.  
 

IV. VERIFICATION OF THE METHOD ON 
   A COMPUTATION EXAMPLE 
 

The rate of homogenous gas reaction, A → 3R, at 215ºC 

is given by the expression 2/1210 AA Cr 
  [mol/dm3s]. 

Through the presented graphic metod we will determine 
volumetric time needed to achieve the degree of reaction of 
80%. An input mixture that contains 50% A and 50% of 
inert gas flows into an ideal pipe reactor in which the 
temperature is 215ºC, and the pressure is 5 bar, where 

0Ac = 0,0625 dm3/l. 

Considering the given stoichiometry and the share of the 
inert gas in the input mixture of 50%, two volumes of the 
input gas will produce, after the reaction is completed, four 
volumes of output gas, which means that the degree of 
change of reaction system volume is: 

 

1
2

24



A   

Equation for calculation of ideal pipe reactor (4 ) can be 
written as: 

 





fAX

A

A

A r

dX

C 00
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According to the given expression, reaction rate constant is: 

k = 10-2

sdm

mol
2/3
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considering that 2/1
AA Ckr   

 
Replacing rA into relation (19) it follows: 
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From dependency relation between concentration of CA and 
degree of reaction XA 

 

AA

A

A

A

X

X

C

C






1

1

0

                     (21) 

 
it follows that: 
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Now relation (20) becomes: 
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In equation (22) it is A = 1, while: 
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According to this, equation (22), considering (21), gets its 
final form: 
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By comparison, according to (23) it follows that: 
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(400
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A X
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According to relation (24), Table 1 was compiled for five 
characteristic points. 
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Table 1. Characteristic values of the function 

              )(
1

A
A

Xf
r
  

Point XA 2/1)
1

1
(400

1

A

A

A X

X

r 


  

yi 

0 0 400 y0 

1 0,2 491 y1 
2 0,4 611 y2 

3 0,6 800 y3 

4 0,8 1200 y4 

 
Using the data from Table 1, a dependency diagram 

(
A

A r
X

1
,  ) was constructed in Fig. 4. For a more precise 

construction of the diagram, several additional points were 
calculated. 
 

 

Fig. 4. Diagram of functional dependency )(
1

A
A

Xf
r
  

for the computation example 

Ratio for axis 

0AC


is calculated according to relation (17): 

rXrC H
AAA
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dm1,0

1,0

dm1,0

mol/sdm150

33

3


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According to this ratio, a division on the ordinate axis of the 

diagram (

0

,
A

A C
X


) is applied. 

The value of  

0AC


 for XA = 0,8 is calculated according to 

relation (16): 
 

8,0)(
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AX
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
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molsdmmm
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AC /5,53271

1

/5,7 3
3

/ 0


 
which is presented in Fig. 5. Obviously, the value of 

ordinate    was measured from the diagram.  

Volumetric time needed for the given output from this will 
be: 
 

5,532C)(
0A A8,0X   = 

28,335,5320625,0
3

3 



mol

sdm
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For the given computation example, in Picture 5 the diagram 

(

0

,
A

A C
X


) was constructed, where a known diagram 

(
A

A r
X

1
,  ) was used. The construction was done 

according to the general procedure given in Fig. 2.  
 

 

Fig. 5. Construction of diagram (XA, 

0AC


) with the help of 

diagram )
1

( ,
A

A r
X   for computation example 
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The obtained result for volumetric time can be verified using 
Simpson�s rule [2, 9, 10], according to ordinates of points in 

Table 1: 
 

 
b

a
43210s )yy4y2y4y(

3

h
ydxI      (25) 
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0

X
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A
A r

dX
C = sA IC

0
 = 0,0625∙532,4 = 33,275 s 

In the given case, exceptionally, the solution can also be 
obtained by analytical integration, relation (23): 
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0
2
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0
2
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A
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

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=400(arcsinXA - 2
AX1 ) 8,0

0   =    

=400





  )10()8,018,0( 2 arcsinarcsin  = 

400∙(0,927294-0,6+1) = 530,9176 
 
From this it follows: 
 

 = 530,9176∙
0Ac = 530,9176∙0,0625 = 33,18235 s 

Let us note that the procedure of analytical integration in 
practical problems of chemical reaction engineering is 
mostly not possible, due to complex integrands, so 
numerical methods are used [2, 9, 14]. 
 
V. GRAPHIC CONSTRUCTION OF DIAGRAM  

    (
0AC


,

Ar

1
 ) 

From the known analytical dependencies 

0AC


= 

0AC


(XA) 

and 
Ar

1
 = 

Ar

1
 (XA), eliminating degree of reaction XA   

by analytical method,  dependency 
Ar

1
 = f (

0AC


) can be 

obtained. It should be mentioned that at this elimination 

there are often certain, more precisely serious, mathematical 
difficulties, since these are complex functions.  
We will show that this elimination of degree of reaction XA 

can also be done graphically. Diagram (

0AC


,

Ar

1
 ) can be 

directly constructed from diagram (XA , 

0AC


), which was 

also obtained by graphic method (Pic.5 ). 

In point A of the known diagram (XA, 

0AC


), Pic. 6., 

tangent creates an angle á with OXA axis, which is 

proportionate to the value (
Ar

1
 ), considering that 

according to (6), i.e. according to Fig.5: 

tgá = 
Ar

1
 = 

A

A

dX

C
d )(

0



                                    (26) 

 

 
 

Fig.6. Principal procedure of construction of diagram 

(

0AC


, )

1

Ar
  based on known diagram (XA, 

0AC


) 

 
In point O' on axis OXA we construct a new system O'ç'z', 
so that axis O'z' matches axis OXA, and axis O'ç' is parallel 
to axis Oç. Through point O' we draw a line L at 45º on XA 
axis. In point O2 we construct a system O2yî parallel to 
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system ç'O'z', which will be system (

0AC


 , 

Ar

1
 ). To the 

left, in an arbitrary point E1 we draw a line parallel to axis 
O2y. Point E1 is in continuation of axis O2î. We choose, at 

arbitrary distance H1, pole P1, so that 11EP  = 1H . We 

project point A of the initial diagram onto line L, so that we 
get point L'. A vertical from this point will intersect axis O2î 
in point A''.  

Now in point A of diagram (XA , 

0AC


) we draw a tangent 

that creates angle á with the horizontal. From pole P1 we 
draw ray P1B1 parallel to tangent. The horizontal from point 
B1 intersects the vertical L'A'' in point B. Geometric place of 

such constructed B points is diagram (

0AC


, 

Ar

1
 ). The 

construction proof follows from a quality of the tangent of 

the diagram (XA , 

0AC


) and tilt angle of ray drawn from 

pole P1: 

dz

d
tg


                       (27) 

Considering the proportions of (XA , 

0AC


) system, it 

follows: 
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
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AXA zX                     (28) 

From this, by differentiation, it follows: 
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
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Replacing the differential (29) in (27) it follows: 
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A

C

X

A

A
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C
d
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Considering (26), equation (30) becomes: 
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
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From PB1E1 triangle it follows that: 
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From balancing relations (31) and (32) it follows: 
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From here it follows that: 

11
1

/ 01
EB

Hr
A

A

X

C

A





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= 11/1 EB
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We will show that coefficient of proportionality for 
Ar

1
  in 

relation (34) has dimensions: 

Ar/1 = 
1

/ 01

Hr
A

A

X

C

A 




              

[
Ar/1 ] = 

mol

sdm

dmdm

molsdm 22

/1

/



                                  (35) 

Also, dimensions for 
Ar

1
 according to (34) are: 

[
Ar

1
 ] = 

mol

sdm2

∙ dm = 
mol

sdm3

  

Based on the previous analysis, the known diagram  (XA , 

0AC


) according to Pic. 5. will be used for obtaining 

diagram (

0AC


, 

Ar

1
 ) by the suggested graphic method. 

The construction is shown in Fig.7.  
 

 
 

Fig. 7. Construction of diagram (

0AC


, )

1

Ar
 based on 

diagram (XA, 

0AC


) for computation example 
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For better visibility of diagram (XA , 

0AC


), only the 

polygonal line made by tangents on the curved line (which 
has been omitted in the drawing) is shown. Divisions on the 
ordinate and abscissa are determined according to 
coefficient of proportionality. 
 

VI. . GRAPHIC CONSTRUCTION OF DIAGRAM 
     ô = f (CA) 

According to diagram in Fig. 5., function 
Ar

1
 =f (XA) is 

upward sloping, which is most often the case in practice, [4, 
7, 10]. However, the same function, when it is expressed as 
depending on concentration CA will be downward sloping, 
relation (8). This is the case with systems with constant 
density, [12, 13, 14]. Pic. 8 shows, in principle, that the 
same graphic construction developed in chapter 3 can be 
applied to this case.  

 
Fig. 8. Graphic construction of diagram ô = f (CA) based on 

diagram )(
1

A
A

Cf
r
 when the function is  

downward sloping 
 
VII.  CONCLUSION 

 

   Numerical methods, lately, are irreplaceable while solving 
mathematical problems that necessarily appear at complex 

models in chemical reaction engineering. Application of 
those methods is enabled through use of electronic 
computers and appropriate programs. However, as it has 
been shown, in some cases the problem can be efficiently 
solved by graphic methods with satisfactory accuracy.  
 

  Also, the advantage of graphic method is obvious when 
compared to analytical methods that are mostly not 
applicable in practice due to complex integrands, since 
integral of the function cannot be solved in its final form. 
Planimetric methods, which are sometimes used to solve the 
presented problem, are less efficient than the suggested 
graphic method, mostly due to longer time needed to solve 
them and lower accuracy. Analytical integration is possible 
for a number of simple kinetic expressions.  
 

  It should be noted that there is no limit for application of 
the suggested method, considering the form and complexity 
of integrand, which speaks of its universal quality.  
 

   Apart from obtaining two graphic dependencies based on 
one known dependency, an inverse task is possible; it comes 
down to graphic construction of the first, i.e. initial diagram, 
if the other diagram is known. In this case, the problem 
comes down to construction of tangents in the points of the 
known diagram. At this, slightly lower accuracy of the 
obtained results should be expected. 
 

   Graphic methods at designing in chemical engineering 
should be given special attention and they should be used 
whenever possible, since they follow the researched process 
in a clear, transparent and reliable way, while the accuracy 
of the obtained results, if they are properly conducted, is 
mostly satisfactory.  
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