

International Journal of Latest Research in Science and Technology ISSN (Online):2278-5299
Volume 4, Issue 2: Page No.23-25, March-April 2015
https://www.mnkpublication.com/journal/ijlrst/index.php

ISSN:2278-5299 23

Publication History
Manuscript Received : 6 April 2015
Manuscript Accepted : 11 April 2015
Revision Received : 26 April 2015
Manuscript Published : 30 April 2015

ANALYSIS OF NUMBER OF LOOPS EXECUTED
IN KMP ALGORITHM

Arif Khan , Li Chen

Department of Computer Science & Information Technology
University of the District of Columbia

Washington DC, USA 20008

Abstract:- We have explained difficulties in understanding the KMP algorithm, and have analyzed the number of executions of the loops in
pattern matching phase of the KMP method required to improve the time complexity.

Keyword: KMP Algorithm

1. INTRODUCTION

 String matching is a popular method for many
applications. It is also an important topic in algorithm
analysis courses at both undergraduate and graduate levels of
education. Students generally found difficulties to understand
KMP algorithm. This article is specifically written to present
a simple, clear explanation of the KMP algorithm. In
addition, it provides an analysis of the method and a
modification of the error related to the execution of the loops
during pattern matching described in some text-books.

 KMP algorithm was designed [1] by Donald Kunth,
James H Morris, and Vaughan Pratt in 1977. Using this
technique we can solve the problem of finding occurrence of
a pattern of string within another string. The former is known
as pattern string and the later is called text string. This
method has two phases. In the first phase, we find the partial
match within the pattern string. The results are used in the
second phase to find the matching of the pattern string in the
text. The method has overall time complexity O(m + n),
where m and n are the number of characters in pattern string
(P) and text string (T) respectively. The essence of KMP
algorithm has been extended to generalize the pattern
matching problem for two dimensional sub-array matching [2
� 5].

 The text editing service frequently uses this type of string
matching solution in various situations. String matching
solutions also have many other important applications in the
fields of search engine, Network Intrusion Detection System,
DNA sequencing, etc. Several different algorithms have been
proposed to solve the string matching problems [6]. Some of
them are Brute Force, Boyer Moore, approximate string
matching, KMP, etc. All, other than KMP, have time
complexity O(mn).

2. KMP Algorithm and its Complexity Analysis.
 In this section, we explain the main features of the KMP
algorithm and analyze the number of loops executed in KMP
algorithm. The number of execution of loop is important
because it directly relates to time complexity.

We first discuss and explain three terminologies, namely
�Prefix�, �Suffix�, and �failure function� which are central to

the KMP algorithm [7].

2.1 Prefix, Suffix and Failure Function

 Prefix: A string Y is a prefix of a string X if X = YZ for
some string Z. In other words we can define prefix that has
all the characters in a string with one or more cut-offs, all at
the end. Example: �G�, �Gr�, �Gro�, and �Grou� are all

prefixes of the string �Group�.

 Suffix: A string Y is a suffix of a string X if X = ZY for
some string Z. In other words, we can define suffix that has
all the characters in a string with one or more cut-offs at the
beginning. Example: �roup�, �oup�, �up�, and �p� are all

suffixes of string �Group.� An example of the text string and

the pattern string with characters, which are numbered as
below:

In the above example we have a value of n = 16 and a value
of m = 7.

 Failure function: It is also called the prefix function.
Apparently the KMP algorithm is similar to the brute-force
algorithm without failure function, which considers shifts in
order from 1 to n − m, and finds out whether the pattern
matches at that shift. The distinction between these two
algorithms is that the KMP algorithm uses information
generated from the partial matches of the pattern and text,
and skips the shifts that are guaranteed not to result in a
match.

 The said partial matches are generated by prefix function
or failure function. To determine the failure function we
exploit the concept of prefix and suffix as discussed earlier.

id23444563 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

https://www.mnkpublication.com/journal/ijlrst/index.php

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 24

With the help of failure function, we build a table known as
partial match table. We demonstrate below how to get the
failure function, and how to construct from it the partial
match table. Let us consider a pattern given as: abaabab. For
this pattern we have prefix and suffix of part of the pattern
with j = 0, 1, 2, 3, 4, 5, and 6 as shown in Table I:

Table I

j 0 1 2 3 4 5 6
Part of
Pattern
with j
[P(j)]

a ab aba abaa abaab abaaba abaabab

Prefixes
of

[P(j)]

null a a,
ab

a,
ab,
aba

a, ab,
aba,
abaa

a, ab,
aba,
abaa,
abaab

a, ab,
aba,
abaa,

abaab,
abaabab

Suffixes
of

[P(j)]

null b ba,
a

baa,
ba,
a

baab,
aab,
ab, b

baaba,
aaba,
aba,
ba, a

baabab,
aabab,
abab,

bab, ab,
b

 Now we compute the failure function which is obtained
from the partial matches of the string. To get the partial
match we use the concept of prefixes and suffixes and their
pattern matches. If the pattern of the prefixes and suffixes of
the part of the given pattern string matches for any value j,
then the number of character in the matching prefix and
suffix string will be the value of the failure function for that j.
If we call the part of the given pattern as subpattern, then the
failure function can be defined as the length of the longest
prefix in the subpattern that matches a suffix in the same
subpattern. If it does not match, then the value of the failure
function will be 0. In Table I we have shown the matching
pair of prefix and suffix by underline for various value of j.
 We also note that for j = 0 and 1, there is no matching. So
the failure function, F(j) for j = 0 and 1 is 0. If we count the
number of characters of the matching string, then we get the
value of F(j) for any value of j. It should be remembered that
the value of F(j) is obtained only from the partial matching of
the pattern P. So using Table I, we can build the partial match
table for the pattern P which is shown in Table II.

Table II

j 0 1 2 3 4 5 6
Characters of
pattern [P(j)]

a B a a b a b

Failure function
[F(j)]

0 0 1 1 2 3 2

 We can use these failure functions and the partial
matching table to check the pattern matching. The algorithm
used for this purpose has been widely studied [7]. While
doing this, we basically encounter two different pseudo-
codes. As mentioned earlier in the present article, our
objective is also to analyze the pseudo code of the KMP
string matching algorithm for the loop that also has another
loop (e.g., one loop inside another loop; thus two loops in
total), as stated in some text books. This type of structure
increases time complexity.

3. Analysis on Number of Loops executed in KMP
Method

 We overcome the above problem by modifying the pseudo
code while preserving the matching algorithm single for loop
(one loop). We also determine the number of total loops
executed to find the pattern match resulting from both pseudo
codes. We also compare our results to show the effectiveness
of the algorithm mentioned here.

3.1 Pseudo code with for loop and while loop:

 Check_Pattern Method (T, P) // It returns Boolean value �
whether match found or not.

 n = size(T)
F[i] : Obtained from Failure_Function method
k = 0
m = size(P)
for (j from 0 to n) //Scan the text from left to right
 {
 while (k 0 and P[k] T[j]) //To check the

mismatch and reset the pattern string
 {
 k = F[k] //Iterative process
 }
 if (P[k] == T[j]) //To check the matching

{
 k = k + 1
 if (k == m) //Check all locations before

the last one have been matched
 return true //Match found
}

 } //All pattern element compared
 return false // All text string scanned but no pattern
found

As stated earlier, we find that the algorithm stated above has
one loop that also contains another loop. So it contains two
loops. Now we can consider the loop and modify the pseudo
code as below

3.2 Modified Pseudo code with while loop only:

Check_Pattern Method (T, P) // It returns Boolean value �
whether match found or not

 n = size(T)
m = size(P)
F[i] : Obtained from Failure_Function method
k = 0
j = 0
while (j<n)
{
 If P[k] == T[j] // If one pattern element matches

with the string element
 {
 j = j + 1
 k = k + 1
 if(k==m) //Check all locations before the last

one have been matched
 {
 return true // Match found
 }
 }
 else //Match not found

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 25

 {
 k = F[k]
 j = j + 1
 }
}//End of �while loop�

 return false //pattern not found after scanning all text
string

 Based on the above two pseudo codes we have performed
the pattern matching and have presented our result as given in
Table III. This result demonstrates that the pseudo code only
with the �while loop� corresponds to appreciably lower

number of execution of loops compared to the pseudo code
with �for loop� containing another �while (e.g., two loops)�.

In addition to that, we can conclude from our results that
during pattern matching phase the time complexity with one
loop (while only) is strictly O(n), n is the number of elements
of the text string. But with two loops (for and while together),
the time complexity is at best O(n + m), where m is the
number of element of pattern string. As the time complexity
during this phase depends only on the text string, the method
with one loop is more efficient.

Table III

Summary of analysis of KMP algorithm (Check_Pattern
Method)

Text Pattern (T): abaabbabab [Number of elements in string
T (n): 10]
Search Pattern 1(P1): abaabab [Number of elements in string
P1 (m): 7]
Search Pattern 2 (P2): aabba [Number of elements in string
P2 (m): 5]
Search Pattern 3 (P3): abababca [Number of elements in
string P3 (m): 8]
Search Pattern 4 (P4): abbaba [Number of elements in string
P4 (m): 6]

Pattern Found and
Algorithm Methods

Time
Complexity

Number of execution of
loops needed for
getting matches of the
pattern
P1 P2 P3 P4

Pattern found? --- No Yes No Yes
Check_Pattern
Method (T, P) with
for loop that
contains while loop

O(n + m) 13 8 13 11

Check_Pattern
Method (T, P) with

while loop only

O(n) 10 7 10 9

4. Conclusions

 In this article we have explained prefix, suffix and failure
function to understand the KMP algorithm without any
difficulties. We have analyzed the method with introduction
of a new loop pattern for achieving better time complexity.

REFERENCES

[1] Donald Kunth, James H Morris Jr., and Pratt Vaughan, �Fast

pattern matching in string�, SIAM Journal of computing, Vol 6,

No 2 pp 323 � 350 (1977)

[2] Alfred V Aho and Margaret J Corasick, �Efficient string

matching: An aid to bibliographic search�, Communications to
ACM, Vol. 18, No 6, pp 333 � 340 (1975).

[3] Rui Feng Zhu and Tadao Takaoka, �A Technique for two

Dimensional Pattern Matching�, Communications of ACM, Vol.

32, pp 1110 � 1120 (1989)

[4] Baeza-Yates Recardo and Régnier Mireille, �Fast two

dimensional pattern matching�, Information Processing Letters,

Vol. 45 pp 51 � 57, (1993)

[5] Saima Hasib, Mahak Motwani, and Amit Saxena, �Importance of

Aho-Corasick String Matching Algorithm in Real World
Applications�, Int. J. Computer Science and Information

Technologies, Vol. 4, pp 467 � 469 (2013)

[6] Nimisha Singla and Deepak Garg, �String Matching Algorithm

and their Applicability in Various Applications�, Int. J. Soft

Computing and Engineering, Vol. 1 pp 218 � 222 (2012).

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifferd Stein, �Introduction to Algorithms�, Third Edition, MIT

Press and PHI Learning Private Limited, pp. 1002 � 1013 (2014).

