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Abstract- In the fluorescence detection system, noise will affect the sensitivity of the system. The method using Stationary Wavelet 
Transform to de-noise fluorescence signals based on adaptive wavelet entropy is studied. The de-noising effects of dbN families are 
compared, and then the db7 wavelet is chosen as the optimal wavelet. The noised fluorescence signal is decomposed at 5 levels via Discrete 
Wavelet Transform or Stationary Wavelet Transform. The thresholded detail coefficients are reconstructed with the approximation 
coefficients to produce the pure fluorescence signal. It is verified that the de-noising method via Stationary Wavelet Transform has better 
effect than Discrete Wavelet Transform. 
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I. INTRODUCTION 
The development of industry and agriculture leads the 

increase of sewage; meanwhile, the pollution of mineral oil in 
water is getting more and more severe. It is great significant 
to detect the mineral oil in water accurately. Because the 
fluorescence analysis method has the advantages of high 
sensitivity, good selectivity, and ease of design [1-4], it is 
widely used in the field of water pollution detection, analysis 
of pesticide residues, and so on[5-10]. In the fluorescence 
detection system of mineral oil in water, in order to improve 
the detection accuracy, the Photomultiplier Tube (PMT) is 
applied to transform the fluorescence signal into the current 
signal. While in the process of transformation, the noise will 
be generated. In addition, due to the low concentration of the 
sample, the internal noise and external interference, the weak 
fluorescence signal is drowned in the noise. Improving the 
accuracy of the fluorescence detection and the quality of the 
fluorescence signal is a key technique in the fluorescence 
signal processing. 

The wavelet analysis has the characteristics of multi-
resolution and good localization, so it is widely applied in the 
field of signal processing, fault diagnosis and so on [11-14]. 
Mallat algorithm is a swift algorithm of the discrete wavelet 
transform (DWT). Signals via low-pass and high-pass 
filtering are down-sampled, and the wavelet coefficients 
generated by the filters are lack of translation invariance [15]. 
Some information may be lost after reconstructing the 
wavelet coefficients. The approximation and detail 
coefficients generated via stationary wavelet transform (SWT) 
are not down-sampled; whose length is the same to that of the 
original signal.  
 
 

     

 

   This character ensures the integrity information of the 
signal. The detail coefficients in each level are divided into n 
parts. The thresholds are selected adaptively according to 
maximum wavelet entropy of each part. The method of de-
noising fluorescence signal is proposed based on the adaptive 
threshold of wavelet entropy. 

II. PRINCIPLE AND SYSTEM STRUCTURE OF 
FLUORESCENCE MEASURING MINERAL OIL IN 
WATER 

In mineral oil, the compound molecules which contain 
conjugated double bonds will absorb luminous energy when 
irradiated by the excitation light, and then they jump from the 
ground state to excited states of the energy level. In the 
excited states, the molecules will transit to the lowest 
vibration energy level of the first excited state by internal 
conversion. Then the molecules return to each different 
vibration energy levels of the ground state while emitting 
fluorescence [16]. 

According to the law of Lambert-Beer, the relationship 
between the fluorescence intensity (IF) and the concentration 
of the mineral oil(c) is: 

 L
FF IAYI c

0 101 
            (1) 

Where, A is a constant, related to the instrument; YF is the 
fluorescent quantum yield of mineral oil; I0 is the intensity of 
transmission light; å is the molar absorption coefficient of 
mineral oil; L is optical path of fluorescence in mineral oil. 

According to the Taylor series, when the concentration of 
mineral oil is low, the higher term can be omitted, thus the 
formula (1) can be unfolded as: 

02.3F FI Y AI cL                   (2) 
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The formula (2) shows that the fluorescence intensity is 
directly proportional to the concentration of mineral oil, 
which is the principle of measuring mineral oil in water. 

For the mineral oil in water , when the excitation 
wavelength is shorter than 290nm, the most effective 
excitation wavelength is 250nm, and the fluorescence peak is 
located in 352~414nm. When the excitation wavelength is 
longer than 300nm, the most effective excitation wavelength 
is 360nm, and the fluorescence peak is located in 420~480nm. 
The pulse xenon lamp, which has strong instantaneous power 
and can supply the stable excitation light 200~700nm, is 
chosen as the excitation light source. The designed 
instrument is shown in Fig.1. The light resulting from the 
Xenon light transforms to a certain wavelength 
monochromatic light through a diffraction grating. The 
monochromatic light is divided into two parts by an optical 
coupler, one is reference light, gathered by PMT0, and the 
other is excitation light, used to excite the mineral oil in 
water to produce the fluorescence. The fluorescence goes 
through the diffractive raster and is gathered by PMT1. 
PMT0 and PMT1 respectively output current signals I0 and 
I1, the relative fluorescence intensity is I1/I0, which can 
eliminate the unstable factor like the fluctuation of excitation 
light source and improve the accuracy of the detection system. 

 
Fig. 1 The fluorescence detection instrument of mineral oil 

in water 
In the process of PMT1 converting fluorescent signals to 

current signals, the fluorescence signal can be inundated with 
the noise (shot noise and thermal noise, etc) produced from 
the detection system. 

III.   PRINCIPLE OF DE-NOISING VIA STATIONARY   
WAVELET TRANSFORM 

In the fluorescence detection system, the desired signal is 
relatively stable and low-frequency, while the noise signal 
usually presents high-frequency. The fluorescence signal is 
decomposed at j levels to get the low-frequency coefficients 
and high-frequency coefficients, so the noise signal can be 
separated from the desired signal. 

The one step decomposition and reconstruction process of 
stationary wavelet is shown in Fig.2. Where, j is the 
decomposition level, and cj is the approximation coefficient, 
standing for the low-frequency part of the signal , dj is the 
detail coefficient, standing for the high-frequency part of the 

signal, h(t) and g(t) respectively represent the low pass and 
high pass filter function. 

Where, cj+1 and dj+1 are not down-sampled via stationary 
wavelet transform, and these lengths are the same to the 
original signal, so the integrity of the information is ensured. 
The decomposition filters at level j+1 is the up-sampling of 
the filters at level j. The up-sampling makes redundancy 
information of the wavelet coefficients and it doesn�t lead the 
signal excursion. 

 



 
Fig.2 The one step decomposition and reconstruction 

process of stationary wavelet 

IV. WAVELET ENTROPY THEORY AND THE 
THRESHOLD SELECTION REGULATION 

In the wavelet domain, the useful signal�s energy is 
relatively concentrated, while the noise signal�s energy is 
relatively dispersive, so wavelet coefficients of the useful 
signal are larger than that of the noise signal. The smaller 
wavelet coefficients can be thresholded. Thus, the noise 
contained in high-frequency signals can be eliminated. 

For the framework of the wavelet transform theory, if the 
wavelet functions are a set of orthogonal basis, the wavelet 
transform is in accordance with the law of energy 
conservation: 

2 2
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If the high-frequency wavelet coefficients at level i is 
di(k), and di(k) is a stand-alone signal source unit, the wavelet 
energy at level i is expressed as: 

2
( ) ( 1 2, )i i

k

E d k i j  ， ，                      (4) 

N is the number of samples, and di(k) is separated into n 
subintervals of equal size, the wavelet energy at subinterval k 
(1≤k ≤n ) is [17]: 
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The probability of wavelet energy existing at subinterval 
k is:  

,
,
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E
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The wavelet entropy at subinterval k is: 

, ,lnk i k i k
i

S p p                               (7) 

The variance of the noise signal is the median of the 
subinterval, which contains the maximum entropy. 

For the soft-threshold formula, the threshold at level i is 
[18]: 

,( ) 2 log( ( ))i i kthr i length d                    (8) 

The high-frequency coefficients quantized formula is: 
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Where kjd ,
� is the quantized value of high-frequency wavelet 

coefficients at level i, and sgn(*) is a sign function. 
 

V. EXPERIMENTS AND RESULTS ANALYSIS 
The experiment process is shown in Fig.3. 

 

Fig.3 The experiment process 
Irradiate the SDS micelles diesel sample with the 

concentration of 10mg/L by the excitation light of 
wavelength 360nm to obtain the photoelectric pulse signal, 
which is generated by the fluorescence detection system and 
shown in Fig.4.  
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Fig.4 The spectrum of noised fluorescence signal 

Different wavelet functions have different orthogonality, 
compact support, symmetry, regularity and vanishing 
moment. The selection of wavelet function will affect the de-
noising. For the fluorescence signal, due to the length 
increase of the branch set, it produces some boundary issues. 
The dbN wavelet family can flexibly balance the border 
issues, retain the useful signals and smooth out noise. The 
Signal to Noise Ratio (SNR) and Mean Squared Error (MSE) 
are applied to evaluate the effect of de-noising. 
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Where, yi represents the de-noised signal, xi represents 
the original noised signal, N is the length of the signal. The 
larger MSE and smaller SNR, the better de-noising effect is. 
The db1 ~ 15 wavelet bases are selected to decompose the 
noised signal at 5 levels. The d1~d5 quantified by soft 
thresholds and the a5 are restructured to obtain de-noised 
signals. The SNR and MSE are calculated in Table 1. 

TABLE I THE DE-NOISED EFFECT OF db1~db15 
WAVELET 

Wavelet 
basis. 

SNR MSE 

db1 27.2365 0.0692 

db2 31.7413 0.0248 

db3 35.3477 0.0114 

db4 35.6322 0.0055 

db5 32.7503 0.0135 

db6 34.5463 0.0093 

db7 35.8970 0.0041 

db8 35.4270 0.0063 

db9 33.6663 0.0105 

db10 33.1071 0.0134 

db11 31.3371 0.0206 

db12 30.2803 0.0255 

db13 31.1604 0.0213 

db14 33.8867 0.0109 

db15 32.4805 0.0145 

 
Table 1 shows that for db4, db7 and db8, the SNRs are 

larger than 35, and the MSEs are smaller than 0.01, the de-
noising effect is better than others. Especially, for db7, the 
SNR is the largest with 35.897, and the MSE is the smallest 
with 0.0041. So the db7 is chosen as the optimal wavelet 
basis. 

Set the fluorescence signal sampling points 1024. 
Choose the db7 wavelet basis to decompose the noised signal 
at 5 levels via DWT. The approximate coefficients a5 and 
five levels detail coefficients d1 ~ d5 are obtained and shown 
in Fig.5. The wavelet coefficients at each level are down-
sampled; the signal length at level j +1 is half of the signal 
length at level j. Most of the noise is concentrated in the 
detail coefficients d1, d2, and a little in the d3. While the 
useful information is mainly concentrated in a5, and a small 
part is concentrated in d4 and d5. 

 
 



 
International Journal of Latest Research in Science and Technology. 

ISSN:2278-5299                                                                                                                                                                                109 
 

 
 
 

200 210 220 230 240 250
0

500

a5

200 210 220 230 240 250
-10

0
10

d5

200 210 220 230 240 250 260 270 280
-20

0
20

d4

200 250 300 350
-20

0
20

d3

200 250 300 350 400 450
-10

0
10

d2

200 300 400 500 600 700
-20

0
20

d1

 
Fig.5 a5 and d1 ~ d5 decomposed via Discrete Wavelet 

Transform 
According to the adaptive threshold selection regulation, 

the thresholds d1~d5 are calculated: 1.0211, 1.079, 0.7864, 
1.0912 and 0.8253. The de-noised high-frequency 
coefficients are reconstructed with the low-frequency 
coefficients to obtain the new fluorescence signal, shown on 
the left in Fig.6. The new signal maintains the characteristics 
of the original signal, and most of the noises are filtered out. 
But the curve is so smooth that the important information at 
key positions is lost. So reconstructing the signal accurately 
can not be achieved. 
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Fig.6 The de-noised signals via Discrete Wavelet Transform 
or Stationary Wavelet Transform with wavelet entropy 

threshold 
 

Decompose the noised signal at 5 levels via SWT to 
obtain 5 levels of approximate coefficients a1~a5 and detail 
coefficients d1 ~ d5, shown in Fig.7. The a1~a5 and d1 ~ d5 
are not down-sampled, whose length is the same to that of the 
original noised signal. Based on the regulation of adaptive 
threshold selection, the thresholds d1~d5 are 1.0437，
0.8531，0.7991，0.8113 and 0.6149. The de-noised high-
frequency coefficients are reconstructed with the low-
frequency coefficients to obtain the new fluorescence signal, 
shown on the right in Fig.6. The de-noised signal carve has 
good similarity and less distortion, so the useful information 
can be retained, and the peaks of the noise can be removed. 
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Fig.7 a1~a5 and d1~d5 decomposed via Stationary Wavelet 

Transform 
In order to further prove the superiority of SWT, the 

original noised signal, the de-noised signal via DWT and the 
de-noised signal via SWT are placed in the same coordinate 
system, shown in Fig.8. The de-noised signal via DWT has a 
certain deviation along the time axis at key positions A, B, C 
and D, while the de-noised signal via SWT can coincide with 
centerline of the original fluorescence signal and it has not 
deviation. 
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Fig.8 Comparison of de-noised results via Discrete Wavelet 

Transform or Stationary Wavelet Transform 
Amplify the section A (200~260nm) and D 

(1040~1120nm) to show more clearly in Fig. 9 that the de-
noised signal via SWT cannot shift with the time axis.  
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Fig.9 The curve amplification sections of section A and 

section D 
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   Objectively, In order to compare the de-noising effect of 
two methods, the SNR and MSE of the de-noised signals are 
calculated in Table 2.The SNR of signal de-noised via SWT 
is larger than that of signal de-noised via DWT, and the MSE 
of the signal de-noised via SWT is less than that of signal de-
noised via DWT. It is proved that the SWT with adaptive 
threshold of wavelet entropy has a good effect on de-noising 
fluorescence signals. 
 

TABLE Ⅱ THE SNR AND MSE OF NOISED 
SIGNAL AND DE-NOISED SIGNAL 

Signal types SNR(dB) MSE 

Signal de-noised via DWT 35.8970 0.0041 

Signal de-noised via SWT 40.7677 0.0125 

VI. CONCLUSIONS 
This paper studies the SWT de-noising method, and makes 

a comparison with the DWT de-noising method. 
Experimental results show that both methods can smooth out 
the noise. The signal de-noised via DWT with adaptive 
threshold of wavelet entropy may lose some important 
information and exist the deviation along the time axis. In the 
process of SWT, the wavelet coefficients of the noised 
fluorescence signal is not down-sampled ,so it can retain the 
whole useful information and have no deviation . Comparing 
the SNR and MSE of the signals de-noised via DWT or SWT, 
the SWT has a better effect on de-noising fluorescence 
signals. 
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