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Abstract- In  this  overview, The principles that govern colloid stability are of manifold importance to many different technologies, there are at 
least two general mechanisms whereby colloid stability is imparted : electrostatic stabilization and steric stabilization. The standard method for 
describing the interaction between two charged particles and in general two charged surfaces in a solvent is the non-linear Poisson Boltzmann 
equation. The effective colloid-colloid interaction potential is given by the electrostatic part of the classical Derjaguin-Landau-Vervey-
Overbeek (DLVO) theory with Combining this  elec trostatic  repulsion Likos (LR) with Yukawa (YA) attraction forms  the basis of theory of 
colloid stability due to Deyaguin-Landau-Verwey-Overbeek (DLVO theory), this theory can  explain  the  conditions of stability/instability of 
colloidal particles.    
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I. INTRODUCTION 
 

        The stability of colloidal systems [1-2] is an important subject 
from both academic and industrial points of view. These systems 
include various types such as solid�liquid dispersions 
(suspensions), liquid�liquid dispersions (emulsions) and gas�liquid 
dispersions (foams). The colloid stability of such systems is 
governed by the balance of various interaction forces such as van 
der Waals attraction, double-layer repulsion and steric interaction 
[3]. These interaction forces have been described at a fundamental 
level such as in the well-known theory due to Deryaguin and 
Landau [4] and Verwey and Overbeek [5] (DLVO theory), has 
been the starting point to understand the stability of charged 
colloids and their solution properties even though more and more 
systems have been found that the DLVO potential is not sufficient 
to describe the observed properties[6-7] 
     A DLVO potential basically consists of two terms: a charge 
repulsion and a van der Waals attraction. The range of the repulsive 
interaction can be either longer or shorter than that of the attraction 
depending on many factors, such as ionic strength and colloidal 
particle size.  In this theory, the van der Waals attraction is 
combined with the double-layer repulsion and an energy�distance 
curve can be established to describe the conditions of 
stability/instability. The origin of stability resulting from the 
presence of adsorbed or grafted polymer layers was established [8] 
With an appropriate combination of the potential parameters of 
both a short-range attraction (Yukawa) (YA) and a long-range 
repulsion (Likos) (LR), computer simulations [9-12] theoretical 
works [13-16] and experimental results [17-24] have conclusively 
demonstrated that rich phase behavior can be observed in a system 
with both a YA and LR (YALR) interaction. By controlling the 
potential parameters, a system can have different phases such as 
cluster crystals, lamellar phase, and Wigner glass. Therefore, 
systems with a YALR interaction provide scientists great freedom to 
control the structure of systems by tuning the interaction potential 
so that the desired       
 
 

 

macroscopic properties can be obtained. In particular, controlling 
cluster formation is very important for many protein systems        
since protein clusters are important for the understanding of        
protein crystallization, protein solution phase diagrams, and the  
formulation stability of monoclonal antibody drugs in the            
pharmaceutical industry. Especially, the mechanisms of cluster   
formation in monoclonal antibody solutions are very important for 
the delivery of therapeutic drugs to patients through the 
subcutaneous injection [25,26].  According to this theory [4-5] the 
stability of a colloidal   suspension is determined by forces of Van 
der Waals attractive causing aggregation and repulsive forces 
which result in the dispersion of the particles. When the 
electrostatic repulsions dominate the particles remain dispersed                               
in the state that is to say the suspension is stable.                                                
     On the other hand, increasing the ionic strength of the medium 
by addition of a salt, for example, strongly attenuates this 
repulsion, and the suspension and then becomes unstable and tends 
to flocculation. Although DLVO [4-5] theory is understanding and 
justification of several properties of colloidal suspensions [27-30]. 
The colloidal particles are stabilized when the surface charge of the 
particle is not zero and when the thickness of the double layer is 
large (in the presence of low ionic strength, thus a low electrolyte 
concentration).                     
   The stabilization of colloids with a grafted polymeric layer is the 
subject of many studies. The fundamental problem to solve is the 
knowledge of the nature of the effective force between particles. As 
we said above, such a force results from the excluded volume effect 
.The first theoretical work was due to Witten and Pincus (WP), 
[31]. In this paper, which is our original contribution, the system 
studied is that of a colloidal particle charge on its surface grafted 
polymer chain f polymerization degree N. We seek the appropriate 
potential, which takes into account the effect of electric loads and 
of the interaction between colloidal particles, to describe these 
structural and thermodynamic properties. For this we will use the 
method of integral equations HMSA [32-35]. This paper is 
organized according to the following presentation. In Sec. II, we 
describe the theory of integral equation with HMSA enabling us to 
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compute the physical properties of interest. We present in Sec. III 
the results and make discussion .The paper is closed with 
concluding remarks in Sec. IV.  
 

II.       THEORETICAL FORMULATION 
 

A. SHORT-RANGE YUKAWA TYPE ATTRACTIONS    

      The system studied in this paper is that colloidal particles in 
presence of electric charges. On a particle graft polymer chains of 
degree of polymerization N. When the size of the colloids is very 
small compared to the radius of gyration of the polymer chains, the 
assembly is then similar to the polymer system star, whose theory is 
well established by Cotton Daoud like [32]. In fact, the charged 
systems are generally more complex than neutral polymers such 
systems. The interactions between the charged colloids, which 
determine the phase and structural behavior of the suspension, is 
mediated by the presence of micro-ions clouds. The complete 
description of the system is thus a formidable task in general. 
However in view of the large asymmetry of size and charge between 
macro-and micro- ions, one expects to be able to integrate out the 
micro-ions degrees of freedom, and obtain an effective description 
involving macro-ions only. In the pioneering work of Derjaguin, 
Landau, Verwey, and Overbeek [5] micro-ions clouds are treated at 
the mean-field Poisson-Boltzmann level, yielding the foundations of 
the prominent DLVO theory for the stability of lyophobic colloids. 
An important prediction of the theory is the effective interaction pair 
potential between two spherical colloids of radii a in a solvent 
which, within a linearization approximation, takes the Yukawa or 
Debye�Huckel [36] form,                                                                                          

  
 
  
 
 
 
 
There,   is the interparticle center-to-center distance,    the hard-
sphere diameter,      the relative permittivity of solvent (water), 
   the permittivity of free space, and   the Debye- Hückel, inverse 
screening length. Parameter,   is defined as usual by  
 
                                .                                                                           
 
 
the potential (1) takes the form  

 
 
 
 

 

We have used the notations                 and               where 
1  , to mean respectively the renormalized interparticle 

distance and the renormalized electric screening parameter. 
There,  

 
 
 

 
is the coupling constant.  
 
 
 
 
 
 
 

B.  LONG-RANGE LIKOS TYPE REPULSION    

    Let us now turn to star polymer solutions. A star polymer 
consists of f linear polymer chains that are attached to a common 
microscopic core [37]. The typical extension of such a star in a 
good solvent is governed by the so-called corona diameter ó, which 
measures the spatial extension of the monomer density around a 
single star. In a concentrated solution with a finite star number 

density ñ, the stars are interacting. The interaction is repulsive due 
to the restriction of allowed configurations for the polymer chains 

from different centers.  In a first approximation, the interaction is 
pairwise. An explicit form for the pair potential V(r) (where r 
denotes the interparticle distance) was proposed recently: it consists 
of an ultra-soft part inside the coronae and falls off exponentially 
with core�core distance r outside the coronae of two stars. In detail, 
 
 
 
 
 
 
 
 
 
 Here       is the thermal energy and f  is the arm number of a single 
star. As the effective interaction is purely entropic, it simply scales 
with the thermal energy. There are many facts confirming that this 

pair potential (4) provides for a reasonable description of the 
effective interaction between the stars: 
 

(i)  The behavior for very small               is consistent with scaling 
theory [38,39]. 
 

(ii) Microscopic molecular dynamics computer simulations have 
been performed for several values of f and different numbers of 
monomers per chains [40].  
 

They reproduce perfectly the overall shape of the effective 
interaction. 
 

(iii) The scattering intensity for small-angle neutron scattering data 
could be well described by this pair potential without any                    
fitting parameter for an 18-arm star [39, 41]. 
 

    We are going to be considering the case of stars with long chains 
in semi-dilute solvent of start-polymer, we propose the following 
change of variables in the expression of potential, we set  
 
 
 
 
 
 
 
 
Potential can be written  
 
 
 
 
 
 
 
 
When comparing the part of the potential by Yukawa described [42] 
with the Boltzmann factor  exp /V r k TB  

 found that the number of 
branch f  plays the role of the inverse temperature.        
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Fg.1 Potential interaction of Likos (LR) as function of               
           distance for various f -values [43]. 

 
The potential is shown in figure 1 for various values of 
functionality f .It can be seen that it  becomes harder with 
increasing f ,tending eventually to a hard-spheres (HS) interaction 
which formally obtains in the limit  f    [40].  
      
Table.1. Typical values of isotherm compressibility, virial pressure 
and energy , for 4 values of  f , with fixed parameters (T(K)=298, 
 (Å)=1090 and  =0.19. 

 
The table. 1 shows that the pressure increases with the number of 
chains f , but both energy and the compressibility decreases. This 
is in agreement with the physical prediction which are essentially 
due to the increase of the material in the solution, and the system 
becomes less compressible. 
The combination of the two potential equation leads to the 
following relationship mixtures Yukawa-Likos potential (YALR).                                                                                          

    
 
 
 
 
 
 

 
The following step consists in recalling the essential of the integral 
equation method used in this work.  
 

B.  METHOD OF EQUATIONS INTEGRALS (MEI) 
 

    Several approaches exist to study the structural property and 
thermodynamic a fluid from its interactions. The method of integral 
equations is one of these techniques which allows to determine the 
structure of a fluid in a thermodynamic state given, characterized by 

its density  and its temperature T, for a pair potential  u r  which 

mobilize the interactions between the particles. The calculation of 

the structure, represented by the function of radial distribution  g r , 

is an own approach to the theory. In fact, the fact that in a liquid the 
particles are partially disordered implies his ignorance apriority. The 

function  g r , which describes the arrangement medium of 

particles as a function of distance from an origin theory on the one 
hand, the 
 

Fourier transform of  g r is the factor of structure 

      1 1 expS q g r iqr dr     

That is measured by the experiences of diffraction of X-ray or 
neutron in function of the vector transfer q . On the other hand, the 

thermodynamic quantities of the fluids are functions of  g r  and 

the  u r  as the internal energy per particle 

     / 23/2 ² ,Bk TE N u r g r r dr   

Bk  is the constant of Boltzmann, the virial pressure 
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      Or the isothermal compressibility T . This last can be obtained 

by two independent see, either by deriving the pressure   
by report to the density:  
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Either share the intermediary of a study of fluctuations in the 
number of particles in the whole grand canonical 

     20 . 1 4  1B TS q k T g r r dr         

We can note that the isothermal compressibility T  deducted from 

the pressure of virial is equal to that calculated from the angle limit 
the diffusion of the zero factor structure. 
 

C. INTEGRAL EQUATION APPROACH  

  The starting point of such a method is the Ornstein-Zernike (OZ) 
integral equation satisfied by the total correlation function 

The OZ integral equation that involves the so-called direct 
correlation function [44, 45],          is given by  

 
 
 where    is the number density of macro ions. This equation, 
however, contains two unknown quantities          and           . 
To solve it, one need a closure relation between these two quantities. 
In this paper, we decide to choose the HMSA, and write 
 
 

Here the interaction potential is divided into short-range part 

 1U r and long-range attractive tail          as prescripted by Weeks et 

al [46]. There, the function       is simply the difference between the 
total and direct correlation functions,                    i.e.,                                   
Quantity          is the mixing function [47], whose a new form was 
proposed by Bretonnet and Jakse [48]. The virtue of such a form is 
that, it ensures the thermodynamic consistency in calculating the 
internal compressibility by two different ways. The form proposed 
by the authors is [48]  
 
 
where the 0f is the interpolation constant. This an adjustable 

parameter such that               This constant that serves to eliminate 
the incoherence thermodynamic, can be fixed equating the 
compressibility deduced from virial pressure to that calculated from 
the zero-scattering angle limit of the structure factor, i.e.,  

           0 .B TS q k T    
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III. RESULTS AND DISCUSSION 

we first start with the study of the Yukawa potential before the 
introduction in the code. 

Table. 2. The details of the simulated colloidal systems. 
 (Å) 1090 
T(K) 298 
  78 
  2537  
  0.00037  

  0.558  
 
We begin to plot the shape of the Yukawa potential for different 
values of Z. 

 Small values  of  Z 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

Fg.2 Yukawa potential as function of distance  r  for 
different values of Z  

 
 Large values Z 

 
 
 
 
 
 
 
    
 
 

     
 
 

 
 
Fg.3 Yukawa potential as function of distance  r  for different 
values of Z    
 
  We see that when the charge z increases, the Yukawa potential 
believes. In fact when electrical charge are increasing in a system, 
the interactions are growing as it should be 
 

A- Charge variation on electrostatic 
  As a first result, it is interesting to compare the Yukawa potential 
electrostatic origin, for different values of Z than likos that governs 
the interactions of colloids of them                                 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
                 
 
      
 
 
          Fg.4 Potential interaction of Yukawa-Likos (YALR) as 

function of distance for various Z -values 
 

B- Variation of number of Chains  
   In this part, we present the calculations, we have the same values 
of parameters as in experiment by Tata et al [49]. 

Table. 3. The details of the simulated colloidal systems. 

 

 

 

 
Table.4. Typical values of isotherm compressibility, virial pressure 
and energy, for 4 values of f , with fixed parameters (see table 3). 
 

 
The table 4 shows that for a electric charges, the pressure increases 
with the number of chain f, while energy and compressibility 
decreases as in the case of potential Likos (see table 2). If we 
compare the results in Table 4 to that of Table 2, we see the 
influence of the presence of electric charges primarily for low values 
of f. So when f increases (f = 128) the values of energy, pressure and 
compressibility of the two tables coincide, ie the effect that the load 
effect is completely shielded by the polymer chains f. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fg.5 Potential interaction of Yukawa-Likos(YALR) as function    
          of  distance for various f -values. 
 

 
 
 
 
 
 

 (Å) 1090 
T(K) 298 
z  800 
  0.19  

    

i  
f  10f  2

T 10Bk 


 E / E o  virialP  

0.79 18 8 4.35694 5.97108 10.43857 
0.79 32 7.6 3.11357 6.40256 13.25465 
0.79 64 7.1 2.46031 4.78171 14.50069 
0.79 128 5.2 2.23954 3.95437 15.30790 
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A- Variation of number of Chains  
 
Table.5. Typical values of isotherm compressibility, virial pressure 
and energy, for 4 values of f , with fixed parameters (see table 3) 

 
The table 5, shows that the pressure increases and energy decreases 
with the number of system, while the compressibility decreases, In 
fact, the system is less compressible with the increase of the number 
of grafted chains, as well as the energy excess. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fg.6 Structure factor  S q versus the dimensionless wavenumber 
q   as for 4 values of  f, with fixed parameters : 

298 K, Z 800,  * 0.8 T     . 
 
Table.6. Typical values of isotherm compressibility, virial 
               pressure and energy, for 4 values of  *  , with fixed    
               parameters : 298 K, Z 800,  32T f   . 

 
The table 6 shows that pressure and energy increases with increasing 
the density, but the isotherm compressibility decreases.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fg.7 Structure factor  S q versus the dimensionless wavenumber     
              q   as for 4 values of *  , with fixed parameters :   

                298 K, Z 800,  32T f    

   
 III. CONCLUSIONS 

In this study, we have introduced various forms of Likos type then 
the Yukawa potential to reflect the presence of electrical charge. We 
considered a physical system of a semi-dilute colloids small diameters 
on which was grafted polymer chains f polymerization degree N, 

which can be seen as a star polymers in the presence of electric 
charges.  We have combined for it forms of two potential namely to 
Likos for the interaction of the star polymers then Yukawa to study 
the influence of the presence of electric charges. It is found that the 
presence of electric charge affects the structural and thermodynamic 
properties as the number of grafted polymers f  branch is low. 
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