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Abstract- Recently proposed texture descriptors extracted from the co-occurrence matrix across several datasets is surveyed and validated 
in this paper; moreover, two new methods for extracting features from the Gray Level Co-occurrence Matrix (GLCM) are proposed. The 
descriptors are extracted not only from the entire GLCM but also from subwindows. These texture descriptors are used to train a support 
vector machine. We also explore region-based approaches, which use different methods to divide each image into two different regions; 
different descriptors are extracted from each region. In this work methods based on saliency detection, edge detection, and wavelets are 
compared, and some of their fusions are reported as well. Region-based approaches are combined with different methods for extracting 
features from the GLCM and with three state-of-the-art descriptors: local ternary patterns, local phase quantization, and rotation 
invariant co-occurrence among adjacent local binary patterns. Experimental results show that the tested approaches improve performance 
of standard methods. The generality of the proposed descriptors is demonstrated on 15 datasets, and different statistical comparisons based 
on the Wilcoxon signed rank test are reported that confirm the goodness of the proposed approaches. Experiments show that the new 
methods for extracting features from the GLCM greatly improve the standard features that are typically extracted, and that the region-
based approach boosts the performance of texture descriptors extracted from the whole image. The MATLAB source code of all the 
proposed approaches will be made available to the public at https://www.dei.unipd.it/node/2357. 
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I. INTRODUCTION 
Although multi-objective texture analysis is frequently 

involved in image classification, a satisfactory, overarching 
definition of texture is still lacking. An interesting catalogue 
of texture definitions can be found in [1] that illustrates the 
many different ways this term can be characterized. Texture, 
for instance, can be viewed globally as a pattern composed of 
repeated local subpatterns [2] or, alternatively, as a region 
where a set of local properties remain constant, vary 
gradually, or are approximately periodic [3]. Very different 
methods for managing texture have been developed based on 
how texture is defined. Some of the best methods reported in 
the literature include the Scale-Invariant Feature Transform 
(SIFT) [4], Speeded Up Robust Features (SURF) [5], 
Histogram Of Oriented Gradients (HOG) [6], Gradient 
Location and Orientation Histogram (GLOH) [7], Region 
Covariance Matrix (RCM) [8], edgelet [9], Gray Level Co-
occurrence Matrix (GLCM) [10], and Local Binary Patterns 
(LBP) [11]. 

One of the earliest, most studied, and extensively used 
methods for analyzing texture is the GLCM, originally 
proposed by Haralick [12] in 1979 for analyzing satellite 
images. GLCM is a set of features, or descriptors, that are 
evaluated starting from a histogram. Within the last decade, 
GLCM has become the focus of several research groups 
developing new methods for increasing the discriminability  

 
of GLCM descriptors. In [13], for instance, different values 
of the distance parameter that influences the GLCM are 
examined, and in [14] features are extracted from areas 
presenting high discrimination by weighted summation of the 
GLCM elements. In [15] descriptors are derived from the 
GLCM, which is formed by calculating the gradient value of 
each pixel in the neighborhood of interest points. In [16] the 
edge orientation co-occurrence matrix of superior order is 
combined with GLCM, in this way taking into consideration 
both the gray levels of the image pixels and the local features 
as edges. Several studies have performed multiscale analyses 
with GLCM. In [17] and in [18], for instance, GLCM 
descriptors are extracted by varying window sizes. In [19] the 
image is rescaled multiple times, and the co-occurrence 
descriptors are extracted from each rescaling. 

In the last couple of years, region-based approaches have 
been proposed that significantly improve texture descriptor 
performance (see, [20] and [21]). Region-based approaches 
separate the texture image into two regions, or maps, using 
powerful preprocessing methods. In [20], for instance, a 
given image is split into two maps using the Difference of 
Gaussians (DoG) filter: one map corresponds to the 
�positive� and the other map the �negative� sides of the 

image edges. Textural information is then extracted from the 
two maps using several descriptors. A similar approach is 
taken in [21], where Sobel filtering splits the texture into an 
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edge and a non-edge region. Different texture descriptors 
(e.g., LBP and LTP) are extracted from the original image 
and then combined with each of the two maps. This technique 
is particularly intriguing since it can be combined with many 
state-of-art texture descriptors, an opportunity exploited in 
[22] and [23], in which several descriptors are coupled with a 
variant of this technique. 

The primary goal of this work is to report a comparison for 
extracting features given the co-occurrence matrix using 
region-based approaches ([22] and [24]); the comparison 
spans across a large set of very different computer vision 
problems. 

This work expands some other reported multiscale 
comparisons ([25] and [26]) for extracting features from the 
co-occurrence matrix, where a smaller set of datasets are used 
for assessing the performance. Specifically, five different 
extraction methods are investigated (detailed in section 2), 
with two (numbers iv and v) tested in this paper for the first 
time: 

i. Extracting descriptors using the standard approach 
proposed by Haralick [10]; 

ii. Extracting gray-level run-length features [26]; 
iii. Extracting descriptors from different 2D shapes by 

considering the GLCM as a 3D shape, where the 2D 
shapes are obtained by intersecting the co-occurrence 
matrix with a set of horizontal planes at given heights 
[26]; 

iv. Extracting fractal dimensions decomposing the 
GLCM into a set of binary images. The decomposition 
of the input image is achieved employing the Two-
Threshold Binary Decomposition (TTBD) algorithm 
[27]; 

v. Extracting curvature based shape features [28], where 
2D shapes are obtained by intersecting the co-
occurrence matrix with a set of horizontal planes at 
given heights. For each shape a set of features is 
extracted. 

In addition, four methods are applied for region-based 
approaches: 

i. Separation of the texture image into two different 
regions according to edge and non-edge pixels, as in 
[21];  

ii. Separation of the texture image into different regions 
according to Daubechies (db4) wavelet decomposition 
[29]. Each image is divided in two regions: pixels 
with value higher than mean value (mv) and pixels 
with value lower than mv;  

iii. Separation of the texture image in different regions 
according to saliency detection [30]. For each image 
we extract two regions given some threshold: the first 
contains the pixels with higher saliency (those above 
the threshold), and the second contains the pixels with 
lower saliency (those below the threshold). Two 
different thresholds are tested. 

iv. Separation of the texture image in two different 
regions by filtering the image using DoG, as in [20]. 
DoG is used to compute two maps corresponding to 
the �positive� and the �negative� sides of the image 

edges (i.e., the two different regions). 
The region-based approaches are combined with two 

methods for extracting features from the co-occurrence 
matrix and with three state-of-the-art texture descriptors: the 

local ternary pattern (LTP) [31], local phase quantization 
(LPQ) [32], and the Rotation Invariant Co-occurrence among 
adjacent Local Binary Patterns (RICLBP) [33]. In other 
words, these texture descriptors are extracted from each of 
the two regions produced by the region-based approaches. 
Histograms are extracted, and for each histogram a specific 
Support Vector Machine (SVM) [34] is trained. Finally, the 
partial scores obtained by the different SVMs are combined 
by sum rule. Several fusions are also performed that 
investigate the best set of features.  

Since Haralick-based features, LPQ, LTP, and RICLBP 
are widely used in the literature, this work has much practical 
value for other researchers. The approaches presented in this 
paper are evaluated across several datasets, described in 
section III, representing very different image classification 
problems. The results presented in section IV clearly confirm 
that region-based approaches outperform the texture 
descriptors extracted from the entire image. Moreover, the 
experimental results show that the proposed set of features 
discovered in the fusion experiments performs much better 
than the widely used standard set of features proposed by 
Haralick [10]. 

II. PROPOSED SYSTEM 
     Every approach evaluated in the experimental section is 
presented in this section, with the different extraction 
methods from the co-occurrence matrix detailed first, 
followed by a description of the region-based approaches. 
The base classifier used in all experiments is an SVM with a 
radial basis function kernel. To reduce computation time, the 
following set of parameters were used in all experiments: 
gamma=0.1 and cost= 1000. 
 
A. GLDM Co-Occurrence Matrix 
   The GLDM [12] is a specific co-occurrence matrix that is 
obtained as the histogram on a 2D domain of dimension 
NGL×NGL, where NGL is the number of gray levels in the 

image (normally 256). The co-occurrence matrix counts the 
number of gray level transitions between two given pixel 
values such that the bin of the histogram whose coordinates 
are equal to the value is incremented. The two pixels selected 
for comparison depend on two parameters: d, the distance 
between the two pixels, and è, the direction in which they are 
aligned. To illustrate, if d=1 and è=0 then the two pixels 
would be adjacent to each other and lie on the same row. 
Four directions are considered in this work: the horizontal 
(H), the vertical (V), the diagonal top left-bottom right, or 
right-down (RD), and the top right-bottom left, or left-down 
(LD). 
 
B. Standard Haralick Statistics 
   The idea of using statistical indicators of GLDM to 
describe texture in an image was originally proposed by 
Haralick in [12]. In the experimental section, this approach is 
labelled HAR, and the following indicators are evaluated (for 
details, see [26]): 
 Energy 
 Correlation 
 Inertia 
 Entropy 
 Inverse difference moment 
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 Sum average 
 Sum variance 
 Sum entropy 
 Difference average 
 Difference variance 
 Difference entropy 
 Information measure of correlation 1 
 Information measure of correlation 2 

A set of 13 descriptors is calculated from each co-
occurrence matrix, which is evaluated at è ={0°, 45°, 90°, 

135°} and d={1, 3}. The HAR descriptor is the concatenation 
of the features extracted for each distance and orientation 
value. 

Reported in the experimental section are the performances 
of the following:  
 HR: where features are extracted from the entire 

image only. Several comparisons of different 
parameters settings for HR are reported in [25]; 
accordingly, only the best configuration reported in 
[25] is tested in this paper. 

 HRsub: where a feature set is extracted from the entire 
co-occurrence matrix as well as from each 
subwindow. In this paper four subwindows are 
extracted, and each feature set trains a separate SVM. 
All 5 SVMs (the four subwindows plus the entire co-
occurrence matrix) are then combined by weighted 
sum rule (weight of 4 for the SVM trained on the 
whole matrix and weight of 1 for the other four 
SVMs). The four subwindows are labelled SW1-4, 
and the coordinates defining each subwindow are the 
following: SW1: (0, 0) to (127, 127), SW2: (128, 128) 
to (255, 255), SW3: (128, 0) to (255, 128), and SW4: 
(0, 128) to (128, 255). 

 
C. Shape 
    The approach called SHAPE is an exploration of the co-
occurrence matrix as a 3D function and has been explored in 
some detail in other papers such as [26] and [25]. The basic 
idea is to intersect the GLDM with a set of horizontal planes 
at given heights. A set of features is extracted from the 
contours of the intersection, which defines a complex shape 
made up of one or more extractable blobs. In SHAPE features 
are extracted from the main blob, i.e., the blob with the 
largest area. The main blob is fitted to an ellipse to simplify 
analysis. Using an ellipse makes the comparison among 
curves much easier and offsets the resultant loss of 
information. 

Level curves are considered towards the base of the co-
occurrence matrix, starting at height 1 and then going until 
height 19, with a distance of 2 between two consecutive 
planes. Level curves are all at a relatively low height because 
that region is very stable. The upper part of the co-occurrence 
matrix is much more unstable because of image noise. For 
this reason, the co-occurrence matrix is not normalized since 
normalization to the highest bin would introduce instabilities. 
Other types of normalization could be performed with respect 
to the total volume of the co-occurrence matrix, but results 
would depend on the size of the original image (which would 
be constant in most cases, thereby making the normalization 
irrelevant).  

A set of descriptors extracted from the ellipses is 
calculated from the co-occurrence matrix for each level 
curve. A feature set describing all levels are then jointly 
analyzed, from which a final set of nine features is selected 
that describe the evolution of the level curves (see [25] for 
details). 

These features provide a characterization of the input 
image that can be used as input for a classifier, which is the 
same idea exploited in the HAR approach. SHAPE features 
are evaluated on the entire co-occurrence matrix and on 12 
subwindows of the GLDM whose coordinates are defined as 
follows: #1: (0, 0) to (127, 127); #2: (128, 128) to (255, 255); 
#3: (0, 0) to (191, 191); #4: (64, 64) to (255, 255); #5: (0, 0) 
to (95, 95); #6: (31, 31) to (95, 95); #7: (63, 63) to (127, 
127); #8: (95, 95) to (159, 159); #9: (127, 127) to (191, 191); 
#10: (159, 159) to (223, 223); #11: (191, 191) to (255, 255); 
and #12: (63, 63) to (191, 191). Several experiments using 
the entire GLDM along with these same subwindows are 
reported in [26] and [25]. 

For each of these 13 windows (the 12 subwindows and the 
entire GLDM) a different feature vector is extracted, and 
each feature vector trains a separate SVM. Each of the 13 
vectors is derived from co-occurrence matrices evaluated at è 
={0°, 45°, 90°, 135°} and d = {1, 3}, and the feature vector is 
obtained by concatenating the features extracted for each 
value of the distance. All 13 SVMs are combined by 
weighted sum rule, where a weight of 1 is assigned to the first 
five SVMs (i.e., to the SVMs based on the entire GLDM and 
subwindows #1, #2, #3 and #4), and a weight of 0.5 is 
assigned to the remainder (as in [26]). In the experimental 
section, SH refers to the case where features are extracted 
from the entire co-occurrence matrix only, while SHsub is the 
method based on all 13 windows. 
 
D. Gray-Level Run-Length Features (GL) 
    GL [35] features are extracted from a run-length matrix 
that is derived from the characteristics of the gray level runs 
within an image. A gray level run is a set of consecutive 
pixels having the same value. A run length is the size of the 
set. Each location p(i,j) of the run-length matrix counts the 
number of runs of length j given gray level i. Several 
descriptors can be derived from the run-length matrix, as 
described in [35]. The following descriptors are used in the 
GL experiments, which comprise the same set used in [26]: 
 Short Run Emphasis (SRE) 
 Long Run Emphasis (LRE) 
 Gray Level Nonuniformity (GLN) 
 Run Length Nonniformity (RLN) 
 Run Percentage (RP) 
 Low Grey-Level Run Emphasis (LGRE) 
 High Grey-Level Run Emphasis (HGRE) 
 Short Run Low Grey Level Emphasis (SRLGE) 
 Short Run High  Grey Level Emphasis (SRHGE) 
 Long Run Low Grey Level Emphasis (LRLGE) 
 Long Run High Grey Level Emphasis (LRHGE) 

The GL approach has its own orientation: all values 
considered in [26] are evaluated in our system, namely 
èGL={0°, 45°, 90°, 135°}. 

In this paper, the descriptors described above are 
calculated from a run-length matrix that is evaluated on the 
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GLDM, using è ={0°, 45°, 90°, 135°} and d={1, 3}. The 
final GL descriptor is obtained by concatenating all the 
features for all values of è and d.  

The performance of the following GL variants is also 
reported: 
 GR: as in HR (described in section II.B) but using the 

GL descriptors; 
 GRsub: as in HRsub (also described in section II.B) but 

using the GL descriptors. 
 

E. Shape Fractal Analysis (SFTA) 
The Segmentation-based Fractal Texture Analysis, or 

SFTA, method proposed in [27] is a feature extraction 
algorithm that decomposes a given image into a set of binary 
images through the application of what the authors call the 
Two Threshold Binary Decomposition (TTBD). For each 
resulting binary image, fractal dimensions of its region 
boundaries are calculated that describe the texture patterns. 

TTBD takes an input grayscale image and returns a set of 
binary images by first computing a set of T threshold values 
from the gray level distribution information in input image. 
This is accomplished by recursively applying to each image 
region the multilevel Otsu algorithm [36], an algorithm that 
quickly finds the threshold that minimizes the input image 
intra-class variance until the desired number of thresholds is 
obtained. The input image is decomposed into a set of binary 
images by selecting pairs of thresholds from T and applying a 
two-threshold segmentation (see [27] for details).  

The SFTA extraction algorithm extracts a feature vector 
from the resulting binary images� size, mean gray level, and 

the boundaries� fractal dimension. Fractal measurements are 
used to describe the boundary complexity of objects, with 
each regions� boundaries of a binary image represented as a 

border image. The fractal dimension is computed from each 
boarder image using a box counting algorithm (see [27] for 
details). 

In this paper, first level curves are obtained as described in 
section II.C then each binary image is described by the SFTA 
extraction algorithm. As in SHAPE, level curves are 
considered towards the base of the co-occurrence matrix, 
starting at height 1 and then going until height 19, with a 
distance of 2 between two consecutive planes. For each level 
curve, a binary image is created; the binary image is then 
described by SFTA. The descriptors of the different level 
curves are concatenated to describe a given co-occurrence 
matrix.  

In the experimental section the performance of the 
following SFTA variants are also reported: 
 SF: as in HR (described in section II.B) but using the 

SFTA features; 
 SFsub: as in HRsub (also described in section II.B) but 

using the SFTA features; 
 

F. Shape Curvature Histogram (SCH) 
SCH, proposed in [28], is a feature that describes the 

curvature of shapes within an image as a compact histogram. 
An advantage of SCH is that it does not require shapes to be 
within closed boundaries, unlike other shape-based feature 
extraction methods. 

 

To extract SCH features, first an edge map is generated, 
using the Canny edge detector [37]. The gradient direction is 
then computed on the pixels in the edge map. Once the 
orientation of each pixel is obtained, the curvature for an 
edge pixel is calculated as the difference between the 
maximum and minimum gradient angle of all pixels defining 
a given neighborhood (see [28] for details). Finally, a 
histogram is created based on the curvature values for the 
edge pixels.  

In the experiments reported in this paper, different binary 
images are built as in SFTA. Then each binary image is 
described by the SCH descriptor. The following SCH 
variants are also reported: 
 SC: as in HR (described in section II.B) but using the 

SCH features; 
 SCsub: as in HRsub (also described in section II.B) but 

using the SCH features. 
 

G. Region-Based Descriptors 
Inspired by the edge-based LBP variant (Edge), proposed 

in [21], region-based descriptors are based on the evidence 
that when an observer needs to fix attention on a particular 
object, the most likely perceived locations are those that 
present the highest spatial frequency edge information [38]. 
The Edge descriptor is computed as follows: 
 Obtain the LBP image (LBPI) (see, [39]); 
 Apply Sobel to detect the edges in the original image. 

Two binary maps are created from the edge information: 
the edge map (E), where edge pixels are set to 1 and non-
edge pixels to 0, and the non-edge map (NE), where edge 
pixels are set to 0 and non-edge pixels to 1; 

 Combine LBPI with the E and NE masks to obtain two 
histograms: HE, for edge pixels, and HNE, for non-edge 
pixels, (see [21] for details); 

 Form the final histogram using weighted concatenation, 
such that H=[w_E×H_E, w_NE×H_NE], w_E>w_NE], 

where wE and wNE represent the empirically determined 
weights that express the greater relevance of edge 
regions in capturing the viewer's visual attention. 

A slightly different method is employed when using SVM 
as the classifier: 
 Extract a set of descriptors (e.g., LBP, LTP, or LPQ) to 

obtain the labeled image DescI (each DescI is extracted 
in a similar way to LBPI), where Desc represents the 
name of the descriptor; 

 Compute two binary maps: Map+ and Map-, using one 
of the following methods: Sobel (as in [21]), saliency, 
wavelet or Difference of Gaussians (the last three 
methods are described in the next three subsections); 

 Compute the two histograms, H+ and H-, by combining 
DescI with Map+ and Map-, respectively; 

 Train two different SVMs on H+ and H- and combine 
results by sum rule. 

In the experimental section, the method based on Sobel for 
finding Map+ and Map- is labeled Ed. 

In using this approach to build the co-occurrence matrix, 
first Map+ and Map- are extracted. Then two different co-
occurrence matrices are calculated: the first considering the 
pixels that belong to Map+ and the second considering the 
pixels that belong to Map-. 
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H. Saliency (SAL) 
The method proposed in [30] is used for extracting 

saliency maps from the image. In this method two regions are 
extracted from each original image: Map+, which contains 
the pixels with highest saliency (i.e., those pixels above a 
given threshold), and Map-, which contains the pixels with 
the lowest saliency (i.e., those pixels below the given 
threshold). In the experiments reported in this paper, two 
different threshold values were evaluated: 0.7 and 0.5. Thus, 
for each image, a total of two saliency maps and four 
histograms were extracted. 

 
I. Wavelet (WA) 

Wa is a method for computing the two binary maps of an 
image that is based on the wavelet decomposition [29] by 
Daubechies with four wavelets (db4), where the horizontal 
(CH), vertical (CV), and diagonal (CD) coefficients matrices 
are considered. Each of these matrices are resized to the size 
of the original image. The mean value (mv_CH, mv_CV, and 
mv_CD) of each of these images is then calculated. For each 
of the mv values, the original image is divided into two 
regions: Map+, which contains the pixels of {CH, CV, CD} 
with a value higher than {mv_CH, mv_CV, mv_CD}, and 
Map-, which contains the pixels of {CH, CV, CD} with a 
value lower than {mv_CH, mv_CV, mv_CD}. In this way six 
histograms are extracted from each image. 

 
J. Difference of Gaussians (Do) 

In [20], the Difference of Gaussians filter was used to 
compute the two maps from a given image: Map+ and Map-, 
with Map+ corresponding to the "positive" and Map- 
corresponding to the "negative" sides of the image edges. 
Textural information is then extracted from these two maps. 
A Gaussian lowpass filter with size 5 and sigma equal to 1 
and 4 are used in the Do experiments reported in this paper. 

III.  DATASETS 
The approaches proposed in this paper were tested across 

several datasets to assess their generalizability. These 
datasets represent different computer vision problems: 
 PS: the Pap Smear dataset [40], containing images 

representing cells that are used in the diagnosis of 
cervical cancer.  

 VI: the dataset in [26], containing images of viruses 
extracted using negative stain transmission electron 
microscopy. The 10-fold validation division of images 
used in [26] is used in the experiments reported in this 
paper. However, the masks for subtracting image 
backgrounds were not utilized. Instead, features were 
extracted from the entire image since this produced 
better results. 

 CH: the dataset in [41], containing fluorescent 
microscopy images taken from Chinese Hamster Ovary 
cells and belonging to five different classes.  

 SM: the dataset in [42], containing images extract from 
video-based smoke detection surveillance systems. The 
same division of the dataset into training/testing sets in 
[42] is used in all experiments on SM reported in this 
paper. 

 HI: the Histopatology dataset [43], containing images 
from different organs representative of the four 
fundamental tissues.  

 BR: the dataset in [44], containing 273 malignant and 
311 benign breast cancer images.  

 PR: a dataset containing 118 DNA-binding Proteins and 
231 Non-DNA-binding proteins. Texture descriptors are 
extracted from the 2D distance matrix, which represents 
each protein, and this matrix is obtained from the 3D 
tertiary structure of a given protein (considering only 
atoms that belong to the protein backbone, see [45] for 
details).  

 HE: the 2D HeLa dataset [41], containing single cell 
images, divided into 10 staining classes, from 
fluorescence microscope acquisitions on HeLa cells.  

 LO: the Locate endogenous mouse sub-cellular 
organelles dataset [46], containing 502 images unevenly 
distributed among 10 classes of endogenous proteins or 
features of specific organelles.  

 TR: the Locate transfected mouse sub-cellular organelles 
dataset [46], containing 553 images unevenly distributed 
in 11 classes of fluorescence-tagged or epitope-tagged 
proteins transiently expressed in specific organelles. 

 PI: the dataset in [47] containing pictures extracted from 
digitalized pages of the Holy Bible of Borso d�Este, duke 

of Ferrara (Italy) from 1450 A.D. to 1471 A.D. PI is 
composed of 13 classes, characterized by a clear 
semantic meaning and significant search relevance.  

 RN: a dataset containing 200 fluorescence microscopy 
images evenly distributed among 10 classes of fly cells 
subjected to a set of gene-knockdowns using RNAi. The 
cells were stained with DAPI to visualize their nuclei.  

 HP: the full HEp-2 dataset, containing cell images, 
extracted from the specimen images of the positive sera 
of 419 patients. A public set of 13596 cell images of 6 
classes is available [48].  

 PA: the dataset in [49], containing 2338 paintings by 50 
painters representative of 13 different painting styles: 
abstract expressionism, baroque, constructivism, cubism, 
impressionism, neo-classical, pop art, post 
impressionism, realism, renaissance, romanticism, 
surrealism, and symbolism. A split training/testing set is 
provided by the authors of [49]; those sets were used in 
all the experiments on PA reported in this paper. 

 LE: a dataset containing images of several species of 
Brazilian flora [50]. A total of 400 samples, divided into 
20 classes (20 samples per class), were collected. Three 
windows (128×128 pixels) were extracted manually 

from each sample making a total of 1200 textures. The 
protocol used in the experiments reported in this paper 
was a fivefold cross validation technique with the 

constraint that all windows extracted from a given leaf 
had to belong either to the training set or to the testing 
set, not both. 
A descriptive summary of each dataset along with the 

URL where each dataset can be downloaded is reported in 
table I. If a dataset contains RGB images, these were 
converted to gray level images before the feature extraction 
step.  
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The testing protocol was the fivefold cross validation 
method, except for the VI, SM, and PA datasets, where the 
specific protocols and testing/training sets were used (the 
protocols were obtained from the creators of each of these 
datasets).  

TABLE I  DESCRIPTIVE SUMMARY OF THE DATASET 

Dataset #Classes #Samples Sample 
Size 

URL for Download 

PS 2 917 Various http://labs.fme.aegean.gr/decisi
on/downloads 

VI 15 1500 41×41 http://www.cb.uu.se/~gustaf/vi
rustexture 

CH 5 327 512×382 http://ome.grc.nia.nih.gov/iicb
u2008/hela/index.html#cho 

SM 2 2868 100×100 http://staff.ustc.edu.cn/~yfn/vs
d.html 

HI 4 2828  various http://www.informed.unal.edu.
co/histologyDS 

BR 2 584 various upon request to Geraldo Braz 
Junior [ge.braz@gmail.com] 

PR 2 349 various upon request to Loris Nanni 
[nanni@dei.unipd.it] 

HE 10 862 512×382 http://ome.grc.nia.nih.gov/iicb
u2008/hela/index.html 

LO 10 502 768×512 http://locate.imb.uq.edu.au/do
wnloads.shtml 

TR 11 553 768×512 http://locate.imb.uq.edu.au/do
wnloads.shtml 

PI 13 903 various http://imagelab.ing.unimo.it/fil
es/bible_dataset.zip   

RN 10 200 1024×102

4 
http://ome.grc.nia.nih.gov/iicb
u2008/rnai/index.html 

HP 6 13596 various http://mivia.unisa.it/datasets/bi
omedical-image-datasets/hep2-
image-dataset/ 

PA 13 2338 various http://www.cat.uab.cat/~joost/
painting91.html 

LE 20 1200 128×128 Upon request to 
bruno@ifsc.usp.br 

 

IV. EXPERIMENTAL RESULTS 

The performance indicator used in all experiments is the 
area under the ROC curve (AUC) because it provides a better 
overview of classification results [51]. In the multiclass 
problem, AUC is calculated using the one-versus-all 
approach, where a given class is considered as �positive� and 

all the other classes are considered as �negative,� and the 

average AUC is reported in all tables. The last row labelled 
Av in all the tables included in this section reports the average 
performance on all 15 datasets. 

The aim of the first experiment reported in table II is to 
establish the usefulness of extracting features not only from 
the entire co-occurrence matrix but also from different 
subwindows. By examining table II, it is clear that all 
methods improve when features are extracted from GLDM 
subwindows. Even the standard HR improves when coupled 
with subwindow extraction. To statistically validate these 
experiments, the Wilcoxon signed rank test [52] was used for 
all methods. The HR version based on subwindows (HRsub) 
outperforms with p-value 0.05 the version based on the entire 
co-occurrence matrix. Thus, this experiment validates 
previous results [26] that were obtained using a smaller set of 
datasets, lending weight to the superiority of the co-
occurrence matrix subwindow approach. 

The aim of the second experiment reported in table III is to 
show the performance gain that is possible by fusing different 
descriptors extracted from the co-occurrence matrix. The 
descriptors chosen for this experiment were the following: 

 W2: the weighted sum rule between HRsub (weight 2) 
and GRsub (weight 1); 

 W3: the weighted sum rule of HRsub (weight 2), GRsub 
(weight 1), and SHsub (weight 0.5); 

 W5: the weighted sum rule of HRsub (weight 2), GRsub 
(weight 1), SHsub (weight 0.5), SFsub (weight 0.5), and 
SCsub (weight 0.5). 

TABLE III USEFULNESS OF EXTRACTING FEATURES 
FROM SUBWINDOWS OF THE CO-OCCURRENCE MATRIX 

Dataset HR HRsub GR GRsub SH SHsub 
PS 89.3 92.1 80.2 84.2 82.5 86.6 
VI 95.9 96.8 88.8 93.1 84.6 89.9 
CH 99.7 99.8 99.2 98.9 98.7 98.8 
SM 99.2 99.3 99.0 99.2 98.2 99.0 
HI 88.8 89.9 83.3 87.6 82.3 85.3 
BR 92.7 93.5 84.8 90.5 88.7 91.9 
PR 90.6 91.1 84.3 89.8 81.2 82.6 
HE 97.0 97.3 92.2 94.2 94.1 94.7 
LO 99.1 99.5 98.4 99.0 95.5 96.9 
TR 98.9 99.2 98.0 98.6 90.7 90.8 
PI 87.8 90.4 81.1 85.7 81.0 85.0 
RN 95.1 95.0 89.2 90.8 95.2 95.7 
HP 88.9 89.9 86.3 86.5 80.8 81.8 
PA 84.1 87.5 79.8 84.1 78.1 83.4 
LE 97.2 97.4 90.4 92.7 89.4 93.9 
Av 93.6 94.6 89.0 91.7 88.1 90.4 
     
Dataset SF SFsub SC SCsub 
PS 78.9 80.0 79.3 80.2 
VI 74.7 84.2 76.4 82.3 
CH 98.2 98.8 97.4 93.5 
SM 97.4 98.1 97.7 98.1 
HI 79.6 81.7 74.7 76.7 
BR 76.6 83.9 86.8 88.6 
PR 83.3 87.0 81.6 84.8 
HE 94.1 95.1 84.5 88.9 
LO 98.4 98.5 97.3 97.6 
TR 97.2 97.7 95.9 96.8 
PI 79.0 81.8 76.5 80.6 
RN 87.4 88.2 84.4 85.0 
HP 84.4 85.3 86.7 87.1 
PA 76.9 81.1 76.6 80.2 
LE 90.6 91.9 85.2 87.7 
Av 86.4 88.9 85.4 87.2 

 

TABLE IIIII AUC OBTAINED USING FUSION APPROACHES 

Dataset HR HRsub   W2   W3    W5 
PS 89.3 92.1 91.4 91.6 91.4 
VI 95.9 96.8 96.7 96.7 96.6 
CH 99.7 99.8 99.9 99.9 99.9 
SM 99.2 99.3 99.5 99.5 99.5 
HI 88.8 89.9 90.8 90.8 90.9 
BR 92.7 93.5 94.3 94.7 95.1 
PR 90.6 91.1 92.4 91.9 92.7 
HE 97.0 97.3 97.2 97.3 97.5 
LO 99.1 99.5 99.5 99.6 99.6 
TR 98.9 99.2 99.3 99.4 99.4 
PI 87.8 90.4 90.9 91.0 90.7 
RN 95.1 95.0 96.2 96.9 97.2 
HP 88.9 89.9 90.8 90.9 90.7 
PA 84.1 87.5 88.0 88.5 88.8 
LE 97.2 97.4 97.5 97.4 97.4 
Av 93.6 94.6 95.0 95.1 95.2 

 
Table III shows that the best result was obtained by W5, 

which confirms that all the subwindow methods extract 
different information from the co-occurrence matrix. 

http://labs.fme.aegean.gr/decisi
http://www.cb.uu.se/~gustaf/vi
http://ome.grc.nia.nih.gov/iicb
http://staff.ustc.edu.cn/~yfn/vs
http://www.informed.unal.edu.
mailto:[ge.braz@gmail.com]
mailto:[nanni@dei.unipd.it]
http://ome.grc.nia.nih.gov/iicb
http://locate.imb.uq.edu.au/do
http://locate.imb.uq.edu.au/do
http://imagelab.ing.unimo.it/fil
http://ome.grc.nia.nih.gov/iicb
http://mivia.unisa.it/datasets/bi
http://www.cat.uab.cat/~joost/
mailto:bruno@ifsc.usp.br
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Moreover, all the ensembles (W2, W3, and W5) outperform 
HRsub with p-value 0.05 using Wilcoxon signed rank test. 

TABLE IVV AUC OBTAINED USING THE REGION-BASED 
APPROACHES WITH TEXTURE DESCRIPTORS 

Dataset Preprocessing Method 
 O Ed Sal  Wa Do All All+O 

LTP 
PS 91.4 87.8 89.3 87.7 86.6 89.0 91.7 
VI 93.5 94.0 93.4 93.5 94.9 94.4 94.1 
CH 99.9 99.9 100 99.9 99.9 99.9 99.9 
HI 91.6 92.7 90.6 92.4 92.6 92.8 92.3 
BR 96.9 96.4 96.1 96.2 95.9 96.6 97.6 
PR 89.7 87.0 90.3 87.8 85.1 90.0 93.2 
HE 98.6 98.6 98.6 98.5 98.6 98.9 98.7 
LE 99.5 99.5 99.7 99.6 99.3 99.7 99.6 
LT 99.3 99.3 99.6 99.4 99.4 99.6 99.5 
SM 99.7 99.7 99.5 99.7 99.8 99.7 99.7 
PIC 92.9 90.2 93.3 91.6 89.3 92.5 92.9 
RN 97.0 97.0 97.4 97.0 96.6 97.2 97.3 
HP 88.8 90.3 91.0 91.0 91.2 91.6 91.7 
PA 89.0 90.2 89.7 89.5 90.2 90.6 90.7 
LE 97.9 97.9 97.2 97.8 97.8 97.9 97.9 
Av 95.0 94.7 95.0 94.7 94.5 95.4 95.8 

RICLBP 
PS 91.8 92.0 92.5 91.9 93.3 92.7 92.4 
VI 97.6 97.7 97.4 97.5 97.8 97.7 97.8 
CH 99.2 99.8 99.9 99.7 99.8 99.8 99.7 
HI 92.8 93.7 93.4 93.6 93.8 94.0 93.5 
BR 92.8 93.8 94.0 94.6 93.9 95.0 93.9 
PR 88.6 89.3 89.2 88.5 88.0 89.6 89.4 
HE 97.3 98.4 98.7 98.2 98.8 98.6 98.2 
LE 99.0 99.5 99.6 99.3 99.6 99.5 99.4 
LT 98.7 99.1 99.4 98.5 99.3 99.2 99.0 
SM 99.8 99.8 99.8 99.8 99.9 99.8 99.9 
PIC 90.1 91.5 94.7 91.3 92.7 93.4 94.3 
RN 96.6 96.8 97.4 96.8 97.2 97.1 96.9 
HP 92.5 93.9 93.9 94.1 94.1 94.4 94.7 
PA 85.9 88.6 88.8 88.3 88.5 89.4 90.5 
LE 97.4 97.7 97.6 97.6 98.0 97.8 98.1 
Av 94.6 95.4 95.8 95.3 95.6 95.9 95.8 

LPQ 
PS 90.2 89.3 90.8 90.4 90.3 90.9 90.7 
VI 94.9 94.4 94.5 94.7 94.1 95.2 95.2 
CH 99.2 99.6 99.8 99.6 99.6 99.8 99.6 
HI 92.0 92.9 92.7 92.8 92.5 93.2 92.7 
BR 95.7 97.3 96.5 96.2 96.1 96.8 96.3 
PR 86.2 88.7 90.5 88.9 86.6 90.2 88.7 
HE 97.2 98.0 98.5 98.0 98.2 98.4 98.0 
LE 97.6 98.2 99.4 98.1 98.7 98.7 98.2 
LT 97.7 98.4 99.2 97.6 98.8 98.8 98.3 
SM 99.8 99.8 99.9 99.8 99.8 99.9 99.9 
PIC 90.7 91.7 95.3 92.1 91.6 94.0 94.3 
RN 95.2 94.9 95.7 94.5 95.5 95.2 95.3 
HP 91.0 91.4 92.0 91.5 90.9 92.5 93.2 
PA 88.3 89.1 89.4 89.6 89.4 90.1 91.0 
LE 99.0 98.6 98.8 98.8 98.4 98.8 99.0 
Av 94.3 94.8 95.5 94.8 94.7 95.5 95.3 

 
The aim of the third experiment reported in tables IV and 

V is to show the performance gain that can be achieved using 
the region-based approaches combined with state of the art 
texture descriptors (LTP, LPQ, and RICLBP). Also reported 
in table IV is the performance obtained by the following: 
 O: the specific texture descriptor being evaluated (LTP, 

LPQ, and RICLBP) applied alone to the original image; 
 All: the fusion by sum rule of Sal, Ed, and Wa (note: 

before fusion, the scores of each method were 
normalized to mean 0 and standard deviation 1. The 

method labeled Do is not included because it did not 
enhance fusion performance); 

 All + O: the fusion by sum rule of O, Sal, Ed, and Wa. 
In table V the performance obtained combining HR and 

GR with the region-based approaches is reported.  In addition 
to All and All+O described above, the performance obtained 
by the following methods is reported: 
 All + S: the fusion by sum rule of All and Xsub, with 

X{HR, GR}; 
 All + 2 × S: the fusion by weighted sum rule of Xsub, 

with weight 2, and All with weight 1. 
The results reported in IV and V are interesting in this 

regard: the region-based approaches outperform with a p-
value of 0.05 all the standard texture descriptors. It is also 
interesting to note that the ensemble of descriptors extracted 
from the co-occurrence matrix obtains a performance that is 
comparable with recent state-of-the-art descriptors (i.e., LTP, 
LPQ, and RICLBP). 

TABLE V AUC OBTAINED USING THE REGION-BASED 
APPROACHES COMBINING HR AND GR 

Dataset Preprocessing Method 
  Ed Sal  Wa Do All All+

O 
All+ 
S 

All+
2×S 

HR 
PS 91.6 90.7 89.9 91.3 91.8 91.7 92.1 92.3 
VI 96.7 96.5 96.6 96.5 97.1 97.1 97.2 97.2 
CH 99.9 99.9 99.8 99.9 99.9 99.9 99.9 99.9 
HI 99.6 99.5 99.4 99.5 99.6 99.6 99.6 99.6 
BR 89.7 89.6 89.6 90.5 90.1 90.0 90.3 90.3 
PR 95.9 94.3 95.4 96.1 95.9 95.6 95.8 98.8 
HE 89.3 91.6 91.3 89.8 91.7 91.6 91.8 91.9 
LE 98.0 97.9 97.2 97.9 98.1 98.1 98.1 98.1 
LT 99.1 99.5 98.7 99.3 99.3 99.3 99.4 99.4 
SM 99.2 99.2 99.1 99.3 99.5 99.5 99.5 99.5 
PIC 89.1 91.2 88.7 90.8 90.7 90.4 90.8 90.9 
RN 95.4 96.3 95.3 95.4 95.7 95.6 95.8 95.8 
HP 90.2 90.3 89.8 91.1 90.5 90.3 90.5 90.5 
PA 85.7 85.4 84.8 87.0 86.3 86.2 86.8 87.2 
LE 97.2 97.0 97.2 97.8 97.3 97.3 97.4 97.5 
Av 94.4 94.6 94.2 94.8 94.9 94.8 95.0 95.3 

GR 
PS 84.6 85.5 84.0 85.8 86.6 86.5 86.9 86.9 
VI 92.3 91.4 92.1 92.5 94.0 93.9 94.3 94.5 
CH 99.1 99.9 99.1 99.2 99.6 99.6 99.5 99.5 
HI 99.2 98.9 99.2 99.4 99.4 99.4 99.4 99.5 
BR 84.2 85.0 86.5 86.6 87.2 87.3 87.8 88.2 
PR 88.5 90.1 91.6 86.9 92.4 92.1 92.7 92.8 
HE 90.1 88.9 91.4 90.0 92.0 91.4 92.0 92.1 
LE 92.8 93.8 92.9 93.8 93.8 93.7 94.0 94.2 
LT 99.0 98.4 99.1 99.2 99.2 99.2 99.2 99.2 
SM 98.5 98.3 98.3 98.5 98.7 98.7 98.8 98.9 
PI 84.0 84.8 84.6 85.3 86.4 86.2 86.7 86.8 
RN 93.0 89.1 93.6 91.5 93.6 93.4 93.6 93.6 
HP 87.7 87.2 87.5 87.6 88.3 88.3 88.4 88.3 
PA 81.3 81.3 82.2 83.0 83.7 83.8 84.3 84.6 
LE 91.4 91.6 91.5 92.0 92.8 92.9 93.2 93.5 
Av 91.0 90.9 91.5 91.4 92.5 92.4 92.7 92.8 

V.  CONCLUSION 

    The goal of this study was to extend recent work on texture 
analysis techniques based on the co-occurrence matrix and 
region-based approaches. Different strategies for extending 
the texture descriptors extracted from the co-occurrence 
matrix are compared and combined. These methods were 
improved by extracting features not only from the entire co-
occurrence matrix but also from subwindows. Two new 
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methods for extracting features from the co-occurrence 
matrix are proposed. Moreover, the ensemble approach 
proposed in this paper is shown to improve the performance 
of SHAPE (as reported in [26] and [25]) and standard 
Haralick-based features [12].  

In this work different region-based methods (specifically 
those based on saliency detection, edge detection, and 
wavelets) are compared and some of their fusions are 
reported. The region-based approaches are combined with the 
highest performing methods for extracting features from the 
co-occurrence matrix and with three state-of-the-art 
descriptors: local ternary pattern, local phase quantization, 
and rotation invariant co-occurrence among adjacent local 
binary pattern. For all experiments SVM was used as the base 
classifier. 

The generality of the proposed approach was validated 
across 15 different datasets, representing very different image 
classification problems. Results in the experimental section 
were also compared with some state-of-the-art descriptors. 
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