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Abstract- In real optimization problems is generally desirable to optimize more than one performance criterion (or objective) at the same 
time. The goal of the multi-objective combinatorial optimization (MOCO) is to optimize simultaneously r > 1 objectives. We developed a 
GRASP algorithm that incorporates a memory-based approach for solving the multiobjective multidimensional knapsack problem. There 
are, in the scientific literature, some memory-based GRASP algorithms for mono-objective problems, however it was not found any 
memory-based GRASP algorithm for multiobjective problems. Computational experiments on benchmark instances show that the 
proposed algorithm is very robust and outperforms other heuristics in terms of solution quality and running times. 
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I. INTRODUCTION 
Many practical optimization problems, generally, involve 

simultaneous minimization (or maximization) of several 
conflicting decision criteria. The goal of multiobjective 
combinatorial optimization (MOCO) is to optimize 
simultaneously r > 1 criteria or objectives. MOCO problems 
have a set of optimal solutions (instead of a single optimum) 
in the sense that no other solutions are superior to them when 
all objectives are taken into account. They are known as 
Pareto optimal or efficient solutions. 

 

Solving MOCO problems is quite different from single-
objective case (r = 1), where an optimal solution is searched. 
The difficulty is not only due to the combinatorial complexity 
as in single-objective case, but also due to finding all 
elements of the efficient set, whose cardinality grows with 
the number of objectives. 

 

In the literature, some authors have proposed exact 
methods for solving specific MOCO problems [10] [30] [35]. 
These methods are generally valid for bi-objective (r = 2) 
problems but cannot be adapted easily to a higher number of 
objectives. Also, exact methods are inefficient to solve large-
scale NP-hard MOCO problems. As in the single-objective 
case, the use of heuristic/metaheuristic techniques seems to 
be the most promising approach to MOCO problems because 
of their efficiency, generality and relative simplicity of 
implementation. These techniques generate good 
approximated solutions in a short computational time. 
Several articles have proposed heuristic procedures to solve 
MOCO problems [5] [7] [9] [10] [22] [24] [32]. 

 

The literature on the multiobjective knapsack problem is 
rather scarce. Some of the works found are as follow: the 
methods proposed by Ulungu and Teghem [30] and Visée et  

 

 
al. [35] are based on exact algorithms; Jaskiewicz [21], 
Zitzler and Thiele [36] and Alves e Almeida [1] use genetic  
algorithms; the methods of Gandibleux and Frévile [16] and 
Hansen [18] are based on tabu search; and the methods 
proposed by Czyzak and Jaskiewicz [8] and Ulungu, Teghem 
and Ost [31] are based on simulated annealing. Vianna and 
Dianin [34] have proposed algorithms based on GRASP and 
ILS metaheuristics. 
 

In [33], Vianna and Arroyo proposed a GRASP algorithm, 
called GRASP-MULTI, for solving the multi-objective 
knapsack Problem. It outperformed two well known genetic 
algorithms from literature: MOGLS (Multi-objective Genetic 
Local Search) suggested by Jaskiewicz [21] and SPEA2 [37], 
which is an improved version of the genetic algorithm SPEA 
(Strength Pareto Evolutionary Algorithm) proposed by 
Zitzler and Thiele [36]. After that, Alves and Almeida [1] 
proposed a genetic algorithm, called MOTGA (Multiple 
objective Tchebycheff based Genetic Algorithm), that also 
outperforms the MOGLS, SPEA and SPEA2. It is based on 
the Tchebycheff scalarizing function, which performs several 
stages, each one intended for searching potentially 
nondominated solutions in a different part of the Pareto 
frontier. 

 

This paper presents a new algorithm for the multi-
objective knapsack problem, called MMGRASP (Memory-
based Multiobjective GRASP), which is an adaptation of a 
previous algorithm, GRASP-MULTI, described in [33]. 
Each iteration of GRASP-MULTI algorithm solves a mono-
objective problem, where the goal is to maximize a linear 
combination of the objective functions of the original multi-
objective problem. The linear combination is obtained by 
assigning weights to each objective function, which 
represents a search direction for the multi-objective problem.  
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In the GRASP-MULTI algorithm, as in any traditional 
GRASP algorithm, each iteration is independent, i.e., when 
one iteration finishes, the information found during this 
iteration is not used in the next iterations. In the 
MMGRASP, the iteration k+1 uses the best solution found 
during the iteration k as a starting point. 

 

There are, in the scientific literature, some memory-based 
GRASP algorithms for mono-objective problems [2] [6] [11] 
[14] [15], however it was not found any memory-based 
GRASP algorithm for multiobjective problems. So, we 
believe that it is an innovation of this work. 

 

The organization of the paper is as follows. In the next 
section, we present the formulation of a MOCO problem and 
a formal definition of the multiobjective knapsack problem. 
In section III, we discuss with more details the proposed 
memory-based multiobjective GRASP algorithm. We present 
computational results in Section IV, where we use, among 
others, the time-to-target experiment proposed in [13] and 
commonly used in mono-objective problems [3] [28] [29]; 
but its use in multiobjective problems is another innovation 
of this work. Finally, Section V contains our concluding 
remarks. 

II. MULTIOBJECTIVE OPTIMIZATION 
 

A. Problem statement and basic definitions 
 

Given a vector function of r components f = (f1, �, fr) 
defined on a finite set , consider the multi-objective 
combinatorial optimization problem: Maximize f(x) = (f1(x) = 
z1, �, fr(x) = zr), subject  to  x  . 

 

A. solution x dominates x� if f(x) dominates f(x�), that is, if 
fj(x)  fj(x�), for all objective j, and fj(x) > fj(x�) for at least one 
objective j. A solution x*   is Pareto optimal (or efficient) 
if there is no x   such that x dominates x*. A solution x*  
S   is nondominated in S if there is no x  S such that x 
dominates x*. 

 

B. Multiobjective knapsack problem (MOKP) 
 

In the literature are studied different versions of the 0/1 
multi-objective knapsack problem [16] [36]. In this paper we 
use the same formulation considered by Zitzler and Thiele 
[36], Jaskiewicz [21] and Alves and Almeida [1] in their 
experiments, which consider the multi-objective problem by 
allowing r knapsacks with different capacities 
(multidimensional knapsack). This problem can be 
formulated as follows: 

 

Maximize ,)(
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where cij and wij are, respectively, the profit and weight of 
item i according to knapsack j, Wj is the capacity of knapsack 
j and x = (x1, ..., xn) is a vector of binary variables such that xi 

= 1 if the item i belongs to the knapsacks and xi = 0, 
otherwise. 
 

The objectives are conflicting because the benefit of 
putting an item i into a knapsack j (cij) can be high, while 
placing the same item i in another knapsack l (cil) may not be 
attractive (low benefit). 

III.  MEMORY-BASED MULTIOBJECTIVE GRASP 
ALGORITHM � MMGRASP  

 

GRASP � Greedy Randomized Adaptive Search Procedure 
[12] [27] � is a multi-start metaheuristic, in which each 
iteration consists of two phases: construction and local 
search. The construction phase builds a feasible solution 
using a greedy randomized algorithm, while the local search 
phase calculates a local optimum in the neighbourhood of the 
feasible solution. Both phases are repeated a pre-specified 
number of iterations and the best overall solution is kept as 
the result.  

 

In Subsections III.A and III.B are presented, respectively, 
the constructive and local search phases of the MMGRASP 
algorithm, which are also used in the MULTI-GRASP 
algorithm [33]. Details about the memory-based approach is 
given in Subsection III.C. 

 

A. Greedy randomized construction 
 

To generate an initial set of dominating solutions, a greedy 
heuristic is used to maximize a linear combination of the 
objective functions:  
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The preference vector  = (1, ..., r), generally, 

determinates a search direction on the Pareto optimal frontier. 
Figure 1 presents the implemented constructive algorithm, 
BuildSolution, which is a greedy randomized algorithm that 
builds a solution by inserting items with the higher value for 
the following ratio: 
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This ratio measures the benefit of including an item e in the 
knapsacks. As bigger the ratio, better is the benefit of the 
item. The BuildSolution algorithm receives as input 
parameters the solution x to be built, the percentage  used in 
the selection of the next element to be inserted in x, the 
search direction  and the lPareto list, where the dominants 
solutions are stored. As output, the algorithm returns the built 
solution x. In line 1, the candidates list CL is defined. In this 
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list are inserted all the items out of the knapsacks. The CL list 
is sorted in decreasing order according to the ratio 1. As 
showed in line 3, the restricted candidates list RCL is 
composed of the   |CL| first items of CL list. The loop in 
lines 4-8 is responsible by the randomization of the 
algorithm. An item e is randomly selected from RCL and 
inserted in x. This process is repeated while the insertion of e 
does not violate the capacity of the knapsacks. The loop in 
lines 9-14 looks for additional insertions from CL. This stage 
is greedy, respecting the sorting of CL list, and try to 
improve, if possible, the solution found in the previous stage 
(loop in lines 4-8). Experiments have shown that only very 
few items are inserted during this stage. Thus, an 
improvement in the current solution can be achieved without 
compromising the greedy-randomized feature of the 
algorithm. In line 15 is verified if the solution x is a dominant 
solution and, finally, the solution x is returned in line 16. 

 
Procedure BuildSolution ( x, , , lPareto) 
Input 

x � solution to be built; 
 � percentage used on the definition of the restricted 

candidates list (RCL); 
 � vector of preferences (search direction); 
lPareto � list of dominant solutions that will be updated 

with x. 
Output 

x � built solution. 
Begin 
01. Insert each item e (xe = 0)  in the candidates list CL sorted 
(decreasing) by Ratio 1. 
02. Let RCL be a list with the % first items of CL; 
03. Select randomly an item e from RCL; 
04. While x  xe does not violate Wj, for j=1, ..., r do 
05.    x  x  xe;   //insert e in the knapsacks 
06.    Remove the item e of CL; 
07.    Select randomly an item e from RCL; 
08. End_while 
09. For i  1 to |CL| do 
10.    e  the ith item of CL;  
11.    If x  xe does not violate Wj, for j=1, ...,r then 
12.       x  x  xe;   //insert e in the knapsacks 
13.    End_if 
14. End_for 
15. Verify the insertion of x in lPareto;  
16. Return x; 
End-BuildSolution 

 

Fig. 1. Construction algorithm. 
 

B. Local search 
 

Figure 2 presents the LocalSearch algorithm that removes 
the worst items from the knapsacks according to the Ratio 1 
and uses the BuildSolution algorithm to produce a new 
solution. This algorithm receives as input parameters the 
solution x to be refined, the percentage  that is used at the 
solution reconstruction stage, the search direction  and the 
lPareto list, where the nondominated solutions are stored.  

 

The loop in lines 1-2 initializes all the positions of the 
vector Marked with false. An item e can be removed from the 
knapsack only if Marked[e] = false. The loop in lines 3-15 is 

executed while exist elements that can be removed, that is, 
elements still unmarked. In line 4, the solution x is attributed 
to the auxiliary solution y. In line 5 are removed from y the 
elements that present the shortest values of the Ratio 1. This 
process is repeated while there exists an element that is out of 
the knapsack that can not be inserted without violates any 
restriction of the problem. The items are removed from the 
knapsacks until the free space obtained in this way allows the 
insertion of any item that remains out of the knapsacks. This 
step is completely greedy. In line 6 the procedure 
BuildSolution is executed completing the construction of the 
solution y. 
 
Procedure LocalSearch ( x, , , lPareto) 
Input 

x � solution to be refined; 
 � percentage used at the reconstruction of solution x; 
 � vector of preferences (search direction); 
lPareto � list of dominant solutions that will be updated 

with the found solutions. 
Output 

x � refined solution. 
Begin 
01. For i  1 to n do 
02.    Marked[i]  false; 
03. While there exists an item e such that Marked[e] = false 
do 
04.    y  x; 
05.    Remove the unmarked item j (yj = 1) that presents the 
shortest value of the Ratio 1. Repeat this process until any 
item g (yg = 0) may be chosen for insertion; 
06.    y  BuildSolution (y, , , lPareto); 
07.    If f(y) > f(x) then 
08.       x  y; 
09.       For i  1 to n do 
10.          Marked[i]  false; 
11.    Else 
12.       Let e be the unmarked item of x that presents the 
smallest value of the Ratio 1;   
13.       Marked[e]  true; 
14.    End_if  
15. End_while 
16. Return x; 
End-LocalSearch 

 

Fig. 2. Local search algorithm. 
  

If the new solution, y, is better than x, then the solution x is 
updated at line 8 and the vector Marked is reinitialized in 
lines 9-10. Otherwise, in line 13, is marked the first element 
that is removed from y during the stage described in line 5. In 
line 16, the refined solution, x, is returned. 

The number of iterations of the local search algorithm 
depends on the quality of the solution x received as a 
parameter. 

 

C. Memory-based approach 
 

One strategy used on a Multiobjective GRASP is to 
explore, at each iteration, a different search direction. The 
search direction i is characterized by the weights associated 
to each objective, that is, by the preference vector i = (1, ..., 
r).  
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In the proposed strategy, we use the vector  = (1, 2, ..., 
m) to store the m search directions to be evaluated. In the 
GRASP-MULTI algorithm [33], all the m search directions 
are analysed by both GRASP phases, construction and local 
search. In the MMGRASP algorithm, only a percentage of 
these search directions are analysed by both GRASP phases. 
These directions, called base search directions, are chosen 
uniformly on the vector . The search direction 1 is always 
a base search direction. To determine the next base search 
direction, we add the value of the expression m/b, where b 
represents the number of base search directions desired. This 
process is repeated until the b base search directions be 
defined. In Figure 3, we have m = 9 search directions and b = 
3 base search directions (m/b = 3) � 1, 4 and 7 � 
represented by the solid lines, in which a solution x is built by 
BuildSolution algorithm and refined by LocalSearch 
algorithm. The others directions are evaluated as follow: 

 
 Let j be a base search direction (in Figures 3 and 4, 

search directions: 1, 4 and 7) and xj the solution 
obtained by the algorithm after evaluating this direction. 
The memory-based approach uses, during the evaluation 
of direction j+1, the solution xj instead of the GRASP 
construction phase. For example, for evaluating the 
search direction 5 in Figure 4 it is used the solution x4, 
obtained during the evaluation of 4, as initial solution; 
so, this solution is refined using the LocalSearch 
algorithm. Being the vector  well organized, that is, 
each search direction differing just a little from the 
previous one (at the end of this subsection we describe 
with details how to organize ), the solution xj, when 
evaluated with the weights of direction j+1, looses just a 
little of its quality, constituting in this way a good initial 
solution � in the experiments done, a solution generally 
better than the one found by the GRASP constructive 
algorithm (traditional construction) � for the local search 
phase. In Figure 5, the 150 first iterations of a GRASP 
algorithm with 1000 and 5000 search directions are 
presented. In both executions, the instance �kn500_3�, 

which will be presented in Section V, is used. Note that 
when the memory-based approach is used, better initial 
solutions are produced. 
 

 In the evaluation of the direction j+2, the solution xj+1 is 
used as the initial solution for the local search phase. 
This process is repeated for all the search directions in , 
which was not analysed yet (see Figure 4). 

 

In the following subsections, we describe two strategies 
for organizing the vector . The first one was proposed by 
Murata, Ishibuchi and Gen [25] and was used in the GRASP-
MULTI algorithm [33]. The last one represents a 
modification, proposed in this paper, of the Murata, Ishibuchi 
and Gen strategy. 

 

1. Vector  organization strategy proposed by Murata, 
Ishibuchi and Gen [25] 
 

The strategy proposed by Murata, Ishibuchi and Gen [25], 
which is used by Vianna and Arroyo [33] in the GRASP-
MULTI algorithm, generates each component of the vector 
 obtaining r non-negatives integers with sum equal to s,  

 

v1 + v2 +  ... + vr = s, where vi  {0, ..., s} 
 

which s is a value large enough to produce m search 
directions. The number of generated search directions for r 
objectives and a value s, Nr(s), is calculated as follows: 

 
 

Fig. 3. Base search directions (solid lines). 
 

 
 

Fig. 4. Memory-based approach. 
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For instance, for r = 2 objectives and s = 5 we have 6 

vectors (v1, v2): (0,5), (1,4), (2,3), (3,2), (4,1) and (5,0). For r 
= 3 and  s = 3 we have 10 vectors (v1, v2, v3): (0,0,3), (0,1,2), 
(0,2,1), (0,3,0), (1,0,2), (1,1,1), (1,2,0), (2,0,1), (2,1,0) and 
(3,0,0). 

 

With the goal of obtaining normalized directions 

( 1
1




r

j
j ), we calculate j = vj/s, vj  {0, 1, 2, ..., s}. 

The Murata, Ishibuchi and Gen algorithm used to 
generate the vector  for a problem with r=3 objectives is 
described in Figure 6. This algorithm receives as input 
parameter the integer value s. As output, the algorithm 
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returns the vector  of search directions. This algorithm 
calculates all the vectors v = (v1, v2, v3) such that the sum of 
its components is equal to s. After the normalization of this 
vector, we have the search directions. 
 
 

 
Fig. 5. Initial solutions found. 

 
Procedure Murata_Organization ( s ) 
Input 
   s � integer value used to generate the search directions. 
Output 
    � vector of search directions. 
Begin 
01. i  1; 
02. For each value of v1 (0  v1  s) do 
03.    For each value of v2 (0  v2  s) do 
04.       For each value of v3 (0  v3  s) do 
05.          If v1 + v2 + v3 = s then 
06.             i[1]  v1/s; 
07.             i[2]  v2/s; 
08.             i[3]  v3/s; 
09.             i  i + 1; 
10.          End-if 
11.       End-for 
12.    End-for 
13. End-for 
14. Return ; 
End-Murata_Organization 

 

Fig. 6. Murata_Organization algorithm. 
 

2. Proposed Vector  organization � UNIFORM-DIST. 
 

In the Murata_Organization algorithm described in 
Figure 6, the value of v1, v2 and v3 is commonly analyzed in 
an increasing order. This strategy causes a problem when 
used with the new memory-based approach proposed. When 
the value of v1 is incremented, v2 and v3 receive the value 0, 
which causes two consecutive search directions not near one 
to another. For example, if r=3 objectives and s=5, we have 
21 vectors  v = (v1, v2, v3) in the following sequence: (0,0,5), 
(0,1,4), (0,2,3), (0,3,2) (0,4,1), (0,5,0), (1,0,4), (1,1,3), 
(1,2,2), (1,3,1), (1,4,0), (2,0,3), (2,1,2), (2,2,1), (2,3,0), 
(3,0,2), (3,1,1), (3,2,0), (4,0,1), (4,1,0) and (5,0,0). The first 
six vectors have v1=0 and each one are near to the previous 
vector (each component varies at most one unity). The 7th 
vector is the first with v1=1 and are not near to the previous 
one (the first component varies one unity; the second one 
varies five unities; and the third one varies four unities). The 
same happens with the 12th, 16th and 19th vectors.  

 

The new organization strategy, called UNIFORM-DIST, 
analyzes the for statement of line 3 (Figure 6) in an 
increasing order when the value of v1 is even, and in a 
decreasing order when the value of v1 is odd. The same 
happens with the for statement of line 4 (Figure 6) according 
to the value of v2. With this strategy we maintain all the 
vectors near to the previous one (each component varies at 
most one unity). For instance, for the example of the previous 
paragraph we have the same 21 vectors v = (v1, v2, v3) 
organized as following:  (0,0,5), (0,1,4), (0,2,3), (0,3,2) 
(0,4,1), (0,5,0), (1,4,0), (1,3,1), (1,2,2), (1,1,3), (1,0,4), 
(2,0,3), (2,1,2), (2,2,1), (2,3,0), (3,2,0), (3,1,1), (3,0,2), 
(4,0,1), (4,1,0) and (5,0,0). 

 
D. MMGRASP algorithm 

 

Figure 7 presents the MMGRASP algorithm, which is the 
GRASP-MULTI algorithm incorporated with the new 
memory-based approach proposed in this paper. This 
algorithm receives as input parameters the number of 
iterations (N_iter), the percentage  used at the construction 
phase, the percentage  used at the local search phase and the 
number b of base search directions. Parameters  and  were 
empirically set at 10% and 50%, respectively. Parameter b 
was empirically set as 30% of N_iter. As output, the 
algorithm returns the lPareto list, where the nondominated 
solutions are stored. In line 1, the lPareto list is initialized. In 
line 2, the vector  with the m = N_iter search directions is 
organized by UNIFORM-DIST strategy (Subsection 
III.C.2). The b base search directions are defined in line 3. 
The loop in lines 4-14 executes N_iter GRASP iterations. In 
line 5, the solution x is initialized. The search direction i is 
defined in line 6. If i is a base search direction (1 is always 
a base search direction), the solution x is built by the 
BuildSolution procedure in line 8. Otherwise, the solution y 
obtained at the previous GRASP iteration is used as initial 
solution. The solution x is refined in line 13. Finally, the 
lPareto list is returned. 
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IV.  COMPUTATIONAL EXPERIMENTS 
 

We compare the results of MMGRASP with the 
following algorithms: GRASP_MULTI [33] and MOTGA 
[1]. Both algorithms have outperformed three well known 
algorithms: SPEA [36], SPEA2 [37] and MOGLS [21]. 
 
Procedure MMGRASP (N_iter, , ,  b) 
Input 
   N_iter � number of  GRASP iterations; 
    � percentage used at the construction stage; 
     � percentage used at the local search stage; 
   b � number of base search directions. 
Output 
   lPareto � list of nondominated solutions. 
Begin 
01. lPareto  ; 
02. Organize the vector  of search directions by 
UNIFORM-DIST strategy;  
03. Define the b base search directions; 
04. For i  1 to N_iter do 
05.    x  ; 
06.    Let i be the search direction in the position i of ; 
07.    If i is a base search direction  then 
08.       x  BuildSolution ( x, , i, lPareto); 
09.    Else 
10.       x  y;  //y is the solution obtained in the iteration i-1; 
11.    Evaluate x with the weights associated to the new 
search direction i; 
12.    End_if 
13.    y  LocalSearch ( x, , i, lPareto); 
14. End_for 
15. Return lPareto; 
End-MMGRASP 

 

Fig. 7. MMGRASP algorithm. 
 

All computational experiments with the MMGRASP and 
GRASP-MULTI algorithms were performed on a 3.2GHz 
Pentium IV processor with 1 Gbyte of RAM memory. The 
MMGRASP algorithm was implemented in C using version 
6.0 of the Microsoft Visual C++ compiler.   
 

A. Test instances 
 

In this work, we use the set of instances proposed by 
Zitzler and Thiele [36]. They generated instances with 250, 
500 and 750 items, and 2, 3, and 4 objectives. Uncorrelated 
profits and weights were randomly generated in the interval 
[10, 100]. The knapsack capacities were set to half of the 
total weight regarding the corresponding knapsack: Wj = 




n

i
ijw

1

.5.0  The problem instances are presented in Table 1 

and are available at: 
http://www.tik.ee.ethz.ch/$\sim$zitzler/testdata.html.  
 

B. Evaluation of computational results in multiobjective 
optimization 
 

The quality of a solution of a single-objective 
minimization problem is evaluated in a straightforward 
manner as the relative difference between the objective value 
of such solution and the value of an optimal solution. In 

multiobjective optimization, however, there is no natural 
single measure that is able to capture the quality of a 
nondominated set H to the Pareto optimal set or reference set 
R. 

Table 1. Test instances. 
Instance Objectives Items 

   

kn250_2 2 250 
kn250_3 3 250 
kn250_4 4 250 
kn500_2 2 500 
kn500_3 3 500 
kn500_4 4 500 
kn750_2 2 750 
kn750_3 3 750 
kn750_4 4 750 

 
We measure the quality of the nondominated set H 

generated by the heuristic method relative to the reference set 
R by using two measures: 

 

 Cardinal measure: number of reference solutions, NRS, 
found by the heuristic method, where NRS = |H  R|. 
 

 Distance measure (proposed by [8] and [31]): distance 
between the nondominated set H generated by the 
heuristic method and the reference set R. We measure the 
average distance, Davg, and maximum distance, Dmax, 
with  

o Davg = ),'(min
||

1
' zzd

R Rz
Hz



 and  

o Dmax = )},'({minmax ' zzdHzRz    

 
 

where ,)'(
1

max),'( ,...,1















  jj
j

rj zzzzd  z�  H, 

z  R and j is the range of  the objective fj among all 
reference and heuristic solutions.  
Note that Davg is the average distance from a point z  R 
to its closest point in H, while Dmax yields the maximum 
distance from a point z  R to any point in H. 

 

When the Pareto optimal set is not known and H� is the 
set of nondominated points generated by another heuristic 
method, we define the reference set R as the nondominated 
points of (H  H�) and use the same measures mentioned 
above to assess the approximation of H and H� relative to R. 
 

C. Test instances 
 

The experiments done were conducted using the test 
instances described in Table 1, which were proposed by 
Zitzler et al. [36] and has been also used by GRASP-MULTI 
[33] and MOTGA [1] algorithms. 

 

In the first experiment, the MMGRASP algorithm, 
proposed at this paper, was run five times to each test 
instances.  Each run finished when the average running time 
spent by MOTGA algorithm was achieved.  The goal of this 
experiment is to evaluate MMGRASP and MOTGA 
algorithms running the same time in a similar machine.  
Table 2 shows the average running times of MOTGA. 

http://www.tik.ee.ethz.ch/$\sim$zitzler/testdata.html.
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Table 2. Average running times of MOTGA algorithm on a 
Pentium IV 3.2 GHz. 

 

Instance Time(s) 
  

kn250_2 1.5 
kn250_3 7.2 
kn250_4 19.5 
kn500_2 2.7 
kn500_3 12.8 
kn500_4 33.4 
kn750_2 4.2 
kn750_3 18.2 
kn750_4 51.9 

 
 

Table 3 presents comparative results for the first 
experiment. In the second column is presented the number |R| 
of reference solutions. In the following columns are 
presented, for each algorithm (MOTGA and MMGRASP) 
and for each instance, the total number of obtained solutions 
(TNS), the number of reference solutions (NRS), the average 
distance (Davg) and the maximum distance (Dmax).\ 

 

The results show that when the number of reference 
solutions (NRS) is compared, the proposed algorithm, 
MMGRASP, generates a larger number of reference 
solutions on 8 instances from a total of 9 instances. So, by the 
cardinal measure, MMGRASP performs better than 
MOTGA. When the average distance, Davg, and the 
maximum distance, Dmax, are compared, MMGRASP also 
performs better than MOTGA. 

 

In the second experiment, the MMGRASP algorithm was 
compared with the GRASP-MULTI algorithm. The goal of 
this experiment is to show the efficiency of the memory-
based approach proposed in this paper. 100 GRASP iterations 
are executed by both algorithms. The algorithms are 
compared using the cardinal and distance measures presented 
at Subsection IV.B. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4 presents comparative results for the second 
experiment. In the second column is presented the number |R| 
of reference solutions. In the following columns are 
presented, for each algorithm � GRASP-MULTI (in the 
table called just as GRASP) and MMGRASP �, and for each 
instance, the total number of obtained solutions (TNS), the 
number of reference solutions (NRS), the average distance 
(Davg), the maximum distance (Dmax) and the consumed 
execution time in seconds 

 

The results show that when the number of reference 
solutions (NRS) is compared, the proposed algorithm, 
MMGRASP, generates a larger number of reference 
solutions for all the test instances. So, by the cardinal 
measure, MMGRASP performs better than GRASP-
MULTI. When the average distance, Davg, and the maximum 
distance, Dmax, are compared, MMGRASP also performs 
better than GRASP-MULTI. We also can see that 
MMGRASP is faster than GRASP-MULTI 
 

 In another experiment comparing MMGRASP and 
GRASP-MULTI, we use the time-to-target method [3] [13]. 
Time-to-target plots (tttplots) display on the ordinate axis the 
probability that an algorithm will find a solution at least as 
good as a given target value within a given running time, 
shown on the abscissa axis. They were used by Feo et al. [13] 
and have been advocated by Hoos and Stützle [19] [20] as a 

way to characterize the running times of stochastic 
algorithms for combinatorial optimization. Aiex et al. [3] 
preconized and largely explored the use of tttplots to evaluate 
and compare different randomized algorithms running on the 
same instance. Their use has been growing ever since and 
they have been extensively applied in computational studies 
of sequential and parallel randomized algorithms [27] [28] 
[29]. The foundations of the construction of time-to-target 
plots, together with their interpretation and applications, were 
surveyed by Aiex et al. [4]. 
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 Since �kn750_4� is the greatest and most difficult 

instance, the results observed for the others instances are 
summarized by the results obtained for this instance. The 
time-to-target experiment was conducted using two different 
stopping rules. In both, we performed 200 independent runs 
of each algorithm (MMGRASP and GRASP-MULTI).In 
the first rule, each run finishes when a number of reference 
solutions greater than or equal to the number of reference 
solutions obtained by MOTGA algorithm is found. In the 
second rule, each run finishes when an average distance from 
the reference set is less than or equal to the average distance 
obtained by MOTGA algorithm is found. 
 

The empirical probability distributions of the time-to-
target random variables of the first and second experiment are 
plotted, respectively, in Figures 8 and 9 for each algorithm. 
Such plots show that MMGRASP algorithm systematically 
finds better solutions than GRASP-MULTI in smaller 
computation times. 

 

 
 

Fig. 8. tttplot experiment with stop criterion: number of 
reference solutions. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9. tttplot experiment with stop criterion: average distance 

from the reference set. 

V. CONCLUSION 
 

In this paper, we propose a memory-based GRASP 
algorithm to generate a good approximation of the set of 
efficient or Pareto optimal solutions of a multiobjective 
combinatorial optimization problem. It is applied to solve the 
knapsack problem with r objectives and it is compared with 
GRASP-MULTI algorithm, proposed by Vianna and Arroyo 
[33], and with MOTGA, proposed by Alves and Almeida 
[1]. Both algorithms have outperformed three well known 
algorithms: SPEA [36], SPEA2 [37] and MOGLS [21].. 

 

In the experiments done, when the number of reference 
solution (NRS) is compared, the proposed algorithm, 
MMGRASP, generates a larger number of reference 
solutions on 8 instances from a total of 9 instances, 
comparing with MOTGA, and for all the nine instances, 
comparing with GRASP-MULTI. When the average 
distance (Davg) is compared, MMGRASP obtained a smaller 
average distance than MOTGA on 8 instances from a total of 
9 instances and a smaller average distance than GRASP-
MULTI for all the nine instances. 
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In experiments done comparing GRASP-MULTI and 
MMGRASP algorithms, it was verified that the MMGRASP 
is faster than GRASP-MULTI. 

 

Based on the obtained results, it is concluded that the 
proposed algorithm, MMGRASP, is robust, outperforming 
two efficient algorithms: MOTGA and GRASP-MULTI. 

REFERENCES 
 

[1] Alves M.J., Almeida M. 2007. MOTGA: A multiobjective Tchebycheff 
based genetic algorithm for the multidimensional knapsack problem. 
Computers & Operations Research, 34: 3458�3470. 

[2] Ahmadi S., Osman I.H. 2005. Greedy random adaptive memory 
programming search for the capacitated clustering problem. European 
Journal of Operational Research, 162: 30-44. 

[3] Aiex R.M., Resende M.G.C., Ribeiro C.C. 2002. Probability 
distribution of solution time in GRASP: An experimental investigation. 
Journal of Heuristics, 8: 343-373. 

[4] Aiex R.M., Resende M.G.C., Ribeiro C.C. 2007. TTTPLOTS: A perl 
program to create time-to-target plots. Optimization Letters, 1: 355-
366. 

[5] Albuquerque, L.L., Almeida, A.T., Cavalcante, C.A.V. 2009. 
Aplicabilidade da programação matemática multiobjetivo no 
planejamento da expansão de longo prazo da geração no Brasil (in 
Portuguese). Pesquisa Operacional, 29(1): 153-177. 

[6] Armentano V.A., França Filho M.F. 2007. Minimizing total tardiness 
in parallel machine scheduling with setup times: An adaptive memory-
based GRASP approach. European Journal of Operational Research, 
183: 100-114. 

[7] Coello C.A.C. 2000. An updated survey of GA-based multiobjective 
optimization techniques. ACM Computing Surveys, 32(2): 109�143. 

[8] Czyzak P., Jaszkiewicz A. 1998. Pareto simulated annealing � a 
metaheuristic technique for multiple objective combinatorial 
optimization. Journal of Multi-Criteria Decision Analysis, 7: 34�47. 

[9] Deb K. 2004. Multi-objective optimization using evolutionary 
algorithms. England: John Wiley & Sons Ltd. 

[10] Ehrgott M., Gandibleux X. 2000. A survey and annotated bibliography 
of multiobjective combinatorial optimization. OR Spektrum, 22: 425�
460. 

[11] Fernandes E.R., Ribeiro C.C. 2005. A multistart constructive heuristic 
for sequencing by hybridization using adaptive memory. Electronic 
Notes in Discrete Mathematics, 19: 41-47. 

[12] Feo T.A., Resende M.G.C. 1995. Greedy randomized adaptive search 
procedures. Journal of Global Optimization, 6: 109�133. 

[13] Feo T.A., Resende M.G.C, Smith S.H. 1994. A greedy randomized 
adaptive search procedure for maximum independent set. Operations 
Research, 42: 860-878. 

[14] Fiehler, K., Bannert, M.M., Bischoff, M., Blecker, C., Stark, R., Vaitl, 
D., Franz, V.H. & Rösler, F. 2010. Working memory maintenance of 
grasp-target information in the human posterior parietal cortex. 
NeuroImage, 1: 1�11. 

[15] Fleurent C., Glover F. 1999. Improved constructive multistart strategies 
for the quadratic assignment problem. INFORMS Journal on 
Computing, 11: 198-204. 

[16] Gandibleux X., Fréville A. 2000. Tabu search based procedure for 
solving the 0-1 multiobjective knapsack problem: The two objectives 
case. Journal of Heuristics, 6: 361�383. 

[17] Gandibleux X., Ehrgott M. 2005. 1984�2004 � 20 Years of 
Multiobjective Metaheuristics. But What About the Solution of 
Combinatorial Problems with Multiple Objectives?. In: Coello AA, 
Aguirre AH, Zitzler E (Eds.). Evolutionary Multi-Criterion 
Optimization. Berlin, Springer: 33�46. 

[18] Hansen P. 1997. Tabu search for multiobjective optimization: MOTS. 
Technical Report. Technical University of Denmark. Paper presented at 
The 13th International Conference on Multiple Criteria Decision 
Making. Cape Town, South Africa, 1997. 

[19] Hoos H.H., Stützle T. On the empirical evaluation of Las Vegas 
algorithms â-Position paper. Technical report, Computer Science 
Department, University of British Columbia, 1998. 

[20] Hoss H.H., Stützle T. 1998. Evaluation Las Vegas algorithms - Pitfalls 
and remedies. In: Proceedings of the 14th Conference on Uncertainty in 
Artificial Intelligence, p.238-245. 

[21] Jaskiewicz A. 2002. On the performance of multiple objective genetic 
local search on the 0/1 knapsack problem: A comparative experiment. 
IEEE Transaction on Evolutionary Computation, 6(4): 402�412. 

[22] Jones D.F., Mirrazavi S.K., Tamiz M. 2002. Multi-objective 
metaheuristics: An overview of the current state-of-art. European 
Journal of Operational Research, 137: 1�19. 

[23] Lourenço H.R., Pinto J., Portugal R. 1998. Metaheuristics for The Bus-
Driver Scheduling Problem. Economics Working Papers 304, 
Department of Economics and Business, Universitat Pompeu Fabra. 

[24] Lins I.D., Droguett E.L. 2009. Multiobjective optimization of 
availability and cost in repairable systems design via genetic algorithms 
and discrete event simulation. Pesquisa Operacional, 29(1): 43-66. 

[25] Murata T., Ishibuchi H., Gen M. 2001. Specification of genetic Search 
directions in cellular multi-objective genetic algorithms. In: Zitzler E, 
Deb K, Thiele L, Coello CAC, Corne D (eds.). Evolutionary Multi-
Criterion optimization, First International Conference, EMO. Lecture 
Notes in Computer Science. Zurich: Springer, 1: 82�95. 

[26] Murphey R., Pardalos P.M., Resende M. 2000. Frequency Assignment 
Problems. Handbook of Combinatorial Optimization. Kluwer: 295�
377. 

[27] Resende M.G.C., Ribeiro C.C. 2003. Greedy randomized adaptive 
search procedures. In: Glover F, Kochenberger G (eds.). Handbook of 
Metaheuristics. Boston, Kluwer: 219�249. 

[28] Resende M.G.C., Ribeiro C.C. 2005. GRASP with path-relinking: 
Recent advances and applications. In: Ibaraki T, Nonobe K, Yagiura M 
(eds.). Metaheuristics: Progress as Real Problem Solvers. Boston, 
Kluwer: 29-63. 

[29] [29] Ribeiro C.C., Rosseti I. 2007. Efficient parallel cooperative 
implementations of GRASP heuristics. Parallel Computing, 33: 21-35. 

[30] Ulungu E.L., Teghem J. 1995. The two phases method: An efficient 
procedure to solve bi-objective combinatorial optimization problems. 
Foundations of Computing and Decision Sciences, 20(2): 149�165. 

[31] Ulungu E.L., Teghem J., Ost C. 1998. Efficiency of interactive multi-
objective simulated annealing through a case study. Journal of the 
Operational Research Society, bf 49: 1044�1050. 

[32] Van Veldhuizen D.A., Lamont G.B. 2000. Multiobjective evolutionary 
algorithms: Analyzing the state-of art. Evolutionary Computation, 8(2): 
125�147. 

[33] Vianna D.S., Arroyo J.E.C. 2004. A GRASP algorithm for the multi-
objective knapsack problem. In: XXIV International Conference of the 
Chilean Computer Science Society (XXIV SCCC). Washington: IEEE 
Computer Society: 69�75. 

[34] Vianna D.S., Dianin, M.F.V. 2013. Local search-based heuristics for 
the multiobjective multidimensional knapsack problem. Production 
Journal, 23(3): 478-487.  

[35] Visée M., Teghem J., Pirlot M., Ulungu E.L. 1998. Two-Phases 
Method and Branch and Bound Procedures to solve the Bi-objectives 
knapsack Problem. Journal of Global Optimization, 12: 139�155. 

[36] Zitzler E., Thiele L. 1999. Multiobjective evolutionary algorithms: A 
comparative case study and the strength pareto approach. IEEE 
Transactions on Evolutionary Computation, 3(4): 257�271. 

[37] Zitzler E., Laumanns M., Thiele L. 2002. SPEA2: Improving the 
Strength Pareto Evolutionary Algorithm. In: Giannakoglou K, Tsahalis 
D, Periaux J, Papailou P, Fogarty T (eds.). EUROGEN 2001, 
Evolutionary Methods for Design, Optimization and Control with 
Applications to Industrial Problems. Athens, Greece: 95�100. 

 


