

International Journal of Latest Research in Science and Technology ISSN (Online):2278-5299
Volume 3, Issue 4: Page No.186-194. July-August 2014
https://www.mnkpublication.com/journal/ijlrst/index.php

ISSN:2278-5299 186

Publication History
Manuscript Received : 26 June 2014
Manuscript Accepted : 1 July 2014
Revision Received : 10 August 2014
Manuscript Published : 31 August 2014

A MEMORY-BASED GRASP HEURISTIC FOR THE
MULTIOBJECTIVE MULTIDIMENSIONAL

KNAPSACK PROBLEM

1Dalessandro Soares Vianna, 2Fermín Alfredo Tang Montané, 3Edwin Benito Mitacc Meza, 1Carlos Bazilio Martins
 1Department of Computation, Fluminense Federal University, Rio das Ostras, RJ, Brazil

2Department of Computation, State University of Norte Fluminense, Campos do Goytacazes, RJ, Brazil
3Department of Engineering, Fluminense Federal University, Rio das Ostras, RJ, Brazil

Abstract- In real optimization problems is generally desirable to optimize more than one performance criterion (or objective) at the same
time. The goal of the multi-objective combinatorial optimization (MOCO) is to optimize simultaneously r > 1 objectives. We developed a
GRASP algorithm that incorporates a memory-based approach for solving the multiobjective multidimensional knapsack problem. There
are, in the scientific literature, some memory-based GRASP algorithms for mono-objective problems, however it was not found any
memory-based GRASP algorithm for multiobjective problems. Computational experiments on benchmark instances show that the
proposed algorithm is very robust and outperforms other heuristics in terms of solution quality and running times.

Keywords - multiobjective multidimensional knapsack problem; multiobjective combinatorial optimization; GRASP.

I. INTRODUCTION
Many practical optimization problems, generally, involve

simultaneous minimization (or maximization) of several
conflicting decision criteria. The goal of multiobjective
combinatorial optimization (MOCO) is to optimize
simultaneously r > 1 criteria or objectives. MOCO problems
have a set of optimal solutions (instead of a single optimum)
in the sense that no other solutions are superior to them when
all objectives are taken into account. They are known as
Pareto optimal or efficient solutions.

Solving MOCO problems is quite different from single-
objective case (r = 1), where an optimal solution is searched.
The difficulty is not only due to the combinatorial complexity
as in single-objective case, but also due to finding all
elements of the efficient set, whose cardinality grows with
the number of objectives.

In the literature, some authors have proposed exact
methods for solving specific MOCO problems [10] [30] [35].
These methods are generally valid for bi-objective (r = 2)
problems but cannot be adapted easily to a higher number of
objectives. Also, exact methods are inefficient to solve large-
scale NP-hard MOCO problems. As in the single-objective
case, the use of heuristic/metaheuristic techniques seems to
be the most promising approach to MOCO problems because
of their efficiency, generality and relative simplicity of
implementation. These techniques generate good
approximated solutions in a short computational time.
Several articles have proposed heuristic procedures to solve
MOCO problems [5] [7] [9] [10] [22] [24] [32].

The literature on the multiobjective knapsack problem is
rather scarce. Some of the works found are as follow: the
methods proposed by Ulungu and Teghem [30] and Visée et

al. [35] are based on exact algorithms; Jaskiewicz [21],
Zitzler and Thiele [36] and Alves e Almeida [1] use genetic
algorithms; the methods of Gandibleux and Frévile [16] and
Hansen [18] are based on tabu search; and the methods
proposed by Czyzak and Jaskiewicz [8] and Ulungu, Teghem
and Ost [31] are based on simulated annealing. Vianna and
Dianin [34] have proposed algorithms based on GRASP and
ILS metaheuristics.

In [33], Vianna and Arroyo proposed a GRASP algorithm,
called GRASP-MULTI, for solving the multi-objective
knapsack Problem. It outperformed two well known genetic
algorithms from literature: MOGLS (Multi-objective Genetic
Local Search) suggested by Jaskiewicz [21] and SPEA2 [37],
which is an improved version of the genetic algorithm SPEA
(Strength Pareto Evolutionary Algorithm) proposed by
Zitzler and Thiele [36]. After that, Alves and Almeida [1]
proposed a genetic algorithm, called MOTGA (Multiple
objective Tchebycheff based Genetic Algorithm), that also
outperforms the MOGLS, SPEA and SPEA2. It is based on
the Tchebycheff scalarizing function, which performs several
stages, each one intended for searching potentially
nondominated solutions in a different part of the Pareto
frontier.

This paper presents a new algorithm for the multi-
objective knapsack problem, called MMGRASP (Memory-
based Multiobjective GRASP), which is an adaptation of a
previous algorithm, GRASP-MULTI, described in [33].
Each iteration of GRASP-MULTI algorithm solves a mono-
objective problem, where the goal is to maximize a linear
combination of the objective functions of the original multi-
objective problem. The linear combination is obtained by
assigning weights to each objective function, which
represents a search direction for the multi-objective problem.

id7135501 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

https://www.mnkpublication.com/journal/ijlrst/index.php

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 187

In the GRASP-MULTI algorithm, as in any traditional
GRASP algorithm, each iteration is independent, i.e., when
one iteration finishes, the information found during this
iteration is not used in the next iterations. In the
MMGRASP, the iteration k+1 uses the best solution found
during the iteration k as a starting point.

There are, in the scientific literature, some memory-based
GRASP algorithms for mono-objective problems [2] [6] [11]
[14] [15], however it was not found any memory-based
GRASP algorithm for multiobjective problems. So, we
believe that it is an innovation of this work.

The organization of the paper is as follows. In the next
section, we present the formulation of a MOCO problem and
a formal definition of the multiobjective knapsack problem.
In section III, we discuss with more details the proposed
memory-based multiobjective GRASP algorithm. We present
computational results in Section IV, where we use, among
others, the time-to-target experiment proposed in [13] and
commonly used in mono-objective problems [3] [28] [29];
but its use in multiobjective problems is another innovation
of this work. Finally, Section V contains our concluding
remarks.

II. MULTIOBJECTIVE OPTIMIZATION

A. Problem statement and basic definitions

Given a vector function of r components f = (f1, �, fr)
defined on a finite set , consider the multi-objective
combinatorial optimization problem: Maximize f(x) = (f1(x) =
z1, �, fr(x) = zr), subject to x  .

A. solution x dominates x� if f(x) dominates f(x�), that is, if
fj(x)  fj(x�), for all objective j, and fj(x) > fj(x�) for at least one
objective j. A solution x*   is Pareto optimal (or efficient)
if there is no x   such that x dominates x*. A solution x* 
S   is nondominated in S if there is no x  S such that x
dominates x*.

B. Multiobjective knapsack problem (MOKP)

In the literature are studied different versions of the 0/1
multi-objective knapsack problem [16] [36]. In this paper we
use the same formulation considered by Zitzler and Thiele
[36], Jaskiewicz [21] and Alves and Almeida [1] in their
experiments, which consider the multi-objective problem by
allowing r knapsacks with different capacities
(multidimensional knapsack). This problem can be
formulated as follows:

Maximize ,)(
1

i

n

i
ijj xcxf 



 j = 1, ..., r

Subject to ,
1

ji

n

i
ij Wxw 



 j = 1, ..., r

  ,1,0ix i = 1, ..., n

where cij and wij are, respectively, the profit and weight of
item i according to knapsack j, Wj is the capacity of knapsack
j and x = (x1, ..., xn) is a vector of binary variables such that xi

= 1 if the item i belongs to the knapsacks and xi = 0,
otherwise.

The objectives are conflicting because the benefit of
putting an item i into a knapsack j (cij) can be high, while
placing the same item i in another knapsack l (cil) may not be
attractive (low benefit).

III. MEMORY-BASED MULTIOBJECTIVE GRASP
ALGORITHM � MMGRASP

GRASP � Greedy Randomized Adaptive Search Procedure
[12] [27] � is a multi-start metaheuristic, in which each
iteration consists of two phases: construction and local
search. The construction phase builds a feasible solution
using a greedy randomized algorithm, while the local search
phase calculates a local optimum in the neighbourhood of the
feasible solution. Both phases are repeated a pre-specified
number of iterations and the best overall solution is kept as
the result.

In Subsections III.A and III.B are presented, respectively,
the constructive and local search phases of the MMGRASP
algorithm, which are also used in the MULTI-GRASP
algorithm [33]. Details about the memory-based approach is
given in Subsection III.C.

A. Greedy randomized construction

To generate an initial set of dominating solutions, a greedy
heuristic is used to maximize a linear combination of the
objective functions:

)()(
1

xfxf j

r

j
j



 

 where 1
1




r

j
j

 10  j

The preference vector  = (1, ..., r), generally,

determinates a search direction on the Pareto optimal frontier.
Figure 1 presents the implemented constructive algorithm,
BuildSolution, which is a greedy randomized algorithm that
builds a solution by inserting items with the higher value for
the following ratio:









r

j
ej

r

j
ejj

w

c

1

1



 (1)

This ratio measures the benefit of including an item e in the
knapsacks. As bigger the ratio, better is the benefit of the
item. The BuildSolution algorithm receives as input
parameters the solution x to be built, the percentage  used in
the selection of the next element to be inserted in x, the
search direction  and the lPareto list, where the dominants
solutions are stored. As output, the algorithm returns the built
solution x. In line 1, the candidates list CL is defined. In this

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 188

list are inserted all the items out of the knapsacks. The CL list
is sorted in decreasing order according to the ratio 1. As
showed in line 3, the restricted candidates list RCL is
composed of the   |CL| first items of CL list. The loop in
lines 4-8 is responsible by the randomization of the
algorithm. An item e is randomly selected from RCL and
inserted in x. This process is repeated while the insertion of e
does not violate the capacity of the knapsacks. The loop in
lines 9-14 looks for additional insertions from CL. This stage
is greedy, respecting the sorting of CL list, and try to
improve, if possible, the solution found in the previous stage
(loop in lines 4-8). Experiments have shown that only very
few items are inserted during this stage. Thus, an
improvement in the current solution can be achieved without
compromising the greedy-randomized feature of the
algorithm. In line 15 is verified if the solution x is a dominant
solution and, finally, the solution x is returned in line 16.

Procedure BuildSolution (x, , , lPareto)
Input

x � solution to be built;
 � percentage used on the definition of the restricted

candidates list (RCL);
 � vector of preferences (search direction);
lPareto � list of dominant solutions that will be updated

with x.
Output

x � built solution.
Begin
01. Insert each item e (xe = 0) in the candidates list CL sorted
(decreasing) by Ratio 1.
02. Let RCL be a list with the % first items of CL;
03. Select randomly an item e from RCL;
04. While x  xe does not violate Wj, for j=1, ..., r do
05. x  x  xe; //insert e in the knapsacks
06. Remove the item e of CL;
07. Select randomly an item e from RCL;
08. End_while
09. For i  1 to |CL| do
10. e  the ith item of CL;
11. If x  xe does not violate Wj, for j=1, ...,r then
12. x  x  xe; //insert e in the knapsacks
13. End_if
14. End_for
15. Verify the insertion of x in lPareto;
16. Return x;
End-BuildSolution

Fig. 1. Construction algorithm.

B. Local search

Figure 2 presents the LocalSearch algorithm that removes
the worst items from the knapsacks according to the Ratio 1
and uses the BuildSolution algorithm to produce a new
solution. This algorithm receives as input parameters the
solution x to be refined, the percentage  that is used at the
solution reconstruction stage, the search direction  and the
lPareto list, where the nondominated solutions are stored.

The loop in lines 1-2 initializes all the positions of the
vector Marked with false. An item e can be removed from the
knapsack only if Marked[e] = false. The loop in lines 3-15 is

executed while exist elements that can be removed, that is,
elements still unmarked. In line 4, the solution x is attributed
to the auxiliary solution y. In line 5 are removed from y the
elements that present the shortest values of the Ratio 1. This
process is repeated while there exists an element that is out of
the knapsack that can not be inserted without violates any
restriction of the problem. The items are removed from the
knapsacks until the free space obtained in this way allows the
insertion of any item that remains out of the knapsacks. This
step is completely greedy. In line 6 the procedure
BuildSolution is executed completing the construction of the
solution y.

Procedure LocalSearch (x, , , lPareto)
Input

x � solution to be refined;
 � percentage used at the reconstruction of solution x;
 � vector of preferences (search direction);
lPareto � list of dominant solutions that will be updated

with the found solutions.
Output

x � refined solution.
Begin
01. For i  1 to n do
02. Marked[i]  false;
03. While there exists an item e such that Marked[e] = false
do
04. y  x;
05. Remove the unmarked item j (yj = 1) that presents the
shortest value of the Ratio 1. Repeat this process until any
item g (yg = 0) may be chosen for insertion;
06. y  BuildSolution (y, , , lPareto);
07. If f(y) > f(x) then
08. x  y;
09. For i  1 to n do
10. Marked[i]  false;
11. Else
12. Let e be the unmarked item of x that presents the
smallest value of the Ratio 1;
13. Marked[e]  true;
14. End_if
15. End_while
16. Return x;
End-LocalSearch

Fig. 2. Local search algorithm.

If the new solution, y, is better than x, then the solution x is
updated at line 8 and the vector Marked is reinitialized in
lines 9-10. Otherwise, in line 13, is marked the first element
that is removed from y during the stage described in line 5. In
line 16, the refined solution, x, is returned.

The number of iterations of the local search algorithm
depends on the quality of the solution x received as a
parameter.

C. Memory-based approach

One strategy used on a Multiobjective GRASP is to
explore, at each iteration, a different search direction. The
search direction i is characterized by the weights associated
to each objective, that is, by the preference vector i = (1, ...,
r).

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 189

In the proposed strategy, we use the vector  = (1, 2, ...,
m) to store the m search directions to be evaluated. In the
GRASP-MULTI algorithm [33], all the m search directions
are analysed by both GRASP phases, construction and local
search. In the MMGRASP algorithm, only a percentage of
these search directions are analysed by both GRASP phases.
These directions, called base search directions, are chosen
uniformly on the vector . The search direction 1 is always
a base search direction. To determine the next base search
direction, we add the value of the expression m/b, where b
represents the number of base search directions desired. This
process is repeated until the b base search directions be
defined. In Figure 3, we have m = 9 search directions and b =
3 base search directions (m/b = 3) � 1, 4 and 7 �
represented by the solid lines, in which a solution x is built by
BuildSolution algorithm and refined by LocalSearch
algorithm. The others directions are evaluated as follow:

 Let j be a base search direction (in Figures 3 and 4,

search directions: 1, 4 and 7) and xj the solution
obtained by the algorithm after evaluating this direction.
The memory-based approach uses, during the evaluation
of direction j+1, the solution xj instead of the GRASP
construction phase. For example, for evaluating the
search direction 5 in Figure 4 it is used the solution x4,
obtained during the evaluation of 4, as initial solution;
so, this solution is refined using the LocalSearch
algorithm. Being the vector  well organized, that is,
each search direction differing just a little from the
previous one (at the end of this subsection we describe
with details how to organize ), the solution xj, when
evaluated with the weights of direction j+1, looses just a
little of its quality, constituting in this way a good initial
solution � in the experiments done, a solution generally
better than the one found by the GRASP constructive
algorithm (traditional construction) � for the local search
phase. In Figure 5, the 150 first iterations of a GRASP
algorithm with 1000 and 5000 search directions are
presented. In both executions, the instance �kn500_3�,

which will be presented in Section V, is used. Note that
when the memory-based approach is used, better initial
solutions are produced.

 In the evaluation of the direction j+2, the solution xj+1 is
used as the initial solution for the local search phase.
This process is repeated for all the search directions in ,
which was not analysed yet (see Figure 4).

In the following subsections, we describe two strategies
for organizing the vector . The first one was proposed by
Murata, Ishibuchi and Gen [25] and was used in the GRASP-
MULTI algorithm [33]. The last one represents a
modification, proposed in this paper, of the Murata, Ishibuchi
and Gen strategy.

1. Vector  organization strategy proposed by Murata,
Ishibuchi and Gen [25]

The strategy proposed by Murata, Ishibuchi and Gen [25],
which is used by Vianna and Arroyo [33] in the GRASP-
MULTI algorithm, generates each component of the vector
 obtaining r non-negatives integers with sum equal to s,

v1 + v2 + ... + vr = s, where vi  {0, ..., s}

which s is a value large enough to produce m search
directions. The number of generated search directions for r
objectives and a value s, Nr(s), is calculated as follows:

Fig. 3. Base search directions (solid lines).

Fig. 4. Memory-based approach.

N2 = s + 1.

N3 = 2/)2)(1()1()(
00

2 


ssiiN
s

i

s

i

N4 = 



s

i

s

i

iiiN
00

3 .2/)2)(1()(

For instance, for r = 2 objectives and s = 5 we have 6

vectors (v1, v2): (0,5), (1,4), (2,3), (3,2), (4,1) and (5,0). For r
= 3 and s = 3 we have 10 vectors (v1, v2, v3): (0,0,3), (0,1,2),
(0,2,1), (0,3,0), (1,0,2), (1,1,1), (1,2,0), (2,0,1), (2,1,0) and
(3,0,0).

With the goal of obtaining normalized directions

(1
1




r

j
j), we calculate j = vj/s, vj  {0, 1, 2, ..., s}.

The Murata, Ishibuchi and Gen algorithm used to
generate the vector  for a problem with r=3 objectives is
described in Figure 6. This algorithm receives as input
parameter the integer value s. As output, the algorithm

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 190

returns the vector  of search directions. This algorithm
calculates all the vectors v = (v1, v2, v3) such that the sum of
its components is equal to s. After the normalization of this
vector, we have the search directions.

Fig. 5. Initial solutions found.

Procedure Murata_Organization (s)
Input
 s � integer value used to generate the search directions.
Output
  � vector of search directions.
Begin
01. i  1;
02. For each value of v1 (0  v1  s) do
03. For each value of v2 (0  v2  s) do
04. For each value of v3 (0  v3  s) do
05. If v1 + v2 + v3 = s then
06. i[1]  v1/s;
07. i[2]  v2/s;
08. i[3]  v3/s;
09. i  i + 1;
10. End-if
11. End-for
12. End-for
13. End-for
14. Return ;
End-Murata_Organization

Fig. 6. Murata_Organization algorithm.

2. Proposed Vector  organization � UNIFORM-DIST.

In the Murata_Organization algorithm described in
Figure 6, the value of v1, v2 and v3 is commonly analyzed in
an increasing order. This strategy causes a problem when
used with the new memory-based approach proposed. When
the value of v1 is incremented, v2 and v3 receive the value 0,
which causes two consecutive search directions not near one
to another. For example, if r=3 objectives and s=5, we have
21 vectors v = (v1, v2, v3) in the following sequence: (0,0,5),
(0,1,4), (0,2,3), (0,3,2) (0,4,1), (0,5,0), (1,0,4), (1,1,3),
(1,2,2), (1,3,1), (1,4,0), (2,0,3), (2,1,2), (2,2,1), (2,3,0),
(3,0,2), (3,1,1), (3,2,0), (4,0,1), (4,1,0) and (5,0,0). The first
six vectors have v1=0 and each one are near to the previous
vector (each component varies at most one unity). The 7th
vector is the first with v1=1 and are not near to the previous
one (the first component varies one unity; the second one
varies five unities; and the third one varies four unities). The
same happens with the 12th, 16th and 19th vectors.

The new organization strategy, called UNIFORM-DIST,
analyzes the for statement of line 3 (Figure 6) in an
increasing order when the value of v1 is even, and in a
decreasing order when the value of v1 is odd. The same
happens with the for statement of line 4 (Figure 6) according
to the value of v2. With this strategy we maintain all the
vectors near to the previous one (each component varies at
most one unity). For instance, for the example of the previous
paragraph we have the same 21 vectors v = (v1, v2, v3)
organized as following: (0,0,5), (0,1,4), (0,2,3), (0,3,2)
(0,4,1), (0,5,0), (1,4,0), (1,3,1), (1,2,2), (1,1,3), (1,0,4),
(2,0,3), (2,1,2), (2,2,1), (2,3,0), (3,2,0), (3,1,1), (3,0,2),
(4,0,1), (4,1,0) and (5,0,0).

D. MMGRASP algorithm

Figure 7 presents the MMGRASP algorithm, which is the
GRASP-MULTI algorithm incorporated with the new
memory-based approach proposed in this paper. This
algorithm receives as input parameters the number of
iterations (N_iter), the percentage  used at the construction
phase, the percentage  used at the local search phase and the
number b of base search directions. Parameters  and  were
empirically set at 10% and 50%, respectively. Parameter b
was empirically set as 30% of N_iter. As output, the
algorithm returns the lPareto list, where the nondominated
solutions are stored. In line 1, the lPareto list is initialized. In
line 2, the vector  with the m = N_iter search directions is
organized by UNIFORM-DIST strategy (Subsection
III.C.2). The b base search directions are defined in line 3.
The loop in lines 4-14 executes N_iter GRASP iterations. In
line 5, the solution x is initialized. The search direction i is
defined in line 6. If i is a base search direction (1 is always
a base search direction), the solution x is built by the
BuildSolution procedure in line 8. Otherwise, the solution y
obtained at the previous GRASP iteration is used as initial
solution. The solution x is refined in line 13. Finally, the
lPareto list is returned.

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 191

IV. COMPUTATIONAL EXPERIMENTS

We compare the results of MMGRASP with the
following algorithms: GRASP_MULTI [33] and MOTGA
[1]. Both algorithms have outperformed three well known
algorithms: SPEA [36], SPEA2 [37] and MOGLS [21].

Procedure MMGRASP (N_iter, , , b)
Input
 N_iter � number of GRASP iterations;
  � percentage used at the construction stage;
  � percentage used at the local search stage;
 b � number of base search directions.
Output
 lPareto � list of nondominated solutions.
Begin
01. lPareto  ;
02. Organize the vector  of search directions by
UNIFORM-DIST strategy;
03. Define the b base search directions;
04. For i  1 to N_iter do
05. x  ;
06. Let i be the search direction in the position i of ;
07. If i is a base search direction then
08. x  BuildSolution (x, , i, lPareto);
09. Else
10. x  y; //y is the solution obtained in the iteration i-1;
11. Evaluate x with the weights associated to the new
search direction i;
12. End_if
13. y  LocalSearch (x, , i, lPareto);
14. End_for
15. Return lPareto;
End-MMGRASP

Fig. 7. MMGRASP algorithm.

All computational experiments with the MMGRASP and
GRASP-MULTI algorithms were performed on a 3.2GHz
Pentium IV processor with 1 Gbyte of RAM memory. The
MMGRASP algorithm was implemented in C using version
6.0 of the Microsoft Visual C++ compiler.

A. Test instances

In this work, we use the set of instances proposed by
Zitzler and Thiele [36]. They generated instances with 250,
500 and 750 items, and 2, 3, and 4 objectives. Uncorrelated
profits and weights were randomly generated in the interval
[10, 100]. The knapsack capacities were set to half of the
total weight regarding the corresponding knapsack: Wj =




n

i
ijw

1

.5.0 The problem instances are presented in Table 1

and are available at:
http://www.tik.ee.ethz.ch/\simzitzler/testdata.html.

B. Evaluation of computational results in multiobjective
optimization

The quality of a solution of a single-objective
minimization problem is evaluated in a straightforward
manner as the relative difference between the objective value
of such solution and the value of an optimal solution. In

multiobjective optimization, however, there is no natural
single measure that is able to capture the quality of a
nondominated set H to the Pareto optimal set or reference set
R.

Table 1. Test instances.
Instance Objectives Items

kn250_2 2 250
kn250_3 3 250
kn250_4 4 250
kn500_2 2 500
kn500_3 3 500
kn500_4 4 500
kn750_2 2 750
kn750_3 3 750
kn750_4 4 750

We measure the quality of the nondominated set H

generated by the heuristic method relative to the reference set
R by using two measures:

 Cardinal measure: number of reference solutions, NRS,
found by the heuristic method, where NRS = |H  R|.

 Distance measure (proposed by [8] and [31]): distance
between the nondominated set H generated by the
heuristic method and the reference set R. We measure the
average distance, Davg, and maximum distance, Dmax,
with

o Davg =),'(min
||

1
' zzd

R Rz
Hz



 and

o Dmax =)},'({minmax ' zzdHzRz 

where ,)'(
1

max),'(,...,1















  jj
j

rj zzzzd z�  H,

z  R and j is the range of the objective fj among all
reference and heuristic solutions.
Note that Davg is the average distance from a point z  R
to its closest point in H, while Dmax yields the maximum
distance from a point z  R to any point in H.

When the Pareto optimal set is not known and H� is the
set of nondominated points generated by another heuristic
method, we define the reference set R as the nondominated
points of (H  H�) and use the same measures mentioned
above to assess the approximation of H and H� relative to R.

C. Test instances

The experiments done were conducted using the test
instances described in Table 1, which were proposed by
Zitzler et al. [36] and has been also used by GRASP-MULTI
[33] and MOTGA [1] algorithms.

In the first experiment, the MMGRASP algorithm,
proposed at this paper, was run five times to each test
instances. Each run finished when the average running time
spent by MOTGA algorithm was achieved. The goal of this
experiment is to evaluate MMGRASP and MOTGA
algorithms running the same time in a similar machine.
Table 2 shows the average running times of MOTGA.

http://www.tik.ee.ethz.ch/\simzitzler/testdata.html.

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 192

Table 2. Average running times of MOTGA algorithm on a
Pentium IV 3.2 GHz.

Instance Time(s)

kn250_2 1.5
kn250_3 7.2
kn250_4 19.5
kn500_2 2.7
kn500_3 12.8
kn500_4 33.4
kn750_2 4.2
kn750_3 18.2
kn750_4 51.9

Table 3 presents comparative results for the first
experiment. In the second column is presented the number |R|
of reference solutions. In the following columns are
presented, for each algorithm (MOTGA and MMGRASP)
and for each instance, the total number of obtained solutions
(TNS), the number of reference solutions (NRS), the average
distance (Davg) and the maximum distance (Dmax).\

The results show that when the number of reference
solutions (NRS) is compared, the proposed algorithm,
MMGRASP, generates a larger number of reference
solutions on 8 instances from a total of 9 instances. So, by the
cardinal measure, MMGRASP performs better than
MOTGA. When the average distance, Davg, and the
maximum distance, Dmax, are compared, MMGRASP also
performs better than MOTGA.

In the second experiment, the MMGRASP algorithm was
compared with the GRASP-MULTI algorithm. The goal of
this experiment is to show the efficiency of the memory-
based approach proposed in this paper. 100 GRASP iterations
are executed by both algorithms. The algorithms are
compared using the cardinal and distance measures presented
at Subsection IV.B.

Table 4 presents comparative results for the second
experiment. In the second column is presented the number |R|
of reference solutions. In the following columns are
presented, for each algorithm � GRASP-MULTI (in the
table called just as GRASP) and MMGRASP �, and for each
instance, the total number of obtained solutions (TNS), the
number of reference solutions (NRS), the average distance
(Davg), the maximum distance (Dmax) and the consumed
execution time in seconds

The results show that when the number of reference
solutions (NRS) is compared, the proposed algorithm,
MMGRASP, generates a larger number of reference
solutions for all the test instances. So, by the cardinal
measure, MMGRASP performs better than GRASP-
MULTI. When the average distance, Davg, and the maximum
distance, Dmax, are compared, MMGRASP also performs
better than GRASP-MULTI. We also can see that
MMGRASP is faster than GRASP-MULTI

 In another experiment comparing MMGRASP and
GRASP-MULTI, we use the time-to-target method [3] [13].
Time-to-target plots (tttplots) display on the ordinate axis the
probability that an algorithm will find a solution at least as
good as a given target value within a given running time,
shown on the abscissa axis. They were used by Feo et al. [13]
and have been advocated by Hoos and Stützle [19] [20] as a

way to characterize the running times of stochastic
algorithms for combinatorial optimization. Aiex et al. [3]
preconized and largely explored the use of tttplots to evaluate
and compare different randomized algorithms running on the
same instance. Their use has been growing ever since and
they have been extensively applied in computational studies
of sequential and parallel randomized algorithms [27] [28]
[29]. The foundations of the construction of time-to-target
plots, together with their interpretation and applications, were
surveyed by Aiex et al. [4].

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 193

 Since �kn750_4� is the greatest and most difficult

instance, the results observed for the others instances are
summarized by the results obtained for this instance. The
time-to-target experiment was conducted using two different
stopping rules. In both, we performed 200 independent runs
of each algorithm (MMGRASP and GRASP-MULTI).In
the first rule, each run finishes when a number of reference
solutions greater than or equal to the number of reference
solutions obtained by MOTGA algorithm is found. In the
second rule, each run finishes when an average distance from
the reference set is less than or equal to the average distance
obtained by MOTGA algorithm is found.

The empirical probability distributions of the time-to-
target random variables of the first and second experiment are
plotted, respectively, in Figures 8 and 9 for each algorithm.
Such plots show that MMGRASP algorithm systematically
finds better solutions than GRASP-MULTI in smaller
computation times.

Fig. 8. tttplot experiment with stop criterion: number of
reference solutions.

Fig. 9. tttplot experiment with stop criterion: average distance

from the reference set.

V. CONCLUSION

In this paper, we propose a memory-based GRASP
algorithm to generate a good approximation of the set of
efficient or Pareto optimal solutions of a multiobjective
combinatorial optimization problem. It is applied to solve the
knapsack problem with r objectives and it is compared with
GRASP-MULTI algorithm, proposed by Vianna and Arroyo
[33], and with MOTGA, proposed by Alves and Almeida
[1]. Both algorithms have outperformed three well known
algorithms: SPEA [36], SPEA2 [37] and MOGLS [21]..

In the experiments done, when the number of reference
solution (NRS) is compared, the proposed algorithm,
MMGRASP, generates a larger number of reference
solutions on 8 instances from a total of 9 instances,
comparing with MOTGA, and for all the nine instances,
comparing with GRASP-MULTI. When the average
distance (Davg) is compared, MMGRASP obtained a smaller
average distance than MOTGA on 8 instances from a total of
9 instances and a smaller average distance than GRASP-
MULTI for all the nine instances.

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 194

In experiments done comparing GRASP-MULTI and
MMGRASP algorithms, it was verified that the MMGRASP
is faster than GRASP-MULTI.

Based on the obtained results, it is concluded that the
proposed algorithm, MMGRASP, is robust, outperforming
two efficient algorithms: MOTGA and GRASP-MULTI.

REFERENCES

[1] Alves M.J., Almeida M. 2007. MOTGA: A multiobjective Tchebycheff
based genetic algorithm for the multidimensional knapsack problem.
Computers & Operations Research, 34: 3458�3470.

[2] Ahmadi S., Osman I.H. 2005. Greedy random adaptive memory
programming search for the capacitated clustering problem. European
Journal of Operational Research, 162: 30-44.

[3] Aiex R.M., Resende M.G.C., Ribeiro C.C. 2002. Probability
distribution of solution time in GRASP: An experimental investigation.
Journal of Heuristics, 8: 343-373.

[4] Aiex R.M., Resende M.G.C., Ribeiro C.C. 2007. TTTPLOTS: A perl
program to create time-to-target plots. Optimization Letters, 1: 355-
366.

[5] Albuquerque, L.L., Almeida, A.T., Cavalcante, C.A.V. 2009.
Aplicabilidade da programação matemática multiobjetivo no
planejamento da expansão de longo prazo da geração no Brasil (in
Portuguese). Pesquisa Operacional, 29(1): 153-177.

[6] Armentano V.A., França Filho M.F. 2007. Minimizing total tardiness
in parallel machine scheduling with setup times: An adaptive memory-
based GRASP approach. European Journal of Operational Research,
183: 100-114.

[7] Coello C.A.C. 2000. An updated survey of GA-based multiobjective
optimization techniques. ACM Computing Surveys, 32(2): 109�143.

[8] Czyzak P., Jaszkiewicz A. 1998. Pareto simulated annealing � a
metaheuristic technique for multiple objective combinatorial
optimization. Journal of Multi-Criteria Decision Analysis, 7: 34�47.

[9] Deb K. 2004. Multi-objective optimization using evolutionary
algorithms. England: John Wiley & Sons Ltd.

[10] Ehrgott M., Gandibleux X. 2000. A survey and annotated bibliography
of multiobjective combinatorial optimization. OR Spektrum, 22: 425�
460.

[11] Fernandes E.R., Ribeiro C.C. 2005. A multistart constructive heuristic
for sequencing by hybridization using adaptive memory. Electronic
Notes in Discrete Mathematics, 19: 41-47.

[12] Feo T.A., Resende M.G.C. 1995. Greedy randomized adaptive search
procedures. Journal of Global Optimization, 6: 109�133.

[13] Feo T.A., Resende M.G.C, Smith S.H. 1994. A greedy randomized
adaptive search procedure for maximum independent set. Operations
Research, 42: 860-878.

[14] Fiehler, K., Bannert, M.M., Bischoff, M., Blecker, C., Stark, R., Vaitl,
D., Franz, V.H. & Rösler, F. 2010. Working memory maintenance of
grasp-target information in the human posterior parietal cortex.
NeuroImage, 1: 1�11.

[15] Fleurent C., Glover F. 1999. Improved constructive multistart strategies
for the quadratic assignment problem. INFORMS Journal on
Computing, 11: 198-204.

[16] Gandibleux X., Fréville A. 2000. Tabu search based procedure for
solving the 0-1 multiobjective knapsack problem: The two objectives
case. Journal of Heuristics, 6: 361�383.

[17] Gandibleux X., Ehrgott M. 2005. 1984�2004 � 20 Years of
Multiobjective Metaheuristics. But What About the Solution of
Combinatorial Problems with Multiple Objectives?. In: Coello AA,
Aguirre AH, Zitzler E (Eds.). Evolutionary Multi-Criterion
Optimization. Berlin, Springer: 33�46.

[18] Hansen P. 1997. Tabu search for multiobjective optimization: MOTS.
Technical Report. Technical University of Denmark. Paper presented at
The 13th International Conference on Multiple Criteria Decision
Making. Cape Town, South Africa, 1997.

[19] Hoos H.H., Stützle T. On the empirical evaluation of Las Vegas
algorithms â-Position paper. Technical report, Computer Science
Department, University of British Columbia, 1998.

[20] Hoss H.H., Stützle T. 1998. Evaluation Las Vegas algorithms - Pitfalls
and remedies. In: Proceedings of the 14th Conference on Uncertainty in
Artificial Intelligence, p.238-245.

[21] Jaskiewicz A. 2002. On the performance of multiple objective genetic
local search on the 0/1 knapsack problem: A comparative experiment.
IEEE Transaction on Evolutionary Computation, 6(4): 402�412.

[22] Jones D.F., Mirrazavi S.K., Tamiz M. 2002. Multi-objective
metaheuristics: An overview of the current state-of-art. European
Journal of Operational Research, 137: 1�19.

[23] Lourenço H.R., Pinto J., Portugal R. 1998. Metaheuristics for The Bus-
Driver Scheduling Problem. Economics Working Papers 304,
Department of Economics and Business, Universitat Pompeu Fabra.

[24] Lins I.D., Droguett E.L. 2009. Multiobjective optimization of
availability and cost in repairable systems design via genetic algorithms
and discrete event simulation. Pesquisa Operacional, 29(1): 43-66.

[25] Murata T., Ishibuchi H., Gen M. 2001. Specification of genetic Search
directions in cellular multi-objective genetic algorithms. In: Zitzler E,
Deb K, Thiele L, Coello CAC, Corne D (eds.). Evolutionary Multi-
Criterion optimization, First International Conference, EMO. Lecture
Notes in Computer Science. Zurich: Springer, 1: 82�95.

[26] Murphey R., Pardalos P.M., Resende M. 2000. Frequency Assignment
Problems. Handbook of Combinatorial Optimization. Kluwer: 295�
377.

[27] Resende M.G.C., Ribeiro C.C. 2003. Greedy randomized adaptive
search procedures. In: Glover F, Kochenberger G (eds.). Handbook of
Metaheuristics. Boston, Kluwer: 219�249.

[28] Resende M.G.C., Ribeiro C.C. 2005. GRASP with path-relinking:
Recent advances and applications. In: Ibaraki T, Nonobe K, Yagiura M
(eds.). Metaheuristics: Progress as Real Problem Solvers. Boston,
Kluwer: 29-63.

[29] [29] Ribeiro C.C., Rosseti I. 2007. Efficient parallel cooperative
implementations of GRASP heuristics. Parallel Computing, 33: 21-35.

[30] Ulungu E.L., Teghem J. 1995. The two phases method: An efficient
procedure to solve bi-objective combinatorial optimization problems.
Foundations of Computing and Decision Sciences, 20(2): 149�165.

[31] Ulungu E.L., Teghem J., Ost C. 1998. Efficiency of interactive multi-
objective simulated annealing through a case study. Journal of the
Operational Research Society, bf 49: 1044�1050.

[32] Van Veldhuizen D.A., Lamont G.B. 2000. Multiobjective evolutionary
algorithms: Analyzing the state-of art. Evolutionary Computation, 8(2):
125�147.

[33] Vianna D.S., Arroyo J.E.C. 2004. A GRASP algorithm for the multi-
objective knapsack problem. In: XXIV International Conference of the
Chilean Computer Science Society (XXIV SCCC). Washington: IEEE
Computer Society: 69�75.

[34] Vianna D.S., Dianin, M.F.V. 2013. Local search-based heuristics for
the multiobjective multidimensional knapsack problem. Production
Journal, 23(3): 478-487.

[35] Visée M., Teghem J., Pirlot M., Ulungu E.L. 1998. Two-Phases
Method and Branch and Bound Procedures to solve the Bi-objectives
knapsack Problem. Journal of Global Optimization, 12: 139�155.

[36] Zitzler E., Thiele L. 1999. Multiobjective evolutionary algorithms: A
comparative case study and the strength pareto approach. IEEE
Transactions on Evolutionary Computation, 3(4): 257�271.

[37] Zitzler E., Laumanns M., Thiele L. 2002. SPEA2: Improving the
Strength Pareto Evolutionary Algorithm. In: Giannakoglou K, Tsahalis
D, Periaux J, Papailou P, Fogarty T (eds.). EUROGEN 2001,
Evolutionary Methods for Design, Optimization and Control with
Applications to Industrial Problems. Athens, Greece: 95�100.

