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Abstract- An under-sampling technique that can be applied in an Orthogonal Frequency Division Multiplexing (OFDM) environment is 
presented in this paper. It allows the recovery of sparse input data, at the side of the receiver with fewer samples than the ones required by 
the Nyquist theorem. It is based on the fact that several samples can be replaced by others that have already been obtained at the side of 
the receiver if the input data are sparse and some properties of the Discrete Fourier Transform (DFT) are exploited. The Forward Error 
Correction (FEC) techniques employed can also assist in achieving a lower error in the recovery process. The proposed deterministic 
technique can be implemented with very low complexity hardware in contrast with Compressive Sampling techniques that require 
complicated optimization problems to be solved. The sampling of up to ¼ of the samples can be avoided at the side of the receiver reducing 

the size of the buffer memory used by the FFT, as well as the power consumption of the Analog Digital Converter at the receiver since a 
lower sampling rate is used at specific time intervals.  
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I. INTRODUCTION 
Although a signal has to be sampled at a rate that is at least 

twice its higher frequency component according to the 
Nyquist theorem, sparse signals can be reconstructed with 
fewer samples as shown in the Compressive Sampling (CS) 
approaches. The data recovery is performed in these cases 
using a very small number of samples. If the original data are 
not sparse, the difference between successive samples may be 
sparse and CS techniques are often applied to these sample 
value differences in the same way. An M×N matrix is 
considered to be S-sparse if only S of its values are non zero 
with S<<M×N. The sparse level is expressed here as a 
fraction of the non-trivial values. For example, a signal with 
S% sparsity means that S% of the signal values are non-zero.  

 

Kalman Filters are a popular technique for an input signal 
reconstruction [1]. They can be used for tracking the value of 
dynamic parameters in noisy environments. They can also be 
used for input data recovery from fewer samples. Kalman 
filters are based on a two step recursive process, in the first 
step the current state variables are estimated (prediction) and 
the second stage updates the estimated values when the next 
measurement is available. Real time signal reconstruction 
approaches based on Kalman filters have been implemented 
in hardware as is the case in [2].  

 

Kalman filters are also employed by some CS techniques 
[3][4]. The CS techniques are based on optimization  
problems that are solved by not deterministic processes that 
are difficult to implement in hardware. One of the first 
approaches in this field has been published in [5]. A CS 
technique that can be implemented with lower complexity 
hardware has been proposed in [6]. A CS problem can be 
modeled in the following simplified form: 

 eAxy                              (1) 

The Nd-size vector x is the input signal, the M-size vector y 
is the actual measurement (with M<<Nd) and e is an M-size  

 
error or quantization noise vector. Equation (1) has multiple 
solutions and a CS method finds an appropriate vector x that 
fits equation (1) with an acceptable approximation error e. 
The optimization target that has been proposed in various CS 
approaches for finding such an appropriate solution for vector 
x is: 

 1min Ax                             (2) 

Subject to 
 TAxy p                              (3) 

 

The difference between y and A∙x (expressed as an Lp 
norm) is restricted below a threshold T. The matrix A can be 
expressed as a product of other matrices with special features 
(e.g., partial Fourier or Hamadad matrices) while the 
optimization target of (2) can be applied to the product of 
these matrices with x. Such optimization problems can be 
solved by iterative or greedy algorithms (basis pursuit, 
gradient project, gradient pursuit, etc). All of these methods 
can be easily implemented in software but require high 
complexity hardware canceling the benefit from the use of a 
low cost ADC with lower speed and power consumption.  

 

Surveillance and other image processing applications have 
also adopted CS techniques [7-9]. CS techniques have also 
been used in OFDM environments for the channel estimation 
[10]. However, they have not been used for the recovery of 
the original data and this is not a surprise since the inherent 
data sparseness is cancelled in an OFDM environment by the 
FEC encoding, the interleaving and the (I)DFT processes.  

 

The proposed undersampling approach is not based on 
iterative, recursive or non-deterministic optimization 
problems. The only operations required are an appropriate 
interleaving scheme and a simple sparse data detector module 
at the side of the receiver that a) deactivates specific butterfly 
sub-blocks of the Fast Fourier Transform (FFT) module, b) 
controls the sampling rate of the Analog Digital Converter 
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(ADC) and c) substitutes the samples that have not been 
obtained with other available ones at the FFT input. There are 
also some restrictions concerning the data rate of the 
employed FEC method.  

 

A higher number of samples are required by the proposed 
technique (compared to the CS ones) but this is compensated 
by the very low cost and complexity hardware required. The 
proposed system has been modeled in MATLAB. All the 
combinations between 16-QAM or 32-QAM (Quadrature 
Amplitude Modulation) and 1024 or 4096 point FFT have 
been tested. Four and 16 pilots have used for the case of 1024 
and 4096-point FFT respectively. The results from the 
simulation of these models show that the Bit Error Rate 
(BER) is zero or below 10-4 using the proposed method if the 
channel Signal to Noise Ratio (SNR) and the sparse level is 
good enough.  

 

The principle of operation of the proposed undersampling 
method has been described by the author in [11] and [12] for 
1024-point FFT, 16-QAM modulation and 4 pilots. The use 
of the proposed method with a variety of QAM modulation 
schemes and FFT package sizes described in this paper 
proves that several communication standards could benefit 
from the proposed undersampling scheme. Moreover, details 
about the FFT implementation and the architecture of the 
whole system are given in this paper.  

 

The architecture of an OFDM system and the 
modifications needed to support the proposed undersamping 
method is described in Section II. The theory behind the 
proposed technique is discussed in Section III. Finally, 
simulation results are presented in Section IV. 

 
 

II. THE OFDM ARCHITECTURE 
 

Figure (1) shows the architecture of an OFDM system with 
the necessary additional modules to support the proposed 
method. At the side of the transmitter the input data bit 
stream is encoded by the employed FEC encoder that 
generates the parity bits that will be used at the receiver to 
correct potential errors that would occur during the 
transmission (e.g., due to channel noise). The FEC encoder is 
characterized by its data rate R that represents the fraction 
between the data and the total bits at its output. For example, 
if R=1/2, then half of the bits at the FEC encoder output are 
data and the rest are parity bits. 

 

The data and parity bits are interleaved and then mapped to 
constellations according to the employed QAM scheme. A 
number of pilots with constant values are placed among the 
resulting QAM symbols in order to equalize the channel 
subcarriers at the receiver. The resulting packet can be 
padded with guard symbols to form the input to an Inverse-
Discrete Fourier Transform (IDFT) consisting of N complex 
inputs Xk. The IDFT is implemented as an Inverse Fast 
Fourier Transform (IFFT). A Cyclic Prefix (CP) is usually 
added at the front of the packet of the N complex IDFT 
outputs xn to avoid inter-symbol interference. The 
transmission can be carried out either at the baseband or over 
a higher frequency carrier. The high frequency carrier 
modulation/ demodulation stages have not been described in 
Fig. 1 since they do not affect the proposed method. A 
Additive White Gaussian Noise (AWGN) channel is also 
assumed as is the case in wired communications. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 The Architecture of an OFDM system 
 
At the side of the receiver, an ADC samples the received 

signal in order to obtain the xn symbols. The CP symbols are 
ignored while the rest of the xn symbols include the payload, 
the pilots and the padding symbols. The sample values 
acquired by the ADC that form the FFT input as well as the 
output of the FFT (Xk) have to be buffered by the Serial to 
Parallel (S/P) and the Parallel to Serial (P/S) modules. The 
padding symbols as well as the pilots are removed from the 
FFT output and the rest of the Xk QAM symbols are mapped 
to the bits they correspond to. The resulting bit stream is De-
interleaved and feeds a FEC decoder that corrects any errors 
that can be recognized.  

 

According to the proposed undersampling scheme, each 
one of the Q-QAM symbols generated at the transmitter can 
be derived either from data or parity bits and not from both of 
them. Thus, the interleaver is allowed to permute data bits or 
parity bits within a single group of log2Q bits or permute Q-
QAM symbols provided that Q-QAM data symbols will 
remain at the odd positions as will be described in the next 
section. The data rate of the FEC encoder should also be 
higher than ½ in order to have enough data Q-QAM symbols 
at all the odd positions of the IFFT input.  

 

Of course, at the side of the receiver the employed De-
interleaving and FEC decoding schemes must comply with 
the ones adopted at the transmitter. The data bit stream at the 
output of the FEC decoder is observed in order to detect 
sparse data transmission. In most cases sparse data exchange 
will last for a large number of successive N-point FFT 
transforms. The Sparse Data Detector (see Fig. 1) at the side 
of the receiver may count the number of successive trivial 
bits (e.g., with value 0) and if large sequences of sparse data 
are detected the receiver may enter the �Undersampling 

Mode�. When the Sparse Data Detector finds that the output 

data are not sparse anymore, it will exit the �Undersampling 

Mode�. It is possible that the output data will have a large 
error during the time interval between the ending of the 
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sparseness and the �Undersampling Mode� deactivation, but 

this can be tuned to be short enough by the Sparse Data 
Detector according to the type of applications that use the 
proposed telecommunication system architecture. 

 

In the �Undersampling Mode�, the Sampling Speed and 

Replacement module (see Fig. 1) samples the receiver input 
signal at half speed for up to 25% of the time as will be 
described in the next section. The samples that will be 
omitted in these undersampling intervals (up to 25%) are 
replaced by other samples already retrieved.  

 

In the �Undersampling Mode� up to half of the FFT 

circuitry can also be deactivated (i.e., one of the two N/2-
point FFT butterflies). As will be shown in Section IV, if the 
undersampling is applied to 25% of the samples/time and 
correspondingly half of the FFT circuitry is turned off, an 
high error floor occurs. However, operating in 
�Undersampling Mode� in 12.5% of the time is a more 
realistic scenario. In this case, the ADC would dissipate half 
power since the power consumption is proportional to the 
operating frequency. Moreover, a quarter of the FFT circuitry 
(a N/4-point FFT butterfly) could be turned off and the 
buffering memory as well as the speed can also be improved 
by the same amount as will be discussed in the following 
sections. 

 

III.  THE CONCEPT OF THE PROPOSED 
UNDERSAMPLING METHOD 

 

The DFT and IDFT operations are defined by the 
equations (4) and (5) respectively: 





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1

0
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The twiddle factors 
kn

NW and 
kn
Nw are defined as: 

 

 
N

kn
j

kn
N eW

2

                             (6) 
 

 
N

kn
j

kn
N ew

2


                             (7) 

 
and j2=-1. It can be proven that the symbols x2p+1 with p 

between 0 and N/4-1 are equal to the symbols x2p+1+N/2, 
provided that X2t+1=X2t+1+N/2, for t between 0 and N/4-1. 
Equation (5) can be rewritten for x2p+1 as: 
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while x2p+1+N/2 can be estimated as: 
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As can be seed from equations (8) and (9), x2p+1= x2p+1+N/2 

only if the Xk at the odd positions are 0. This is not a very 
useful property for the case of the QAM modulation since 
there are no QAM symbols with 0 value. Nevertheless, if the 
terms in the summations of equations (8) and (9) are grouped 
in pairs that include Xk symbols with distance N/2, then for a 
single pair with odd k we would have: 
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As can be shown from equation (9) it is sufficient to have 

Xk=Xk+N/2 when k is odd (k=2t+1). This can be achieved if 
the QAM symbols are derived by sparse data (e.g., 0) since in 
this case almost all of the X2t+1 symbols will have the same 
value (QAM equivalent of 0). If Xk=Xk+N/2 holds for almost 
all odd k<N/2, then all the Xk symbols with odd k add up to a 
zero or near zero value. This can be achieved if the Xk 
symbols with odd k are derived by sparse data. In this case, 
half of the xn symbols at the odd positions can substitute the 
rest of the xn symbols with odd n. The number of the 
substituted samples can be further increased if the Xk values 
are correlated with specific rules. 

 

The sparse data Xk symbols can be placed at odd k-
positions, by an appropriate interleaving and FEC encoding 
scheme. A few Xk symbols will not be equal to the trivial 
common value Xc, since the input data have a high sparseness 
level but they are not all zero. As already mentioned the data 
rate R of the employed FEC encoder, should be greater or 
equal than 1/2. If R=1/2, the data and the parity bits can be 
grouped separately by the Q-QAM modulator of Fig. 1 and 
half of the Q-QAM symbols will correspond to data having 
the same trivial value Xc. The symbols with Xc value should 
be placed by the interleaver at the odd positions. The 
proposed method is still applicable if R>1/2 since additional 
data symbols with Xc value will be placed at even positions. It 
is not recommended however to use FEC encoders with 
R<1/2 because some parity symbols will have to be placed at 
odd positions and these parity symbols will probably not 
have an Xc value.  

 

Optimal interleaving strategies depend on many factors 
like, the data rate R, the decoding algorithm used, its 
randomness, the minimum distance where a value should be 
moved, etc. For example, the higher the data rate R is, the 
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higher is the BER [13]. Moreover, a difference in the BER in 
the order of 10-3 can be observed between different 
interleaving schemes for the same SNR[13]. As can be 
deduced by the analysis on equation (10), the interleaver in 
the proposed method is allowed to do any permutation 
separately in the data and the parity bit stream. It is also 
allowed to permute in a random way the data Q-QAM 
symbols between odd positions and the parity Q-QAM 
symbols between even positions (channel interleaving) but it 
is not allowed to move data symbols to even positions and 
parity symbols to odd positions.  

 

The position of pilots and the padding symbols has also to 
be taken into account by the interleaver. A value equal to Xc 
is also selected for these symbols. In this work, the FEC 
encoder is implemented as a Recursive Convolutional 
Systematic (RSC) encoder with a systematic and a parity 
output with data rate R=1/2. The feedforward path is 
described by the polynomial 1+D+D2+D3 and the feedback 
path is described by 1+D+D2. A Viterbi decoder is used at the 
side of the receiver. A small 2×log2Q-bit buffer is used at the 
output of the encoder to group the log2Q data and log2Q 
parity bits into a pair of Q-QAM symbols.  

 

The structure of the IFFT input packets for the case of a 
1024 and a 4096-point FFT are shown in Fig. 2, in order to 
demonstrate how the interleaver should place the data, parity, 
pilot and padding symbols. In both cases it is assumed that 
25% of the packet is padding. In the example of the 1024-
point FFT (Fig. 2a), 4 pilots are used. After 96 padding 
symbols the 1st pilot appears  (Pt1 at the position No. 96). 
The data (D) and parity (P) Q-QAM symbols follow. A data 
symbol should be placed first since the position No. 97 is 
odd. Then the rest of the symbols are placed in an alternating 
manner (DPDP.. or PDPD..) in order to reassure that data 
symbols are placed in the odd positions. The second pilot 
(Pt2) appears at an odd position, thus the following sequence 
must start with a parity symbol in order to reassure that data 
symbols continue to be placed at odd position. In the same 
way the sequence for the rest of the data and parity symbols 
is determined as shown in Fig. 2a. In this example the parity 
and data sequences form segments of 192 symbols separated 
by pilots.  

 

In the same way the 4096 symbol packet is constructed at 
Fig. 2b. In this case, 16 pilots are used, but the 16 parity/data 
segments still consist of 192 symbols. In both cases, the 
specific Q-QAM modulation used does not affect the 
structure although the total number of bits differs according 
to the Q value used. For example, in the case of 1024-point 
FFT and 16-QAM, 1536-bits are transferred within each 
packet while 1920-bits are transferred within the same packet 
structure if 32-QAM is used. 

 

Some blocks of the FFT module used at the receiver can 
also be deactivated when specific FFT inputs have the same 
value as can be seen from Fig. 3 where the butterflies of an 
N-point FFT are shown. The even positioned xn values are 
inputs to an N/2 FFT. The odd positioned xn values form pairs 
of equal values: (x2p+1, x2p+1+N/2) that are inputs to 2-point 
FFTs. The outputs of the 2-point FFTs and consequently the 
ones of the higher radix FFTs that are constructed using these 
2-point FFTs are all zero since: 

0
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n

kn
Nw                              (11) 

 
The bottom N/2-point FFT of Fig. 3, does not contribute to 

the estimation of all the outputs of the N-bit FFT and can be 
deactivated or omitted if the data exchanged over the OFDM 
environment are permanently sparse. The implementation of 
the FFT would require only half of the die area in this case. If 
sparse data are only occasionally exchanged and detected by 
the Sparse Data Detector of Fig. 1, a die area reduction is 
inevitable but at least the FFT power consumption can be 
significantly reduced when some butterflies are turned off. 

 
 

IV.  SIMULATION RESULTS 
 

The system described in Fig. 1 was modeled in MATLAB 
and configured to simulate the FFT symbol packets of Fig. 2 
for 16 and 32 QAM as shown in Fig. 4-6. The specific 
combinations tested were: a) 16-QAM, 1024-point FFT (Fig. 
4), b) 32-QAM, 1024-point FFT (Fig. 5), c) 16-QAM, 4096-
point FFT (Fig. 6) and d) 32-QAM, 4096-point FFT. In each 
one of these cases pseudorandom inputs with three levels of 
sparseness were used: 0.5%, 1% and 2%. Finally, all of these 
cases were tested for 25%, 12.5%, 6.25%, 3.125% sample 
replacement. The option where no samples are replaced was 
also considered as a reference in each case.  

 

One of the conclusions that can be drawn by observing 
Fig. 4-7 is that 32-QAM performs worse than 16-QAM. 
Generally speaking, the probability of having a non-zero bit 
within the log2Q bits of a QAM symbol is higher as Q 
increases. In this way, a larger number of QAM symbols has 
a value different from Vc. Thus, the proposed undersampling 
method is more efficient for Q-QAM modulations with lower 
Q. The size of the FFT input symbol packet is not important 
at least when the padding level is similar.  

 

Although the error floor for 25% sample replacement is 
too high, the error floor of 12.5% sample replacement can be 
acceptable (close to 10-3 or lower) if the sparseness level is 
below 0.5%. If a smaller number of samples is replaced (as in 
the case of 6.25% or 3.125%) then full input recovery is 
possible in most of the sparseness levels tested, if the channel 
SNR is high enough. 

 

Although a direct comparison with the referenced 
approaches is not possible since different metrics are used 
according to the target applications of each method, the basic 
features of three of the referenced approaches are listed in 
Table 1. In [7] the Normalized Mean Square Error (NMSE) is 
used to measure the efficiency of the proposed method. the 
number of samples used to reconstruct an image of 650 pixels 
ranges from 120 to 320. The corresponding NMSE in our 
approach is much lower than 0.1 in many cases. The case 
study of the reaction 1H-1H COSY spectrum is used from 
reference [8]. In [10] the OFDM channel response is 
estimated using a small number of pilots as shown in the 
second column of Table 1. The achieved BER is shown in the 
third column for specific channel SNR conditions.  
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(a) 
 
 

 
 

(b) 
Fig. 2 FFT packet structure tested for 1024-points (a) and 4096-points (b) 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Deactivated FFT butterflies (with red color outputs) when the odd positioned inputs have the same value 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 4 1024-point FFT with 16-QAM for 0.5% (a), 1% (b) 
and 2% (c) sparseness and for 5 sample replacement cases 

(25%, 12.5%, 6.25%, 3.125% and 0%) 
 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 5 1024-point FFT with 32-QAM for 0.5% (a), 1% (b) 
and 2% (c) sparseness and for 5 sample replacement cases 

(25%, 12.5%, 6.25%, 3.125% and 0%) 
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(a) 

 
(b) 

 
(c) 

 
Fig. 6 4096-point FFT with 16-QAM for 0.5% (a), 1% (b) 

and 2% (c) sparseness and for 5 sample replacement cases 
(25%, 12.5%, 6.25%, 3.125% and 0%) 

 
 
 

TABLE I  COMPARISON WITH REFERENCED 
APPROACHES 
 

Reference 

U
se

d 
Sa

m
pl

es
 

E
rr

or
 

 This work 
896 of 1024 (0.5% 
sparsity, 16-QAM) BER≈10

-4 @ SNR=40dB 

[7] 120-320 from 650 NMSE ≈ 0.18 

[8]  0.20 sampling rate fraction Error:  0.007 

[10] 224 pilots in 1024 
subcarriers 

BER=10-4 @ SNR=12dB 

 
 
 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 7 4096-point FFT with 32-QAM for 0.5% (a), 1% (b) 

and 2% (c) sparseness and for 5 sample replacement cases 
(25%, 12.5%, 6.25%, 3.125% and 0%) 

 

V. CONCLUSIONS 
An undersampling method that can be implemented with 

low complexity hardware in an OFDM environment was 
presented in this paper. It was tested using different size FFTs 
and QAM modulation methods. Up to ¼ of the samples at the 
receiver can be substituted by other available samples, 
reducing the power consumption of the ADC and the FFT as 
well as the size of the memory needed to store the ADC 
samples. The input data recovery can be achieved with zero 
or very low error. 

 

Future work will focus on the investigation of the 
efficiency of the proposed undersampling method in wireless 
and Multiple In, Multiple Out (MIMO) channels. Moreover, 
FEC methods other than Viterbi will be studied like LDPC 
and Turbo Codes.  
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