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Abstract- This paper presents another equation for dynamics of viscous fluid. It has been derived by using Navier - Stokes equation
and by taking into consideration Euler equation integral of ideal fluid dynamics[1].
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. INTRODUCTION

Navier - Stokes' equation for compressible viscous fluid has
the following form:

5
Dv =

— = f—i~gradp+ v-Av+ Y. graddivv - 1)
Dt P 3
where: PV - first material time derivative of velocity,
Dt

f - intensity of the mass forces, p - pressure,

p - fluid density, , = ' - kinematic viscosity,

P
2 2 2
1 - dynamics viscosity, A:i2+i2+i2-
X X
Laplacian operator.
. ¢t dp
Pressure's  function, Ry :Jli, could be
pup(p)

introduced for barotropic fluid flow, implying:
1 gradp = gradi - (2
P
If the conservative mass forces field has the
potential U, then:
f =—gradu. )
Laplacian operator can be presented:

Av = graddivv-rotrot v, (4
eguation (1) can be written as:

Dv 2 1 4 o .
—=f—-—-gradp+—-v-graddivv—rotrotv. (5
Dt P 3

[l POTENTIAL FLOW

Non whirling potential flow can be expressed as:

s
rotv =0, (6)
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ie rotrotc =0 (7
yielding:

%:—grad(u +SR)+g~v-graddivv- (8) Scalar

multiplication of the equation (8) by element of stream line,
-

d <, yidds:

(% , d§j =—(grad(U + R),ds)+ g-v -(graddiw,ds) (9)

Member (1) of equation (9) according to [1] , can be written
as:

3 - - Vi 2
d(Dlez Dv & +(V,D\7):[Dv,d§}+d v
Dt )| Dt Dt 2

(10)

i.e
{Dv,dé} _ d(D' ) _ d[\lzj . (1)
Dt Dt 2

where I - isfluid flow aong stream line L. Member (2) can
be written as:

—(grad(u +R),d g) =-d(U +R). (12)

Member (3) of equation (9) can be written as:

-g-v- graddivv,d s :;‘-v-d(diij (13)

Replacement (10-13) in equation (9) yields:
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d(D'Lj-dLVZJ - d(U +m)+g-v-d(div§), (14)

Dt 2
i.e.
DI 2 .=
L Y iw4U —ﬂ-v-dIVV=C(t)-
Dt 2 3
Temporal function C(t) in a determined moment has a

(15

5
concrete value.  Since for potential flow V = grade, the
material derivative of fluid flow can be written as:

DI, 4, - a
=—Lt4+v.gradl, = —Lt +Vv?, 16
Dt - A& graal A (16)
since divv =divgrade = Ap (17)

By replacement of Egs. (16 - 17) in eg. (15), energy equation
for potential flow of viscous compressible fluid can be
written as;

—+=-V +U+R-——-v-Ap=C(t), (18
275 gV Ar=CO, (9

N V2 4
— - dS+—+U+R——-v-Ap=C(t), (19
Iﬁ 2 3 vae ® 49

L
o 4

[a-ds+u + -2 v Ap =C() (20)

L

Equation (15) can be written:

DI, V2 4
— L tU+R-Zv-Ap=C(t) (1
Dt 2 3V ar=cl @

Energy equation for potential flow of ideal fluid (1)
is presented the following form [1]:

A1y +R=C() (22
a 2

2
fﬂ-d§+v—+u +R=C(t),
A 2

L

ja-d§+u +R=C(t). (4
L

Next conclusion can be derived from Eq.(22): during non-
stationary flow of the same fluid particles along the
streamline or whirling line, sum of energy pressure, potential
energy and local time derivative of fluid flow and kinetic
energy value, is equal to tempora function C = C(t), being
equal Cfort=t.[1]
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Next conclusion can be derived from Eq.(24): during non-
stationary flow of the same fluid particles along streamline or
whirling line, sum of kinetic energy, potential energy, energy
pressure and local acceleration flow along L curveis equal to
temporal function C = C(t), beingequal C, fort =t;. [1]

Next conclusion can be derived from Eq.(23) during non-
stationary flow along streamline or whirling line, sum of
kinetic energy, potential energy and acceleration flow along
L curveisequa to temporal function C = C(t), being equal C
fort=t;.[1]

Analysis of the equations (18 —20) yields the next conclusion:
In energy equation, for non-stationary flow of viscous

compressible fluid(22-24), energies member g-v-A(p, is

supposed to be subtracted, i.e. energy lost due to viscous
fluid flow is supposed to be subtracted.
For non-compressible fluidthen, in this case energy lost due

to viscosity is equal zero (g-v-A(p =0). So, Eq. (18-22)

comes to equation of ideal fluid flow. Since energy balance
of viscous non-compressible fluid flow cannot be equal to
energy balance of ideal fluid flow next conclusion can be
made: each flow of viscous, non-compressible fluid is
whirling flow. This conclusion has been alsomade in another
paper [4].
Il WHIRLING FLOW

Scalar multiplication of the equation (8) by element of

whirling line, dg,yields:

(%\Z ! di’*‘?) = —(grad (U + %), ds)+ %-v (graddivv, ds)-

—v -(rotv,ds)

(25)
Whirling flow is presented as:
- -
rotv=2-w, (26)

where @ isangular velocity of fluids particles.
Member (4) of Eg. (25) can be written as:

v-|rotrotv,ds|=2-v-|rotw,d s|- @7

We try to find function J(X,Y,z), whose total
differential is Eq.(27), i.e.,

d3(x,y,2)=2-v (rot;,d gj , then,

(rotg),d g) = P(X,y,2)-dx+ Q(x,y,2) -dy+ R(x,y,2) -dz

(28)
Since:
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— — ﬁ 0’)
(rOtw,d s): oy _ Xy -dx+ oy _ o, -dy+ do, _ 0y -dz
¥ & & & X

(29)
where:
P(x,y,2) = (rot Z)) = (ﬁwz - &wxj , projection
x &

N
rot w tox - axis,

Q(x,y,2) = (rot Z)) = (

y

a0, - o”a;z) , projection rot w
oz X

toy - axis,

R(x,y,z)z(rot;oj :(é’wx_ﬁa)y)’ projection rot w
% X

z

to z - axis.
Conditions for the function J(X,Y,z) to be total
differential are:

P A _ia O dw, o, _ﬁ[&a)x_é’wzjzo
& & ey a) xa
(30)

PR ﬁ(ﬁwz _é’wyj_ﬁ(é’wx _ﬁwy] _
a & a\y a) x\&y &)
(31)

@—@zo,i.e.,ﬁ(ﬁ‘"x _ﬁa)zj_ﬁ(é’a)x _awyj _
a & a\la &) ylgy &
(32)

We introduced new vectors function:
v =P(X¥,2) 1+Q(X¥,2): [+R(xy,2) k=35

- —

=y, ity - jty,-k=rotew

whoserotor is:

mh;:@j_@j.a@_m).p(@_@.z

oz a X X
(34
if the condition (29 - 31) isfulfilled, then:
roty =0, (35)
where; 17/ =rot Z) . (36)

Existence of potentia vector function, or rotor's
angular velocity is confirmed by Eq. (36).

w = grad3(x,v,2), (37)

i.e

§ ~ P(x,Y, z):? —Q(x Y, z):and% ~ R(X.2)
(38)
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Equation (26) can be now written in the form:
v-|rotrotv,ds |=2-v-|rotw,d s |=2-v-d(3((x Y, 2)))
(39

If the condition (27) is fulfilled, then function 3(X,Y,2) is
potential  function ofvectors function w(X,Y,2), i.e
function 3(X,Y,2) is potential function of rotors' angular
velocity.

Replacement of Egs. (10 - 13) and (38) in Eq. (25)
can by written as:

DI v? 4 ~
DtL —7+iR+U —g-v-A(p—2~v-\s((X,y,Z))=C(t)
(40)

a, 1, 4

L ViU +R-——v-Ap—2-v-3((x y,2))=C(t
Fa 3 VA v-3((x y,2))=C(t)
,(41)

& v2 4

—d5+—+U+R——=-v-Ap-2-v-3l(X,Vy,2))=C(t
{ﬁ . SV A0-2v-3((x ,2) =C()
(42)

ja-d§+u +m—g-v-A¢—2-v-s((x,y,z))=C(t)
L
43)

For nonstationary whirling flow of viscous compressible
fluid itcan be concluded (40-43):

sum of energy pressure, potential energy and local time
derivative of fluid flow and kinetic energy value, minus

energies member g-v-A(p, minus  energies member

2:-v- S((X, Y, Z)) due to potential function of rotors angular

velocity. is equal to tempora function C = C(t), being equal
Cfort=t.

Sumof kinetic energy, potential energy, energy pressure and
local acceleration flow along L curve minusenergies member

ﬂ-v -A@ , energy lost due to viscous fluid flow is supposed

3
to be subtracted, minus energies  member

2:-v- S((X, Y, Z)) due to potential function of rotors angular
velocity is equal to temporal function C = C(t), being equal C

fort=tj.
Sum of kinetic energy, potential energy and acceleration flow
aong L curve minus energies member gvﬂ(p, energy

lost due to viscous fluid flow is supposed to be subtracted,
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