

International Journal of Latest Research in Science and Technology ISSN (Online):2278-5299
Volume 3, Issue 2: Page No.187-190 ,March-April, 2014
https://www.mnkpublication.com/journal/ijlrst/index.php

ISSN:2278-5299 187

Publication History
Manuscript Received : 25 April 2014
Manuscript Accepted : 28 April 2014
Revision Received : 29 April 2014
Manuscript Published : 30 April 2014

FAST PARALLEL CONNECTED COMPONENT
LABELING ALGORITHMS USING CUDA BASED ON

8-DIRECTIONAL LABEL SELECTION

1Youngsung Soh, 2Hadi Ashraf, 3Yongsuk Hae, 4Intaek Kim
 1,2,3,4Myongji University, Yongin, Korea

Abstract- Connected component labeling (CCL) is a key step in image segmentation where foreground pixels are extracted and labeled.
Sequential CCL is a computationally expensive operation and thus is often done within parallel processing framework to reduce execution
time. Various parallel CCL methods have been proposed in the literature. Among them NSZ label equivalence (NSZ-LE) method seemed
to perform best. In this paper we propose two new parallel CCL algorithms based on 8-directional label selection and show that they run 3
to 10 times faster than NSZ-LE depending on the characteristics of images.

Keywords � Connected Component labeling, CUDA, GPU, Parallel

I. INTRODUCTION
In computer vision, CCL is used for image segmentation to

extract and label foreground pixels from background. Many
approaches were proposed in the field of CCL. Wu et al. [1]
divided CCL algorithms into 3 classes. They are multi-pass,
two-pass, and one-pass algorithms. Multi-pass algorithm
usually assumes some kind of local neighborhood to search
for minimum label within that neighborhood and sometimes
memorizes label equivalences. This is repeated over multiple
iterations. In two-pass algorithm, 3 steps are usually
executed. They are scanning, analysis, and labeling. Scanning
step assigns an initial label to each pixel and records
equivalence among labels if necessary while searching for
neighbors. Analysis step tries to find a final label for each
label by resolving equivalence chains and labeling step
assigns a final label to each label. Scanning and analysis steps
require one pass and labeling step requires another. One-pass
algorithm scans the image from left-top to right-bottom only
once and gives a new label to unlabeled pixel. Then all the
pixels connected to that pixel are searched and are assigned
the same label. This is repeated until no more unlabeled
pixels are left. The algorithms mostly used for CCL,
regardless of the number of passes they adopt, were
sequential with heavy computation overhead [2, 3]. To
overcome this difficulty it has been tried to implement CCL
in parallel framework.

The usage of GPUs with CUDA opened a new research
field for CCL and many other data processing algorithms [4].
The implementation of parallel CCL using CUDA and GPUs
drastically reduced computation time. Among many parallel
CCL methods using CUDA proposed so far, NSZ-LE [5] is
known to perform best. However, this method requires a lot
of iterations since it looks at only 4 immediate neighbors to
find out the minimum label.

 In this paper, we present two new algorithms for CCL
using CUDA. The first method, termed as 8DLS(8-
directional label selection), searches for minimum label of

each object pixel for 8 directions(east, west, south, north, and
4 diagonal directions) until background pixel is encountered
and changes the label of that pixel with minimum label
found. This process is repeated until all object pixels have
minimum labels. The second method, termed as
M8DLS(modified 8DLS), is a modification of 8DLS such
that object pixels having locally minimum label already will
not be processed until they find that there is a change in that
label, thus saving computation time.

This paper is organized as follows. In section 2, related
works for CCL are discussed. Section 3 presents two
proposed methods. Results are depicted in section 4 and
section 5 concludes the paper.

II. RELATED WORKS

Since the early 1980s many researchers have been
working on fast CCL. Some of these researches were based
on sequential processing [1,2,6] and some others based on
parallel computing [5,7]. Suzuki et al. [2] proposed a
sequential CCL, which is quite simple and suitable for
implementation in hardware. But it is not fast enough since
the execution time of their method is proportional to the
number of pixels in connected components in an image. So as
the number of pixels in an image increases, the execution
time taken by the sequential algorithm also increases, hence
making it not suitable for images with high resolution.

Wu et al. [1] proposed the scan based array Union-Find
(SAUF) algorithm which is basically an optimized two pass
algorithm. The performance of this algorithm in accessing the
memory pattern in CCL has been significantly improved by
almost 10 times than that of the contour tracing algorithm [6]
and other previous methods [2]. They mentioned that the only
drawback of this algorithm is the immense reduction in its
efficiency when images with small resolution are processed.
Chang et al. [6] proposed the contour tracing algorithm which
has a better computational speed than [1,2] but takes more
time in accessing the memory pattern. The execution time of

id10516230 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

https://www.mnkpublication.com/journal/ijlrst/index.php

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 188

the algorithm increases with the increase in the number of
connected pixels.

Hawick et al. [7] proposed parallel version of the label
equivalence algorithm using GPUs. Their algorithm consists
of three basic steps: scanning, analysis and labeling. These
steps are repeated in a loop until all of the connected
components are identified and labeled correctly. Due to the
parallel implementation of CCL this algorithm decreases the
execution time quite effectively but it consumes more
memory in using the reference array.

Kalentov et al. [5] proposed two methods. The first one is
a simple row column unification method where a single
thread is assigned for each row and column, scans each row
and column in a predetermined direction, and changes the
label of each pixel with the minimum label found so far along
the scan direction. This process is repeated until all pixels
have minimum labels. The second method is the NSZ-LE
where a single thread is assigned to each pixel, searches for
immediate 4 neighbors for minimum label, constructs the
label equivalence chain, and does relabeling by resolving
chains. This method seems to give the best performance
among CUDA-based parallel CCL algorithms presented so
far.

III. THE PROPOSED METHOD

We presented two new multi-pass methods for parallel
CCL. They are 8DLS and M8DLS and are explained below
in detail.

A. 8DLS Method

. This method utilizes the basic concept of 8-connectivity
and checks all the 8-connected neighbors for minimum label.
The pseudo code for the 8DLS method is given in Algorithm
I.

ALGORITHM I: THE 8DLS METHOD IN PSEUDO

for j =1 to n iterations do
 for each pixel p in an image do
 if p is an object pixel

then it becomes a focused pixel
 for i = 1 to 8 directions do
 search for minimum label until background pixel is hit
 and put it in mini
 end for
 end if
 take minimum label m among mini , 1<= i <= 8 and relabel
 the focused pixel with label m
 end for
 if no label change for all the object pixels
 then exit
end for

Each pixel of the image is initialized with a unique label

which is equal to the sequential index value of the pixel in the
image: The iterations are the number of times the image is
processed until each pixel is identified and labeled correctly.
Every pixel in the input image is checked whether it is an
object pixel having value �1�. If so, then that pixel is

considered as a focused pixel. Now keeping the focused pixel
in mind all 8 directions around the focused pixel are checked
one by one for minimum label. For example, we check the
north direction first, and then the value of the pixel connected

to the focused pixel in the concerned direction will be
checked. If its value is �0� (meaning that it is a background
pixel), then no further checking in that direction will be done.
If the value of connected pixel is �1�, then its label will be

compared with current mini of the pixel in that direction. If
the label is less than current mini then that label is stored in
variable mini and the label of the next pixel in that direction
is checked and so on until a background pixel having value
�0� is hit. After that, remaining directions are checked with

the same procedure.
After all 8 directions have been checked, a minimum label

is obtained which is then compared with the label of the
focused pixel. The minimum between the two will be
assigned as the label of the focused pixel. This process is
repeated for all the object pixels in the image and stops when
there is no label change for all object pixels. Fig. 1 shows a
running example of the 8DLS method.

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

(a)

0 1 2 3 4 5 6 7 8 8

10 11 1 3 14 15 16 6 8 19

20 3 12 23 24 25 8 9 28 18

30 31 12 22 34 35 36 17 27 39

40 32 12 43 44 45 37 17 26 49

32 33 12 53 54 55 29 57 38 26

(b)

0 1 2 1 4 5 6 7 6 8

10 11 1 1 14 15 16 6 6 19

20 1 1 23 24 25 6 6 28 8

30 31 1 12 34 35 36 6 9 39

40 12 1 43 44 45 17 6 8 49

12 12 1 53 54 55 17 57 17 8

(c)

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 189

0 1 2 1 4 5 6 7 6 6

10 11 1 1 14 15 16 6 6 19

20 1 1 23 24 25 6 6 28 6

30 31 1 1 34 35 36 6 6 39

40 1 1 43 44 45 6 6 6 49

1 1 1 53 54 55 6 57 6 6

(d)

Fig. 1 Running example of 8DLS method. (a) Initial Label,
(b) After first iteration, (c) After second iteration, and (d)

After third iteration.

Fig. 1(a) is a sample input image that has been uniquely
labeled according to the indices of the pixels in the image.
Here white pixel is an object pixel and the shaded is a
background pixel. Assuming 8-connectivity, there are two
objects. A single thread is assigned to each pixel and the
algorithm is performed only on object pixels. Fig. 1(b), (c),
and (d) show the results obtained after first, second, and third
iterations respectively. To see how it works, let us consider
the pixel with label 27 in Fig. 1(a). We search for 8 directions
and find that the label 9(underlined) in 45° diagonal direction

is the minimum. Thus the label 27 is changed to 9 as in Fig.
1(b) at the same location. For this example 3 iterations were
enough to correctly label all the object pixels.

B. M8DLS Method

The basic algorithm for M8DLS is same as that of 8DLS.
The pseudo Code for the M8DLS algorithm is given in
Algorithm II.

ALGORITHM II: THE M8DLS METHOD IN PSEUDO

for i=1 to n iterations do
 for each pixel p in an image do
 if p is an object pixel
 then it becomes a focused pixel
 if (i>=2) and (label of p is not the smallest)
 then apply 8DLS
 end if
 end if

end for
if no label change for all the object pixels
then exit

end for

The only modification is that after second iteration the

label of the focused pixel is checked if it is the smallest so
far. If it is not, 8DLS is applied. Otherwise, no further
processing is performed, thus saving computation time.
Checking for smallest is done as follows. Let initial label
image array be LABEL. Then after assigning initial label
sequentially to an image, LABEL (i) becomes i, for i = 0 to
(total number of pixels in the image) - 1. For focused pixel p
having a label j, we check if LABEL (j) is still j. If it is, we
say that j is the smallest label so far. Otherwise it is not the
smallest since it has already been changed, thus having a
possibility of further change. If LABEL (j) is changed to
something else later, then we apply 8DLS again to pixels

having label j. Algorithm stops when there is no label change
for all the object pixels in the image. The running appearance
of M8DLS for initial label array in Fig. 1(a) is exactly same
as the rest of Fig. 1. However, many pixels in Fig. 1(c) were
not processed while producing the same results. We show
Fig. 1(c) again in Fig. 2 and explain the difference. We put
the underline for object pixels that pass the �smallest� check

described above. For left and right objects, 9 out of 13 and 8
out of 16 pixels were not processed respectively, thus saving
a great deal of computation time.

0 1 2 1 4 5 6 7 6 8

10 11 1 1 14 15 16 6 6 19

20 1 1 23 24 25 6 6 28 18

30 31 1 12 34 35 36 6 9 39

40 12 1 43 44 45 17 6 8 49

12 12 1 53 54 55 17 57 17 8

Fig. 2 Running example of M8DLS method.

In M8DLS, �smallest� check is performed after two

iterations. This number was chosen empirically. We
conducted many experiments for various numbers of
iterations and for various kinds of test data and found that
after two iterations most of object pixels already has smallest
label they ought to have due to deep 8-directional search
characteristic of our method.

IV. EXPERIMENTAL RESULTS

The system specification used for experiment is as
follows.

- CPU: Intel i7, 3.40 GHz
- OS: Windows 7
- GPU: NVIDIA Geforce GTX 550 Ti with 192 cores

For the experiment, 8 types of images were used. All are

of size 320 x 240 with 8 bits/pixel. They are,

- B1, B2, B3, B4, and B5: Images with occupancy

ratio of 0.07,0.17,0.27,0.36 and 0.46 respectively
- Spiral: Image with spiral pattern
- Random1 and Random2: Images that were

generated programmatically using the random
number generator and have the occupancy ratio of 0.1
and 0.5 respectively.

We compared the performance of NSZ-LE [5] and two
proposed methods (8DLS and M8DLS) in terms of execution
time and the number iterations required. Table I shows the
comparison results of execution time. We run each algorithm
100 times on each test image and take the average execution
time. Irrespective of the methods tested, when we go from B1
to B5, execution time increases due to increasing
occupancies. The same observation can be made when we go
from Random1 to Random2. Among all the images, Spiral
requires far more computation due to its complex shape.

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 190

For B1 through B5, Random1, and Random2, 8DLS
performs around 3 times faster than NSZ-LE. For Spiral,
8DLS performs nearly 10 times faster than NSZ-LE. The
reason for this phenomenon will be evident when we discuss
the comparison results of the number of iterations required.

M8DLS shows even better performance than 8DLS. For
B1 through B5, Spiral, and two random images, M8DLS
shows 2%, 52%, and 17% average speed-up over 8DLS
respectively.

TABLE I COMPARISON OF EXECUTION TIME
(UNIT: SECOND)

Images NSZ-LE 8DLS M8DLS
B1 0.026 0.0081 0.00793
B2 0.028 0.0084 0.00821

B3 0.030 0.0087 0.00851

B4 0.031 0.0089 0.00874

B5 0.034 0.0093 0.00913

Spiral 0.135 0.015 0.0099

Random1 0.0297 0.0091 0.00803

Random2 0.0304 0.0098 0.00813

Table II shows the number of iterations that were taken by

each method for different test images. 8DLS and M8DLS
take exactly the same number of iterations, whereas NSZ-LE
consumes far more iterations. This is because NSZ-LE only
looks at 4 immediate neighbors, whereas both 8DLS and
M8DLS consider all 8-connected neighbors. Spiral shows
extreme performance difference. NSZ-LE iterates around 22
times more than the proposed methods and this causes far
more computation time.

TABLE III COMPARISON OF NUMBER OF ITERATIONS

REQUIRED

Images NSZ-LE 8DLS M8DLS
B1 6 4 4
B2 41 6 6

B3 41 6 6

B4 41 6 6

B5 41 6 6

Spiral 344 16 16

Random1 6 6 6

Random2 6 6 6

V. CONCLUSION

CCL is an important step in image segmentation and is
often implemented in parallel framework to reduce execution
time. Among many parallel CCL algorithms using CUDA,
NSZ-LE is known to perform best [5]. We proposed two
simple and fast parallel CCL algorithms using CUDA based
on 8-directional label selection and showed that the proposed
methods outperform NSZ-LE for various kinds of test
images. The speed-up was obtained by looking at all 8-
connected neighbors instead of looking at 4 immediate
neighbors, thus resulting in drastic reduction in the number of

iterations required with a little increase in search time. After a
few number of iterations, most of pixels either has a right
label already or has one in nearby location. Thus searching
deep for all 8 directions may be redundant. The proposed
methods may be hybridized with Kernel C algorithm [7] with
some modifications and this is intended for future research.

ACKNOWLEDGMENT

This work (Grants No. C0005448) was supported by
Business for Cooperative R&D between Industry, Academy,
and Research Institute funded by Korea Small and Medium
Business Administration in 2012.

REFERENCES

[1] K. Wu, E. Otoo, and K. Suzuki, �Optimizing two-pass connected-
component labeling algorithms,� Pattern Analysis & Applications, vol.
2, pp. 117-135, 2009.

[2] K. Suzuki, I. Horiba, and N. Sugie, �Linear-time connected-component
labeling based on sequential local operations,� Computer Vision and

Image Understanding, vol. 1, pp.1�23, 2003.

[3] A. Rosenfeld and A. Kak, Digital Picture Processing, Academic Press,
Orlando, 1982.

[4] R. Farber, CUDA Application Design and Development, Elsevier,
Waltham, 2011

[5] O. Kalentev, A. Rai, S. Kemnitz, and R. Schneider, �Connected

component labeling on a 2D grid using CUDA,� J. Parallel Distributed
Computing, pp. 615-620, 2011.

[6] F. Chang, C. Chen, and C. Lu, �A linear-time Component-labeling
algorithm using contour tracing technique,� Computer Vision Image

Understanding, vol. 2, pp. 206-220, 2004.

[7] K. Hawick, A. Leist, and D. Playne, �Parallel graph component

labeling with GPUs and CUDA,� Parallel Computing, vol. 12, pp. 655-
678, 2010.

