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Abstract- Connected component labeling (CCL) is a key step in image segmentation where foreground pixels are extracted and labeled. 
Sequential CCL is a computationally expensive operation and thus is often done within parallel processing framework to reduce execution 
time. Various parallel CCL methods have been proposed in the literature. Among them NSZ label equivalence (NSZ-LE) method seemed 
to perform best. In this paper we propose two new parallel CCL algorithms based on 8-directional label selection and show that they run 3 
to 10 times faster than NSZ-LE depending on the characteristics of images. 
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I. INTRODUCTION 
In computer vision, CCL is used for image segmentation to 

extract and label foreground pixels from background. Many 
approaches were proposed in the field of CCL. Wu et al. [1] 
divided CCL algorithms into 3 classes. They are multi-pass, 
two-pass, and one-pass algorithms. Multi-pass algorithm 
usually assumes some kind of local neighborhood to search 
for minimum label within that neighborhood and sometimes 
memorizes label equivalences. This is repeated over multiple 
iterations. In two-pass algorithm, 3 steps are usually 
executed. They are scanning, analysis, and labeling. Scanning 
step assigns an initial label to each pixel and records 
equivalence among labels if necessary while searching for 
neighbors. Analysis step tries to find a final label for each 
label by resolving equivalence chains and labeling step 
assigns a final label to each label. Scanning and analysis steps 
require one pass and labeling step requires another. One-pass 
algorithm scans the image from left-top to right-bottom only 
once and gives a new label to unlabeled pixel. Then all the 
pixels connected to that pixel are searched and are assigned 
the same label. This is repeated until no more unlabeled 
pixels are left. The algorithms mostly used for CCL, 
regardless of the number of passes they adopt, were 
sequential with heavy computation overhead [2, 3]. To 
overcome this difficulty it has been tried to implement CCL 
in parallel framework. 

 

The usage of GPUs with CUDA opened a new research 
field for CCL and many other data processing algorithms [4]. 
The implementation of parallel CCL using CUDA and GPUs 
drastically reduced computation time. Among many parallel 
CCL methods using CUDA proposed so far, NSZ-LE [5] is 
known to perform best. However, this method requires a lot 
of iterations since it looks at only 4 immediate neighbors to 
find out the minimum label. 

 

   In this paper, we present two new algorithms for CCL 
using CUDA.  The first method, termed as 8DLS(8-
directional label selection), searches for minimum label of  
 

 
 
each object pixel for 8 directions(east, west, south, north, and 
4 diagonal directions) until background pixel is encountered 
and changes the label of that pixel with minimum label 
found. This process is repeated until all object pixels have 
minimum labels. The second method, termed as 
M8DLS(modified 8DLS), is a modification of 8DLS such 
that object pixels having locally minimum label already will 
not be processed until they find that there is a change in that 
label, thus saving computation time. 

This paper is organized as follows. In section 2, related 
works for CCL are discussed. Section 3 presents two 
proposed methods. Results are depicted in section 4 and 
section 5 concludes the paper. 

II. RELATED WORKS 

Since the early 1980s many researchers have been 
working on fast CCL. Some of these researches were based 
on sequential processing [1,2,6] and some others based on 
parallel computing [5,7]. Suzuki et al. [2] proposed a 
sequential CCL, which is quite simple and suitable for 
implementation in hardware. But it is not fast enough since 
the execution time of their method is proportional to the 
number of pixels in connected components in an image. So as 
the number of pixels in an image increases, the execution 
time taken by the sequential algorithm also increases, hence 
making it not suitable for images with high resolution. 

Wu et al. [1] proposed the scan based array Union-Find 
(SAUF) algorithm which is basically an optimized two pass 
algorithm. The performance of this algorithm in accessing the 
memory pattern in CCL has been significantly improved by 
almost 10 times than that of the contour tracing algorithm [6] 
and other previous methods [2]. They mentioned that the only 
drawback of this algorithm is the immense reduction in its 
efficiency when images with small resolution are processed. 
Chang et al. [6] proposed the contour tracing algorithm which 
has a better computational speed than [1,2]  but takes more 
time in accessing the memory pattern. The execution time of 
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the algorithm increases with the increase in the number of 
connected pixels. 

Hawick et al. [7] proposed parallel version of the label 
equivalence algorithm using GPUs. Their algorithm consists 
of three basic steps: scanning, analysis and labeling. These 
steps are repeated in a loop until all of the connected 
components are identified and labeled correctly. Due to the 
parallel implementation of CCL this algorithm decreases the 
execution time quite effectively but it consumes more 
memory in using the reference array. 

 

Kalentov et al. [5] proposed two methods. The first one is 
a simple row column unification method where a single 
thread is assigned for each row and column, scans each row 
and column in a predetermined direction, and changes the 
label of each pixel with the minimum label found so far along 
the scan direction. This process is repeated until all pixels 
have minimum labels. The second method is the NSZ-LE 
where a single thread is assigned to each pixel, searches for 
immediate 4 neighbors for minimum label, constructs the 
label equivalence chain, and does relabeling by resolving 
chains. This method seems to give the best performance 
among CUDA-based parallel CCL algorithms presented so 
far. 

III. THE PROPOSED METHOD 

We presented two new multi-pass methods for parallel 
CCL. They are 8DLS and M8DLS and are explained below 
in detail. 

 

A. 8DLS Method 

. This method utilizes the basic concept of 8-connectivity 
and checks all the 8-connected neighbors for minimum label. 
The pseudo code for the 8DLS method is given in Algorithm 
I. 

 
ALGORITHM I: THE 8DLS METHOD IN PSEUDO 

for j =1 to n iterations do 
  for each pixel p in an image do 
      if p is an object pixel 

then it becomes a focused pixel 
         for i = 1 to 8 directions do  
            search for minimum label until background pixel is hit 
            and put it in mini 
         end for 
      end if 
      take minimum label m among mini , 1<= i <= 8 and relabel 
      the focused pixel with label m 
  end for 
  if no label change for all the object pixels 
  then exit 
end for 

 
Each pixel of the image is initialized with a unique label 

which is equal to the sequential index value of the pixel in the 
image: The iterations are the number of times the image is 
processed until each pixel is identified and labeled correctly. 
Every pixel in the input image is checked whether it is an 
object pixel having value �1�. If so, then that pixel is 

considered as a focused pixel. Now keeping the focused pixel 
in mind all 8 directions around the focused pixel are checked 
one by one for minimum label. For example, we check the 
north direction first, and then the value of the pixel connected 

to the focused pixel in the concerned direction will be 
checked. If its value is �0� (meaning that it is a background 
pixel), then no further checking in that direction will be done. 
If the value of connected pixel is �1�, then its label will be 

compared with current mini of the pixel in that direction. If 
the label is less than current mini then that label is stored in 
variable mini and the label of the next pixel in that direction 
is checked and so on until a background pixel having value 
�0� is hit. After that, remaining directions are checked with 

the same procedure. 
After all 8 directions have been checked, a minimum label 

is obtained which is then compared with the label of the 
focused pixel. The minimum between the two will be 
assigned as the label of the focused pixel. This process is 
repeated for all the object pixels in the image and stops when 
there is no label change for all object pixels. Fig. 1 shows a 
running example of the 8DLS method. 
 

0 1 2 3 4 5 6 7 8 9 

10 11 12 13 14 15 16 17 18 19 

20 21 22 23 24 25 26 27 28 29 

30 31 32 33 34 35 36 37 38 39 

40 41 42 43 44 45 46 47 48 49 

50 51 52 53 54 55 56 57 58 59 

 
(a) 

 

0 1 2 3 4 5 6 7 8 8 

10 11 1 3 14 15 16 6 8 19 

20 3 12 23 24 25 8 9 28 18 

30 31 12 22 34 35 36 17 27 39 

40 32 12 43 44 45 37 17 26 49 

32 33 12 53 54 55 29 57 38 26 

 
(b) 

 
0 1 2 1 4 5 6 7 6 8 

10 11 1 1 14 15 16 6 6 19 

20 1 1 23 24 25 6 6 28 8 

30 31 1 12 34 35 36 6 9 39 

40 12 1 43 44 45 17 6 8 49 

12 12 1 53 54 55 17 57 17 8 

 
(c) 
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0 1 2 1 4 5 6 7 6 6 

10 11 1 1 14 15 16 6 6 19 

20 1 1 23 24 25 6 6 28 6 

30 31 1 1 34 35 36 6 6 39 

40 1 1 43 44 45 6 6 6 49 

1 1 1 53 54 55 6 57 6 6 

 
(d) 

Fig. 1 Running example of 8DLS method. (a) Initial Label, 
(b) After first iteration, (c) After second iteration, and (d) 

After third iteration. 
 

Fig. 1(a) is a sample input image that has been uniquely 
labeled according to the indices of the pixels in the image. 
Here white pixel is an object pixel and the shaded is a 
background pixel.  Assuming 8-connectivity, there are two 
objects. A single thread is assigned to each pixel and the 
algorithm is performed only on object pixels. Fig. 1(b), (c), 
and (d) show the results obtained after first, second, and third 
iterations respectively. To see how it works, let us consider 
the pixel with label 27 in Fig. 1(a). We search for 8 directions 
and find that the label 9(underlined) in 45° diagonal direction 

is the minimum. Thus the label 27 is changed to 9 as in Fig. 
1(b) at the same location. For this example 3 iterations were 
enough to correctly label all the object pixels. 

 
B. M8DLS Method  

The basic algorithm for M8DLS is same as that of 8DLS. 
The pseudo Code for the M8DLS algorithm is given in 
Algorithm II. 

 
ALGORITHM II: THE M8DLS METHOD IN PSEUDO  

for i=1 to n iterations do 
  for each pixel p in an image do 
    if  p is an object pixel 
    then it becomes a focused pixel 
            if (i>=2) and (label of p is not the smallest) 
            then apply 8DLS 
            end if 
    end if 

end for 
if no label change for all the object pixels 
then exit 

end for 
 
The only modification is that after second iteration the 

label of the focused pixel is checked if it is the smallest so 
far. If it is not, 8DLS is applied. Otherwise, no further 
processing is performed, thus saving computation time. 
Checking for smallest is done as follows. Let initial label 
image array be LABEL. Then after assigning initial label 
sequentially to an image, LABEL (i) becomes i, for i = 0 to 
(total number of pixels in the image) - 1. For focused pixel p 
having a label j, we check if LABEL (j) is still j.  If it is, we 
say that j is the smallest label so far. Otherwise it is not the 
smallest since it has already been changed, thus having a 
possibility of further change. If LABEL (j) is changed to 
something else later, then we apply 8DLS again to pixels 

having label j. Algorithm stops when there is no label change 
for all the object pixels in the image. The running appearance 
of M8DLS for initial label array in Fig. 1(a) is exactly same 
as the rest of Fig. 1. However, many pixels in Fig. 1(c) were 
not processed while producing the same results.  We show 
Fig. 1(c) again in Fig. 2 and explain the difference. We put 
the underline for object pixels that pass the �smallest� check 

described above.  For left and right objects, 9 out of 13  and 8 
out of 16 pixels were not processed respectively, thus saving 
a great deal of computation time. 

 
0 1 2 1 4 5 6 7 6 8 

10 11 1 1 14 15 16 6 6 19 

20 1 1 23 24 25 6 6 28 18 

30 31 1 12 34 35 36 6 9 39 

40 12 1 43 44 45 17 6 8 49 

12 12 1 53 54 55 17 57 17 8 

 
Fig. 2 Running example of M8DLS method. 

 
In M8DLS, �smallest� check is performed after two 

iterations. This number was chosen empirically. We 
conducted many experiments for various numbers of 
iterations and for various kinds of test data and found that 
after two iterations most of object pixels already has smallest 
label they ought to have due to deep 8-directional search 
characteristic of our method. 

IV. EXPERIMENTAL RESULTS 

The system specification used for experiment is as 
follows. 

 

- CPU: Intel i7, 3.40 GHz 
- OS: Windows 7 
- GPU: NVIDIA Geforce GTX 550 Ti with 192 cores 

 
For the experiment, 8 types of images were used. All are 

of size 320 x 240 with 8 bits/pixel. They are, 
 
- B1, B2, B3, B4, and B5: Images with occupancy 

ratio of 0.07,0.17,0.27,0.36 and 0.46 respectively 
- Spiral: Image with spiral pattern 
- Random1 and Random2: Images that were 

generated programmatically using the random 
number generator and have the occupancy ratio of 0.1 
and 0.5 respectively. 
 

We compared the performance of NSZ-LE [5] and two 
proposed methods (8DLS and M8DLS) in terms of execution 
time and the number iterations required. Table I shows the 
comparison results of execution time.  We run each algorithm 
100 times on each test image and take the average execution 
time. Irrespective of the methods tested, when we go from B1 
to B5, execution time increases due to increasing 
occupancies. The same observation can be made when we go 
from Random1 to Random2. Among all the images, Spiral 
requires far more computation due to its complex shape. 
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For B1 through B5, Random1, and Random2, 8DLS 
performs around 3 times faster than NSZ-LE. For Spiral, 
8DLS performs nearly 10 times faster than NSZ-LE. The 
reason for this phenomenon will be evident when we discuss 
the comparison results of the number of iterations required. 

M8DLS shows even better performance than 8DLS. For 
B1 through B5, Spiral, and two random images, M8DLS 
shows 2%, 52%, and 17% average speed-up over 8DLS 
respectively. 

TABLE I  COMPARISON OF EXECUTION TIME  
(UNIT: SECOND) 

Images NSZ-LE 8DLS M8DLS 
B1 0.026 0.0081 0.00793 
B2 0.028 0.0084 0.00821 

B3 0.030 0.0087 0.00851 

B4 0.031 0.0089 0.00874 

B5 0.034 0.0093 0.00913 

Spiral 0.135 0.015 0.0099 

Random1 0.0297 0.0091 0.00803 

Random2 0.0304 0.0098 0.00813 
 
Table II shows the number of iterations that were taken by 

each method for different test images. 8DLS and M8DLS 
take exactly the same number of iterations, whereas NSZ-LE 
consumes far more iterations. This is because NSZ-LE only 
looks at 4 immediate neighbors, whereas both 8DLS and 
M8DLS consider all 8-connected neighbors. Spiral shows 
extreme performance difference. NSZ-LE iterates around 22 
times more than the proposed methods and this causes far 
more computation time. 

TABLE III  COMPARISON OF NUMBER OF ITERATIONS 

REQUIRED 

Images NSZ-LE 8DLS M8DLS 
B1 6 4 4 
B2 41 6 6 

B3 41 6 6 

B4 41 6 6 

B5 41 6 6 

Spiral 344 16 16 

Random1 6 6 6 

Random2 6 6 6 
 

V. CONCLUSION 

CCL is an important step in image segmentation and is 
often implemented in parallel framework to reduce execution 
time. Among many parallel CCL algorithms using CUDA, 
NSZ-LE is known to perform best [5]. We proposed two 
simple and fast parallel CCL algorithms using CUDA based 
on 8-directional label selection and showed that the proposed 
methods outperform NSZ-LE for various kinds of test 
images. The speed-up was obtained by looking at all 8-
connected neighbors instead of looking at 4 immediate 
neighbors, thus resulting in drastic reduction in the number of 

iterations required with a little increase in search time. After a 
few number of iterations, most of pixels either has a right 
label already or has one in nearby location. Thus searching 
deep for all 8 directions may be redundant. The proposed 
methods may be hybridized with Kernel C algorithm [7] with 
some modifications and this is intended for future research. 
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