
 

 
International Journal of Latest Research in Science and Technology           ISSN (Online):2278-5299 
Volume 3, Issue 2: Page No.182-186 ,March-April, 2014 
https://www.mnkpublication.com/journal/ijlrst/index.php  

 

ISSN:2278-5299                                                                                                                                                                                182 
 

Publication History  
Manuscript Received : 24 April 2014 
Manuscript Accepted : 26 April 2014 
Revision Received : 29 April 2014 
Manuscript Published : 30 April 2014 

MICROPHASE SEPARATION IN 
INTERPENETRATING CYCLIC POLYMER 

NETWORKS: STATIC AND KINETICS STUDIES 
 

Nawel Benachenhou1, Abd-El-Hamid Bensafi1, 2, Abdelhak Boussaid2, Mabrouk Benhamou3 
1Department of Physics, Abou Bekr Belkaid University of Tlemcen,Tlemcen, 13000, Algeria 

2 Department of Chemistry, Abou Bekr Belkaid University of Tlemcen,Tlemcen, 13000, Algeria 
3ENSAM, Moulay Smail University of Meknes, Meknes, Morocco 

 
 

Abstract- The physical system we consider here is an interpenetrating polymer network made of two chemically incompatible 
cyclic polymers A and B, linked each to other by topological trapping. When the system is cooled down, below some critical 
temperature, the system undergoes a microphase separation. The latter results from a competition between the usual 
macrophase separation and the fact that the cyclic polymer chains are connected. Using an extended de Gennes theory, we 
first compute the static structure factor allowing the study of the static critical properties of such a transition. We show that 
this structure factor exhibits a maximum at some finite value of the wave-vector, qc

*, of which the inverse, î஼∗  =qc
*-1, 

measures the size of microdomains. Second, we complete the study by kinetics of this microphase separation when the 
temperature of the system is lowered from an initial value towards a final one very close to the spinodal point. This kinetics is 
investigated through the relaxation rate, ôC (q), that can be interpreted as the necessary time to form microdomains of size 
q−1, where q is the module of the wave-vector q. In particular, we find that, at small scales compared to the mesh size î஼∗ , that 
is for q−1 << î஼∗ , the characteristic frequency, ÙC (q) = ôC

−1(q), behaves according to:  ÙC (q) ~ q6, with a known amplitude. 
The obtained results must be compared to those relatively to the well-studied crosslinked polymer blends composed of 
connected linear chains. The main conclusion is that, the closed topology of connected polymer chains induces a drastic 
change of the critical behavior in comparison with the crosslinked systems.  

Keywords- Cyclic polymer network; microphase separation; phase separation kinetics.  
 

I. INTRODUCTION 

The subject of cyclic polymers effectively began with a 
pioneered paper by Jacob and Wollman [1], published in 
1958. The authors confirmed that the genetic map of bacterial 
chromosomes of Escherichia coli showed circularity. 
Thereafter, one has put in evidence the existence of circular 
DNA [2, 3], which has received its final confirmation from 
electron microscopy of  ØX174 DNA [4]. The discovery of 
large cyclic molecules in natural biological systems is 
described in Ref. [5] as well as in a more recent book by 
Semlyen [6]. 

The interest in studying cyclic polymers originates from 
both applied and fundamental reasons. In particular, they 
have quite different properties in comparison to their linear 
homologous of the same molecular-weight, due to their 
circular topology. From a theoretical point of view, cyclic 
macromolecules provide a good model of polymers that are 
free from end effects that present a serious challenge for the 
study of linear macromolecules. 

The cyclic macromolecules have attracted much attention 
from a theoretical and experimental point of view [6 − 11]. 
Among these, we can quote circular DNA, cyclodextrine, 
cyclic copolyolefines or cyclic polycarbonates. Since the four 
last decades, it is recognized that the DNA molecule  

 

 
produces in nature as long cyclic chains [6]. Due to the 
capital role of the DNA macromolecules in the organization 
of the living cells, the knowledge of their conformational 
properties in solution or in the absence of solvent is crucial 
for the comprehension of recent discoveries in genetics. On 
the other hand, the cyclodextrine has been the subject of 
extended investigations [6], because of its potential 
applications in high technology used in pharmaceutic 
industry, cosmetics and agriculture. Furthermore, the cyclic 
copolyolefines are characterized by their important properties 
(high glass transition temperature, excellent transparency, 
low density, great thermicity and chemical resistances, high 
optic performance, etc.). Finally, the cyclic polycarbonates 
are used for the enzyme immobilization, and in the polymer-
based lithium batteries sector [6, 12]. 

This work is devoted to the investigation of the 
microphase separation (MPS) in an interpenetrating polymer 
network (IPN) composed of two cyclic polymers A and B, of 
different chemical nature. This system is formed as follows. 
One starts from unlike long linear chains with chemically 
active extremities in a reaction bath. Each chain reacts with 
itself and forms a closed macromolecule. At the end of 
reaction, one gets an IPN constructed with a topological 
trapping of circular chains of different kinds. 
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The IPNs constitute new materials, which find 
considerable applications. As examples, we can cite 
crosslinked epoxy adhesives that show a great resistance to 
acids, bases and many solvents, and exhibits high glass 
transition temperature and thermal resistance, crosslinked 
mixtures of bacterial and seaweed polysaccharides gellan and 
agarose [13], novel IPNs made of polypropylene / poly(n-
butyl acrylate) [14], or polysiloxane IPNs used as electronic 
device encapsulants [15]. 

The physical system we are interested in is a mixture made 
of two kinds of linear polymer chains A and B terminated 
each by two chemically active groups. We assume that the 
chemical reactions between these groups occurs in the one-
phase region, that is at high temperature. Once these chemical 
reactions are stopped, one gets an IPN made of unlike cyclic 
chains. The obtained gel is different from a gel synthesized 
by controlled ã-irradiations of unlike linear chains [16], 
called crosslinked polymer blend (CPB). Then, the chemical 
reticulations process is replaced by a topological trapping. To 
simplify the study, we suppose that cyclic chains A are linked 
to cyclic chains B, and there are no links between cyclic 
chains of the same kind. Therefore, complications related to 
an eventual existence of links between chemically identical 
cyclic chains are not considered here. 

When the system is cooled down, one assists to the 
appearance of microdomains alternatively rich in A and B-
polymers. This is the so-called microphase separation, which 
results from a competition between the usual macrophase 
separation and the elasticity of the cyclic polymer network. 
The goal of this work is precisely a quantitative study of this 
phase transition that takes place within the considered cyclic 
IPN. 

  From a theoretical point of view, the first study of the 
MPS in CPBs was due to de Gennes [17], followed by 
several extended works [18 − 32]. The key idea of the author 
was an analogy between the crosslinked chains and a 
dielectric medium. The theoretical predictions of MPS was 
experimentally tested by Briber and Bauer [16] by small-
angle neutron-scattering experiment on the PS-PVME 
mixture. But the de Gennes theory agrees with experiment in 
all wave-vectors range except in the zero-scattering-angle 
limit. More precisely, the theoretical structure factor vanishes 
at this limit, while the experimental one does not. This 
discrepancy between theory and experiment was solved in a 
series of published works [20 − 23, 25]. 

Our purpose is to extend these works to the static and 
kinetics studies of MPS within cyclic IPNs. As we shall see 
below, the presence of the closed topology induces 
substantial changes of the critical phase behavior of the 
considered IPN. The study of static properties of the MPS 
necessitates the knowledge of the static structure factor we 
determine exactly using the famous Random Phase 
Approximation (RPA) [33]. This structure factor presents a 
maximum at a finite value of the wave-vector, q஼∗ ~ a−1Ne

−1/2, 
of which the inverse measures the size of critical fluctuations 
(microdomains size), î஼∗ ~aNe

1/2 (a being the monomer size 

and Ne the number of monomers between consecutive 
entanglement points). It is found that the latter is smaller than 
its homologous relatively to a CPB having the same rigidity 

constant. In the second part of this paper, we undertake the 
kinetics study of such a transition, when the temperature is 
changed from an initial value Ti towards a final one Tf

 very 

close to the spinodal point. We note that the reptation motion 
of cyclic chains forming the IPN is frozen by the presence of 
entanglement points that play the role of permanent crosslinks 
for CPBs. Therefore, the only motion allowed to the 
connected cyclic chains is of Rouse type [33, 34]. Kinetics is 
studied through the relaxation rate, which is as a function of 
the wave-vector and temperature. The inverse of this 
relaxation rate is termed characteristic frequency. The latter 
we computed exactly is directly proportional to the inverse 
static structure factor. We show that this characteristic 
frequency is smaller than its homologous of a CPB. This 
tendency is a consequence of closed topology of chains. In 
addition, at small scales compared to the mesh size î஼∗  , that is 
for q−1 << î஼∗  , the characteristic frequency behaves as : ÙC 
(q) ~ q6. Notice that this law is similar to that relatively to a 
CPB [19]. 

Indeed, at these scales, there is no distinction between 
entanglement points of the cyclic IPN and real crosslinks of a 
CPB. 

The remainder of presentation proceeds as follows. In Sec. 
2, we present the static study of the MPS within the 
framework of an extended de Gennes theory. Kinetics study 
of this MPS is the aim of Sec. 3. Some concluding remarks 
are drawn in the last section. 

II. CRITICAL PROPERTIES OF MPS 

    Start from an IPN made of two kinds of cyclic polymers A 
and B of different chemical nature. We denote by Ne the 
mean number of monomers between consecutive 
entanglement points. Of course, we have Ne <N, where N 
denotes the common polymerization degree of linked cyclic 
polymer chains. We assume that the IPN is formed in the 
one-phase region, that is at high temperature. When the 
system is cooled down, below some critical temperature, 
appear microdomains alternatively rich in A and B-species. 
This is a MPS that originates from a competition between the 
usual macrophase separation and the elasticity of the gel.  

As we will see below, the size of microdomains, îc
*, scales as 

îc
*, where a is the monomer size.  

The critical properties of the MPS can be studied through the 
knowledge of the structure factor. The latter can be 
determined using the RPA method, and takes the following 
form [17] 
                                  2

GC
-1
0

-1
C /qC + (q)]S [ = (q)S                             (1) 

with
                 

 
                                   22 =  (q)]S [ 1

0C
-1
0 

 qPc
,                        (1a) 

which is nothing else but the inverse structure factor of a 
mixture made of free cyclic polymers A and B. Here, 
                                        

2
sin4q 






                                   (1b) 

denotes the module of the ware-vector (or wavenumber), 
with ë the wavelength of the incident radiation and è the 

scatting-angle. There, ÷ stands for the Flory interaction 

parameter that is inversely proportional to the absolute 
temperature T [33, 35], and N/2 0  its critical value when 

the cyclic polymer mixture is uncrosslinked. There, the 

quantity  is the from factor of an ideal cyclic chain  
 
            

                           qgq ccp ,                                   (2) 

 qcp 
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with the Casassa function [36] 
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We have used the notation: u = 3q2R L
 2/d, where 

a2N/6 is the squared gyration radius of an ideal linear chain, 
and d the space dimensionality. The integral in Eq. (2
defines the degenerated hyper geometric function [37]
                                       
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Notice that the dependence on topology is entirely 
contained in the form factor (2). Of course, the latter is 
different from that of a free linear chain, PL (q
the usualDebye function [33, 38, 39] 
                                          ugq DLP ,                                

with 
                                      11
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.                    

We state that 
                                             qPqP lc  .                                

in all wave-vectors range. The above inequality is true at 
least in the Guinier regime [40], that is 
                                

6
1 

u
qPc  ,                1 u ,        

 
3

1 
u

qPL  ,                1 u ,                   

in formula (1), CG accounts for the rigidly constant of the 
cyclic polymer network. 

Following de Gennes [17], the latter scales as
                                        

eNa
CG 22

1
  ,                               

where a is the monomer size. Let us discuss now the 
structure factor  qSc  defined in Eq. (1). 

Firstly, it depends on topology through the bare structure 
factor, relation (1a). 

Secondly, due to inequality (4), this structure factor is 
greater than its homologous,  qSL , relatively to a CPB made 

of connected unlike linear chains, that is  qSc

all values of the wavenumber q. This comparison is made 
when the polymerization degree N, the Flory interaction 
parameter ÷ and the rigidity constant are the same for the two 
systems. For the CPBs, the number Ne plays the role of the 
number of monomers between consecutive crosslinks. Such 
an inequality traduces the known fact that cyclic polymers 
scatter better than the linear ones. 

Now, to get simplified analytic results, we replace 
and PL (q) by their expansions (5a) and (5
approximative expressions are believed to be true in a wide
range of the wave-vector. In these conditions, we have the 
simpler form                                                 

                                    
2

22
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q

CRq
q GL   ,     

for a cyclic IPN, and 

                                   
2

22
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1-

L 3
22S 

q

CRq
q GL   ,      

for a linear one. We recall that 2
LR  = a2N/6 and 

The structure factor defined in Eq. (7) exhibits a maximum 
at the finite value 
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Fig. 1 The structure factor S (q) versus the wavenumber 
(expressed in a unit), for acyclic IPN (solid line) and a CPB 

(dashed line). These curves are drawn with parameters:

×0 − × = 0.01 AND  N
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III. KINETICS OF MPS 

Now, assume that the cyclic IPN are out equilibrium. This 
can be produced, for instance, by a change of temperature for 
an initial value Ti to a final Tf very close to the spinodal 
point. Kinetics is studied through the relaxation rate, 
which describes how the composition fluctuation relaxes in 
time. More precisely, within the framework of linearized 
theory [41], the Fourier transform of the fluctuation 

      trtr ,,   BA   is the di

compositions of unlike cyclic polymers and ϕ
value) is such that [41]  

                                   qc

t

eqtq 


 0,,            

with the relaxation rate [41] 
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121 
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where  qc  is the Ousager transport coefficient, and 

 qSc  the static structure factor, relations (1) or (7). The 

inverse    qq cc
1

   represents the characteristic 

frequency. Since the motion of the connected chains is local, 
the transport Onsager coefficient  qc  must scale as its 

homologous,  qL , of a CPB, that is [19] 
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provided that one explores regions of space of which the 

size is much smaller than the microdomains one 
*
c . Combining formulae (12) and (13) yields the 

characteristic frequency 
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We have used the definitions: 2
cR = a2N/12 and 

For a CPB, the corresponding prefactor is rather : 
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2 22
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. 

We note that the scaling behavior (15) of the characteristic 
frequencies is very similar to that found by de Gennes [42] 
and Pincus [43], for binary polymer mixtures. The authors 
have shown that this sixth power behavior for frequency has 
as origin a combination of two contributions, which are 
related to a Rouse and a reptation motions. For the cyclic 
IPNs we consider here, however, the interpretation of the 
above scaling law should be different, since only local 
motions are possible, due to the permanent presence of 
entanglement points. The other contribution corresponding to 
slow modes that exists in uncrosslinked mixtures [33], is 
related for IPNs to a spinodal decomposition. More 
discussions about the above behavior, for CPBs, can be found 
in Ref. [27]. Come back to relation (14) and notice that this 
has as consequence 
                                             qq Lc                         

or 
                                               qq Lc   .              
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These inequalities remain valid in all wave

due to the fact that    qSqS Lc
11   . Relation (14) first suggests 

that the characteristic frequencies depend, as it should be, o
the topology nature of the considered gel. Second, the 
relaxation rate for the cyclic IPN is greater than that relative 
to a CPB having the same rigidity constant. But the 
interesting question to ask is a comparison between the 

relaxation rates at the maximum c

quantities can be interpreted as the necessary times to form 

microdomains of sizes *
c  and 

algebra yields:     2/**
Lccc qq   . We have used Eqs. (9

(9b), (15) and (15a). Thus, we have

natural result, since *
L is larger than

Finally, in Fig.2, we superpose the variations of the 
characteristic frequency upon the wavenumber 
IPN and a CPB. The curve relative to the first system is 
below that of the second one. In principle, this tendency 
remains the same at all temperature. 

 

 

 

 

 

 

 

 

           

 
 

 
 

Fig. 2 Superposition of the variations of the characteristic 
frequency Ù(q) upon thewavenumber 
(solid line) and a CPB (dashed line). The former and the 

second are expressed in arbitrary units.
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linear ones. Second, we have shown that the static structure 
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factor  qSc  exhibits a maximum at finite value, *
cq , of the 

wavenumber. This is a signature of a MPS. This typical value 
was found to be greater than its homologous of a crosslinked 

polymer network, *
Lq . This indicates that the size of 

microdomains *
c   < *

L  is reduced by the fact that the linked 

polymer chains are cyclic. The main conclusion is that, the 
critical fluctuations are very sensitive to topology of the 
considered gel. It was natural to complete the static study by 
an investigation of kinetics of MPS of a cyclic IPN, when its 
temperature is suddenly lowered form an initial value to a 
final one very close to the spinodal point. Between these 
values, the composition fluctuation varies in time, and we 
were interested in how it relaxes. The kinetics was studied 
through the relaxation rate,  qc , of which the inverse 

 qc =  qc
1  defines the characteristic frequency. The 

latter was computed for all values of temperature and wave-
vector. First, we stated that the kinetics is controlled by local 
motions or Rouse type, because unlike cyclic chains are 
linked each to other. The motions of chains at large scales 
(reptation motion) are then frozen. Second, our calculations 
revealed that, as it should be, the fact that the connected 
chains are closed increases the relaxation rate. This tendency 
is expected and can be attributed to a reduction of the critical 
fluctuations of composition by the presence of cyclic chains. 
Third, we demonstrated that, at scales smaller than the mesh 

size *
c , that is for q−1 << * ,the characteristic frequency 

behaves according to :  qc ~ q6. Notice that this sixth 

power law is similar to that of a CPB. As a matter of fact, at 
these scales, one cannot distinguish between a linear chain 
and a cyclic one. The only difference is that, the 
corresponding amplitude is topology-dependent. 

In this work, we have avoided some complications, such as 
the effect of topological constraints [44]. Such a problem 
may be overcame when the polymer chains, before they are 
linked, are of high-molecular-weight. The topological (or 
circularity) constraints can induce a quantitative change of 
results, but to our opinion, the conclusions remain the same. 

Finally, questions like effects of solvent and charges on the 
MPS of cyclic IPNs are under consideration. 
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