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Abstract- This paper presents another integration, as well as another solution of Euler equation expressing dynamics of ideal heat 
unconductive fluid in the case of circular nonstationary fluid flow.  
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I. INTRODUCTION 
 

Euler equation expressing dynamics of ideal fluid has the 
following form 1 - 6 : 
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f gradp
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              (1) 

where: 
Dv

Dt



 - first material time derivative of velocity, 

 f - intensity of the mass forces, 
 p - pressure, 
  - fluid density. 

 Pressure's function,   ( )
( )

p
pp
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dp

o


, could be 

introducted for barotropic fluid flow, implying: 
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  gradp grad
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 If the conservative mass forces field has the 
potential U,  then: 



f gradU 


. 

The flow of the same fluid particles along the streamline or 
whirling line L = L(x,y,z,t) is being observed in velocity 
vectors field,  

 

v v x y z t ( , , , ) . 

II. INTEGRATION OF THE EULER EQUATION FOR 

FLUID DINAMICS     
 

Scalar multiplication of the equation (1) by element of stream 
or whriling line, ds



, yields: 
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Generally the scalar product is expressed by equation: 
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where  = (x,y,z,t) - total potential energy, i.e. potential of 
acceleration. 
Fluid flow along the streamline or whirling line is defined as 
1 

I v dsL

L
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.                                         (6) 

 Material derivation of Eq.(6) is: 
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 Total diferential of Eq.(7) is: 

 
Fig.1. and 2. Streamline and whirlingline 
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Eq.(7) yields: 
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Replacement of Eq.(9) into Eq.(8) yields: 
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i.e. 
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 Temporal function C(t) in a determined moment has 
a concrete value. 
 Transformation of Euler equation also yields Eq.(8): 
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 Scalar multiplication of Eq.(12) by ds


 yields: 
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Since vector 
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v rotv  is colinear with ds
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 the right side of 
Eq.(13) is equal zero, i.e.: 

























v

t
ds d

v
U

d
v

t
ds d

v
U

v

t
ds

v
U C t

L

L

    








 










    









 

     





2

2

2

2
0

2
0

2

,

,

( ).

.....(14) 

 Material time derivative of velocitz vector is: 
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 Replacement of Eq.(15) into Eq.(9) yields: 
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Eq.(16) yields: 
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 Material derivation of fluid flow I L = IL(x,y,z,t) 

can be expressed as: 
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 According to Calvin theoreme: 
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 where 


a  is fluid particles acceleration. 
 Replacement of Eqs.(17)-(19) into Eq.(11) yields 
another integral of Euler equation for fluid dynamics, which 
may be expressed in following forms: 
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 If potential function is also temporal dependent then 
energy is being subtracted at the left side of Eqs.(20-23) 


t
dt

L
  . 

Next conclusion can be derived from Eq.(20): during non-
stationary flow of the same fluid particles along the 
streamline or whirling line, sum of energy pressure, potential 
energy and local time derivative of fluid flow and kinetic 
energy value, is equal to temporal function C = C(t), being 
equal C for t = t.  
  Next conclusion can be derived from Eq.(22) during 
non-stationary flow of the same fluid particles along 
streamline or whirling line, sum of kinetic energy, potential 
energy, energy pressure and local acceleration flow along L 
curve is equal to temporal function C = C(t), being equal C , 
for t = t i.  

 Next conclusion can be derived from Eq.(23) during 
non-stationary flow along streamline or whirling  line, sum of 
kinetic energy, potential energy and acceleration flow along 
L curve is equal to temporal function C = C(t), being equal C  
for t = t i. 

III. ANALYSIS OF INTEGRAL OF EULER EQUATION 

FOR FLUID DYNAMICS 
 

For stationary flow 
 

During stationary flow (


t
 0 ) Eq.(21 and 22) as well as 

other integrals (20, 21 and 22) comes to Bernulli integral of 
Euler equation (24), where C constant for C(t=ti) is equal  

v
U C t t Ci i
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 Equation (21) then comes to: 
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 According to Eqs.(24-25) one may conclude: 
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 

v gradI
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and that is possible when vector v


and gradv are colinear 
only (Fig.3) 
 

 During stationary flow streamline, i.e. whirling lines 
with trajectories of fluid particles overlap each other, i.e. the 
velocity is tangent on the fluid particles trajectories. Vectors 
v and gradI are perpendicular on the plane (i) being 

perpendicular on the streamline (Fig.3). On the base of 
Eq.(26) one may conclude that fluid flow is potential function 
of velocity vector during stationary flow. As a matter of fact 
the plane of cross section of the flow tube is equipotential 
plane of fluid flow at the moment of observation.  
 
For potential flow 
 

 Starting from  
rotv



 0                              (27) 
for non whirling, potential flow, which comes to: 

vx dx + vy dy + vz dz = d,                         (28)      

i.e. a function  = (x,y,z,t) does exist, representing potential 
of the velocity: 


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Due to independence of gradient calculation and  time 
diferentiation, the sequence of these operations can be 
changed, so: 




















  v

t
ds

t
grad ds grad

t
ds d

t
   









  









 .      

(30) 
 

 Cauchey-Lagrange integral can also reached on the 
base of Eq.(11) in the following manner: 
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Replacement of Eqs.(31) and (27) into (11) yields Cauchey-
Lagrange integral of Euler equation:  
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On the base of Eq.(29) the Eq.(11) may be written as: 
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 During potential flow along L streamline, potential 
function of fluid particles velocity  

 = (x,y,z,t) is equal to fluid flow along L curve, i.e. I
L
 = 

(x,y,z,t). 
  

IV. CONCLUSIONS 
 

   Another approach of integration of Euler equation for fluid 
dynamics has been presented in the paper through 
introduction of fluid flow. The equations are applicable along 

streamline or whirling lines, whereas in the case of stationary 
flow are applicable for flow tube to. 
  The paper also presents a manner of transformation 
of the derived equation into well known integrals of Euler 
equation, like those of Bernulli and Cauchey-Lagrange. 
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Fig. 3. Flow in the two adjacent cross-section 


