

International Journal of Latest Research in Science and Technology Volume 3, Issue 2: Page No.61-65 ,March-April, 2014 https://www.mnkpublication.com/journal/ijlrst/index.php

EXTENDED ANALYSIS OF THE 5s²5p7d AND 5s²5p8s CONFIGURATIONS OF SINGLY IONIZED ANTIMONY: SbII

Tazeen Rana

Deanship of Educational Services, Qassim University, Al Qassim, Saudi Arabia

Abstract- Almost all the data used in the present work is based on the plates taken on a 3-m normal incidence vacuum spectrograph, at the Physics Department, St. Francis Xavier University, Antigonish, Nova Scotia, Canada. The analysis is considerably extended to complete the 5p7d, and 5p8s configurations for the first time. Arcimowicz et al had classified 88 lines of Sb II for $5p^2$ - ($5s5p^3 + 5p5d + 5p6s + 5p7s$) array while presently I have identified more lines and have added two more configurations namely 5p7d, and 5p8s. The Hartree- Fock calculations with relativistic corrections using Cowan Codes for SbII to get ab- initio energy parameters used in the level fitting calculations are used.

Keywords - Singly ionized antimony atoms, Isoelectronic Sequence, triggered Spark source, Fitted and HFR energy parameter, Least Squares Fitted levels.

I. INTRODUCTION

The ground state configuration of singly ionized antimony (Sb II) is $5s^2$ $5p^2$. The configurations of odd parity lying very close to each other and overlapping, therefore, strong interaction is seen in the entire sequence Te III - La VIII [1 -6]. The leading multiplet of this spectrum was first reported by Lang and Vestine [7], followed by two more papers one by Krishnamurty [8] and the other by Murakawa and Suwa [9]. The three term lists were discordant, to provide a satisfactory array of energy levels. Charlotte E. Moore [10] used the line list published by Lang and Vestine in the region 691Å to 7343Å and unpublished measurements by W.F. Meggers (1272 Å - 8742 Å) to improve the level values of the published multiplets. The agreement was not good with the tolerance between the observed and calculated wave numbers. With a few more tentative revisions, she compiled the data in A.E.L (10). The limit was adapted from Murakawa and Suwa's paper at 133327.5 cm⁻¹.Arcimowicz, Joshi and Kaufman [11] published the $5p^2$ - ($5s5p^3 + 5p5d +$ 5p6s + 5p7s) transition array with theoretical support. Since Sb II sequence has been studied very well recently [1-6], therefore, once again Sb II was undertaken to present even better picture.

The light source used for exciting the antimony ions plasma was mainly a triggered spark. The charging potential is applied to the spark electrodes by a 14.5 μ F, Tobb Deutschman, low inductance (nano henry) capacitor bank. As the power supply was Sorensen (20kv, 30 milli amp) it had to be protected against back current in case of a misfire of the spark. Therefore, the condenser is charged to a requisite voltage, Due to the nature of the electrical circuit (capacitor discharge) the electrical energy is not imparted in a single voltage pulse and therefore this leads to high as well as low ionization stages being excited in each discharge. However, the major problem in experimental atomic

Publication History

Manuscript Received	:	25 April 2014
Manuscript Accepted	:	28 April 2014
Revision Received	:	29 April 2014
Manuscript Published	:	30 April 2014

spectroscopy is to identify/discriminate lines of various ionization stages

The data obtained from the 3-m normal incidence vacuum Spectrograph were supplemented by line list from a hollow cathode source exposures taken at the 6.65m normal incidence spectrograph at the Zeeman Laboratory, University of Amsterdam, which existed at the Antigonish laboratory as well as NIST Plates.

The recorded plates at Zeeman lab Amsterdam using hollow cathode source, are the most suitable for singly ionized spectra as well as the plates recorded in Antigonish lab with triggered spark source using high inductance coil in the discharge circuit, also being quite good for Sb II lines.

The NIST hollow cathode plates were also available to us at the time of the analysis. This provided me very good data to analyze the spectrum of singly ionized antimony atoms.

All exposures were taken on Kodak SWR plates and the Spectrograms were measured on a grant comparator at the Antigonish laboratory in Canada and on an abbe comparator in Aligarh. The wavelengths were calculated by using internal standards of C, N, O, and Al [13]. The wavelength accuracy for the symmetric lines are $+_{0.005}$ in the wavelength region reported here.

Further experimental details can be found in our earlier publication [12].

RESULT AND DISCUSSION

Scaling the isoelectronic sequence members from Te III - La VIII [1-6] multi-configuration interaction calculations were performed to predict the $5p^2$ - ($5s5p^3 + 5p5d + 5p6d + 5p7d + 5p6s + 5p7s + 5p8s$) transition array.

Independent analysis was performed for the resonance transitions without considering the published data [11]. All the ground levels reported by Arcimowicz [11] were confirmed.

The analysis is considerably extended to complete the 5p7d, and 5p8s configurations for the first time. Arcimowicz et al had classified 88 lines of Sb II for $5p^2 - (5s5p^3 + 5p5d + 5p6s + 5p7s)$ array while presently I have identified more lines in Sb II and have added two more configurations namely 5p7d, and 5p8s in the 446^[] 2076^[] region and are given in table1.

II. 3M NORMAL INCIDENCE VACUUM SPECTROGRAPH

Fitted and HFR energy parameter values in cm⁻¹ and scaling factors for odd parity configurations are given in table 2. The Least Squares Fitted levels of 5s5p³, 5p5d, 5p6d, 5p7d, 5p6s, 5p7s, and 5p8s configurations are given in table 3.

		CIGO		
λ(□)	v(cm ⁻¹)	In	Classifications	Diff.
		t.		
832.75	120082.9	30	$5s^25p^2 {}^3P_1 - 5p7d {}^3P_1$	0.008
834.18	119878.0	67	$5s^{2}5p^{2}$ ³ P ₁ -5p7d ³ P ₀	0.000
837.21	119443.9	15	$5s^25p^2$ ³ P ₁ - 5p7d ¹ D ₂	0.004
850.42	117588.2	10	$5s^25p^2 {}^3P_2 - 5p7d {}^3P_2$	0.013
851.19	117481.5	30	$5s^25p^2$ ³ P ₂ - 5p7d ³ P ₁	-0.007
855.86	116841.4	5	$5s^25p^2 {}^3P_2 - 5p7d {}^1D_2$	-0.004
856.345	116775.4	30	$5s^25p^2$ ³ P ₀ - sp^3 ¹ P ₁	-0.001
856.34	116774.9	12	$5s^25p^2$ ³ P ₁ - 5p8s ³ P ₂	-0.003
			$5s^25p^2$ ³ P ₂ - 5p7d ³ D ₃	0.000
875.881	114170.7	68	$5s^25p^2 {}^3P_2 - 5p8s {}^3P_2$	0.002
876.805	114050.5	49	$5s^25p^2 {}^3P_0 - 5p8s {}^3P_1$	-0.003
893.416	111929.9	25	$5s^25p^2 {}^3P_1 - 5p7d {}^3P_2$	-0.003
902.925	110751.2	20	$5s^{2}5p^{2}$ ³ P ₂ - 5p7d ³ F ₃	0.007
903.003	110741.6	10	$5s^25p^2 {}^3P_1 - 5p8s {}^3P_0$	0.000
904.738	110529.2	25	$5s^{2}5p^{2}$ ¹ D ₂ - 5p7d ¹ F ₃	0.000
905.307	110459.8	5	$5s^{2}5p^{2} {}^{1}D_{2}$ - 5p7d ${}^{3}P_{2}$	-0.011
914.699	109325.6	8	$5s^{2}5p^{2}$ ³ P ₂ - 5p7d ³ P ₂	0.003
914.896	109302.0	15	$5s^25p^2 {}^3P_1 - 5p6d {}^3P_0$	0.000
922.590	108390.5	12	5s ² 5p ² ³ P ₂ -5p8s ³ P ₁	0.007
930.523	107466.4	58	$5s^{2}5p^{2}$ ³ P ₀ - 5p6d ³ D ₁	0.004
944.486	105877.7	66	$5s^25p^2 {}^3P_2 - 5p6d {}^3D_3$	0.000
950.083	105254.0	23	$5s^25p^2 {}^3P_1 - 5p7s {}^1P_1$	-0.005
950.695	105186.2	45	$5s^25p^2$ ³ P ₀ - 5p6d ¹ P ₁	0.017
954.467	104770.5	10	5s ² 5p ² ³ P ₁ -5p7s ³ P ²	-0.004
957.742	104412.2	20	$5s^25p^2 {}^3P_1 - 5p6d {}^3D_1$	-0.006
965.054	103621.1	15	$5s^{2}5p^{2}$ ¹ D ₂ - 5p7d ³ F ₃	-0.006
978.786	102167.4	60	$5s^{2}5p^{2}$ ³ P ₂ - 5p7s ³ P ₂	-0.008
979.377	102105.7	60	$5s^{2}5p^{2}$ ¹ D ₂ - 5p7d ³ F ₂	0.000
983.614	101665.9	10	$5s^25p^2 {}^3P_1 - 5p6d {}^3F_2$	0.002
984.856	101537.7	50	$5s^25p^2 {}^3P_0 - 5p7s {}^3P_1$	0.001
997.404	100260.3	70	5s ² 5p ² ¹ D ₂ -5p6d ¹ F ₃	0.000
997.450	100255.7	26	$5s^25p^2 {}^3P_2 - 5p6d {}^3F_3$	-0.006
997.755	100225.0	10	$5s^25p^2 {}^1S_0 - 5p7d {}^1P_1$	0.000
998.557	100144.5	70	$5s^{2}5p^{2} {}^{1}D_{2} - 5p6d {}^{3}P_{2}$	0.000
1001.435	99856.7	45	$5s^25p^2 {}^1D_2 - 5p6d {}^3P_1$	-0.002
1009.449	99063.9	19	$5s^{2}5p^{2}$ ³ P ₂ - 5p6d ³ F ₂	-0.013
1011.901	98823.9	76	$5s^{2}5p^{2} {}^{1}D_{2} - 5p6d {}^{3}D_{2}$	0.000
1015.407	98482.7	25	$5s^25p^2 {}^3P_1 - 5p7s {}^3P_1$	-0.001

Table: 1 Classified lines of Sb II

Tabie :1 c	ontinued	1		
1017.636	98267.0	10	$\frac{5s^{2}5p^{2} {}^{3}P_{1} - 5p7s {}^{3}P_{0}}{5s^{2}5p^{2} {}^{2}}$	0.000
1024.200	97637.2	71	$\frac{5s^25p^2}{5c^25p^2} \frac{P_0 - sp^3}{5c^25p^2} \frac{S_1}{10}$	-0.001
1040.470	90109.9	1/	$5s 5p = 5_0 - 5pos = P_1$ $5s 25p^2 = {}^{3}P_{2} - 5p7s = {}^{3}P_{1}$	0.000
1043.813	95802.6	25	$5s^25p^2 {}^3P_1 - sp^3 {}^1D_2$	-0.009
1046.923	95518.0	26	5s ² 5p ² ¹ D ₂ - 5p7s ¹ P ₁	0.004
1052.254	95034.1	30	5s ² 5p ² ¹ D ₂ - 5p7s ³ P2	0.010
1056.227	94676.6	54	$5s^{2}5p^{2}$ ¹ D ₂ - 5p6d ³ D ₁	-0.001
1057.279	94582.4	71	$5s^{2}5p^{2}$ $^{3}P_{1} - sp^{3}$ $^{3}S_{1}$	-0.006
1072.990	93197.5	27	$5s 5p P_2 - sp D_2$ $5s^25n^2 D_2 - 5n6d ^3F_2$	0.009
1076.783	92869.2	25	$5s^{2}5p^{2} + b_{2}^{2} + 5p0a^{2} + P_{3}^{3}$ $5s^{2}5p^{2} + 1S_{0} - sp^{3} + P_{1}$	0.001
1082.260	92399.2	40	$5s^25p^2 {}^1D_2 - 5p6d {}^1P_1$	-0.017
1087.211	91978.5	62	$5s^25p^2$ ³ P ₂ - sp^3 ³ S ₁	-0.002
1087.781	91930.3	60	$5s^{2}5p^{2} {}^{1}D_{2} - 5p6d {}^{3}F_{2}$	0.009
1090.677	91686.2	15	$5s^25p^2$ $^1S_0 - 5p7d$ 1P_1	0.000
1094.555	91361.3	67	$5s^{2}5p^{2} {}^{3}P_{0} - 5p5d {}^{3}P_{1}$	-0.001
1107.135	90525.2	21	$5s^{2}5n^{2}$ $^{1}S_{0}$ - $5n^{8}s^{3}P_{0}$	-0.003
1107.331	88747.8	35	$5s^{2}5p^{2}$ ¹ D ₂ - 5p7s ³ P ₁	-0.003
1126.879	88740.7	35	$5s^25p^2 {}^{1}S_0 - 5p6d {}^{3}P_1$	0.002
1132.432	88305.5	50	$5s^25p^2 {}^3P_1 - 5p5d {}^3P_1$	0.006
1133.939	88188.2	47	$5s^25p^2 {}^3P_1 - sp^3 {}^3P_2$	-0.009
1135.440	88071.6	55	$5s^25p^2$ ³ P ₁ - 5p5d ³ P ₀	0.000
1145.888	87268.6	39	$5s^25p^2$ $^{3}P_1 - 5p5d$ $^{1}P_1$	-0.003
1161.888	85702.5	01	$5s^{-}5p^{-}D_{2} - sp^{-}D_{2}$ $5s^{2}5p^{2} {}^{3}P_{2} - 5p5d {}^{3}P_{2}$	-0.001
1168.439	85584.3	69	$5s^{2}5n^{2} {}^{3}P_{2} - sn^{3} {}^{3}P_{2}$	-0.001
1168.675	85567.0	35	$5s^25p^2$ 3P_2 - $5p5d$ 1F_3	0.006
1175.172	85093.9	71	$5s^25p^2 {}^3P_0 - 5p5d {}^3D_1$	0.007
1178.589	84847.2	44	$5s^{2}5p^{2} {}^{1}D_{2} - sp^{3} {}^{3}S_{1}$	-0.005
1196.735	83560.7	58	$5s^{2}5p^{2}$ $^{1}S_{0}$ - 5p6d $^{3}D_{1}$	0.003
1205.239	82971.1	76	$5s^{2}5p^{2}$ ³ P ₁ - 5p5d ³ D ₂	-0.003
1210.038	82001.1	68	$58 5p^{-1}P_2 - 5p5d^{-1}D_3$ $58^25p^2 {}^3P_4 - 5p5d {}^3D_4$	-0.008
1210.227	81281.9	50	$5s^{2}5p^{2}$ $^{1}S_{0}$ - 5p6d $^{1}P_{1}$	0.003
1244.292	80367.0	20	$5s^25p^2 {}^{3}P_2 - 5p5d {}^{3}D_2$	0.005
1258.867	79436.5	25	$5s^25p^2 {}^3P_2 - 5p5d {}^3D_1$	-0.015
1272.741	78570.6	72	$5s^{2}5p^{2}$ ¹ D ₂ - 5p5d ³ P ₁	0.005
1274.670	78451.7	55	$\frac{5s^{2}5p^{2}}{5s^{2}5p^{2}} \frac{1}{10} \frac{1}{2} - \frac{sp^{3}}{5s^{2}5p^{2}} \frac{3P_{2}}{10}$	0.012
12/4.922	77533.3	65	58.5p D 2- 5p5d F ₃ 58^25p^2 ¹ D - 5p5d ¹ P	-0.005
1296.358	77139.2	62	$5s^{2}5p^{2} + b_{2}^{2} + 5p5u^{2} + 1_{1}^{2}$ $5s^{2}5p^{2} + ^{3}P_{0} + sp^{3} + ^{3}P_{1}$	0.007
1317.540	75899.0	83	$5s^25p^2 {}^{3}P_0 - 5p6s {}^{1}P_1$	0.000
1325.054	75468.6	31	5s ² 5p ² ¹ D ₂ - 5p5d ³ D ₃	0.007
1327.394	75335.6	54	$5s^25p^2 {}^{3}P_1 - 5p5d {}^{3}F_2$	0.006
1349.810	74084.5	45	$5s^25p^2$ ³ P ₁ - sp^3 ³ P ₁	-0.003
1354.883	73807.1	68	$5s^{2}5p^{2}$ $P_{1} - sp^{3}$ P_{0}	0.000
1350.287	73637 2	50	$5s^{2}5n^{2}$ $^{3}P_{1}$ $_{2}$ $5n6s^{3}P_{2}$	0.009
1365.451	73235.9	29	$5s^{2}5p^{2}$ ¹ D ₂ - 5p5d ³ D ₂	-0.002
1372.808	72843.4	37	$5s^25p^2$ ³ P ₁ - 5p6s ¹ P ₁	0.006
1374.913	72731.9	22	$5s^25p^2 \ ^3P_2 \ -5p5d \ ^3F_2$	0.009
1383.057	72303.6	45	$5s^{2}5p^{2}$ ¹ D ₂ - 5p5d ³ D ₁	0.009
1384.662	72219.8	72	5s ⁻ 5p ⁻ ^o P ₁ - 5p5d ^o D ₂	0.002
1387.565	72068.7	69 7	$5s^{2}5p^{2} \xrightarrow{3}P_{2} - 5p5d \xrightarrow{3}F_{3}$	0.007
1398.969	71481.2	1	$5s^{-}5p^{-}P_{2} - sp^{-}P_{1}$ $5s^{2}5p^{2} - {}^{3}D_{2} - 5p6a^{-}{}^{3}D_{2}$	-0.008
1436.423	69617.4	74	$5s^{2}5p^{2} {}^{3}P_{2} - 5p5d {}^{1}D_{2}$	-0.022
1438.110	69535.7	72	$5s^25p^2 {}^{3}P_0 - 5p6s {}^{3}P_1$	0.010
1442.271	69335.1	45	$5s^25p^2$ ³ P ₁ - 5p5d ¹ D ₂	-0.001
1482.457	67455.6	60	$5s^{2}5p^{2} {}^{1}S_{0} - 5p5d {}^{3}P_{1}$	-0.006
1498.549	66731.2	68	$5s^{2}5p^{2}$ ³ P ₂ - 5p5d ¹ D ₂	0.007
1504.189	66481.0 66417.7	72	$5s^{-}5p^{-}P_{1} - 5p6s^{-}P_{1}$	-0.002
1508.025	66293.4	18	$5s^{2}5n^{2} {}^{3}P_{a} {}^{-} sn^{3} {}^{3}D_{a}$	-0.027
1513.255	66082.7	72	$5s^25p^2$ ³ P ₁ -5p6s ³ P ₀	0.000
1524.358	65601.4	60	5s ² 5p ² ¹ D ₂ -5p5d ³ F2	-0.012
1539.935	64937.8	71	$5s^25p^2$ 1D_2 $-5p5d$ 3F_3	-0.006
1554.018	64349.3	68	$5s^{2}5p^{2} {}^{1}D_{2} {}^{-}sp^{3} {}^{3}P_{1}$	0.000
1564.813	63905.4	57	$5s^{2}5p^{2}$ $D_{2} - 5p6s$ P_{2}	-0.031
1202.211	038/0.9	15	$58.5p^{-1}P_2 - 5pos^{-1}P_1$	0.011

International Journal of Latest Research in Science and Technology.

Tabie :1 c	ontinued			
1576.114	63447.2	99	$5s^25p^2 {}^3P_1 - sp^3 {}^3D_2$	0.004
1581.365	63236.5	99	$5s^25p^2 {}^3P_1 - sp^3 {}^3D_1$	0.011
1584.578	63108.3	75	5s ² 5p ² ¹ D ₂ - 5p6s ¹ P ₁	0.009
1600.405	62484.2	72	$5s^{2}5p^{2}$ ¹ D ₂ -5p5d ¹ D ₂	0.016
1606.973	62228.8	99	$5s^{2}5p^{2}$ ³ P ₂ - sp^{3} ³ D ₃	0.003
1634.297	61188.4	56	$5s^25p^2$ ¹ S ₀ - 5p5d ³ D ₁	0.001
1643.550	60843.9	99	$5s^25p^2 {}^3P_2 - sp^3 {}^3D_2$	-0.003
1649.270	60632.9	99	$5s^25p^2 {}^3P_2 - sp^3 {}^3D_1$	0.014
1677.847	59600.2	64	$5s^{2}5p^{2}$ ¹ D ₂ - 5p5d ¹ D ₂	-0.005
1762.236	56746.1	75	$5s^{2}5p^{2} {}^{1}D_{2} - 5p6s {}^{3}P_{1}$	-0.008
1814.964	55097.5	99	$5s^{2}5p^{2} {}^{1}D_{2} - sp^{3} {}^{3}D_{3}$	-0.003
1861.771	53712.3	64	$5s^{2}5p^{2}$ ¹ D ₂ - sp^{3} ³ D ₂	0.000
1869.086	53502.1	33	$5s^{2}5p^{2}$ ¹ D ₂ - sp^{3} ³ D ₁	-0.008
1878.513	53233.6	54	$5s^25p^2$ ${}^1S_0 - sp^3$ 3P_1	0.003
1923.325	51993.3	66	$5s^25p^2$ $^1S_0 - 5p6s$ 1P_1	-0.009
2054.717	48668.5	99	$5s^25p^2 {}^3P_1 - sp^3 = 5S^2$	-0.017
2170.860	46064.7	99	$5s^25p^2 {}^3P_2 - sp^3 {}^5S_2$	-0.007
2191.526	45630.3	99	$5s^25p^2$ $^{1}S_0 - 5p6s$ $^{3}P_1$	-0.003
2359.258	42386.2	10	$5s^{2}5p^{2} {}^{1}S_{0} - sp^{3} {}^{3}D_{1}$	0.004
2568.528	38932.8	15	$5s^{2}5p^{2}$ $^{1}D_{2}$ - sp^{3} $5S^{2}$	0.016

Table 2	: Fit	ted and	HFR ene	rgy p	aram	eteric	values
(cm ⁻¹)	and	scaling	factors	for	the	odd	parity
configu	ration	s of Sb I	[

Parameter	LSF	Accu.	HF	L	SF/HF
$E_{av}(5s5p^3)$	80053	213	78656	i 1.0	021
$F^{2}(5p,5p)$	32038	1074	40013	0.8	801
α_{5p}	-233	-78			
ζ _{5p}	3660	464	3526	1.0	038
G1(5s,5p)	34147	316	53006	0.0	544
Eav(5s25p5d)	82/8/	140	85252	2 0.9	995 262
ζSp	4145	208 (fined)	3899	1.0	JOS 01.2
$\zeta 5d$ E2 (5m 5d)	94	(lixed)	95	1.0	J15
$G_1(5p,5d)$	14980	493	21210	, 0.0 0 '	560 718
$G_{3}(5p,5d)$	10815	1362	12859	0.	841
Eav(5s25p6d)	109466	110	10990	9 0.9	997
ζ5p	4403	157	4071	1.0	082
ζ6d	34	(fixed)	34	1.0	000
F2(5p,6d)	5422	1051	5953	0.9	911
G1(5p,6d)	3165	679	4975	0.0	636
G3(5p,6d)	2261	1103	3237	0.0	599
Eav(5s25p7d)	120264	91	12078	s 0.9	996
ζ5p	4743	139	4102	1.	156
ζ7d	17	(fixed)	17	1.0	000
F2(5p,7d)	2202	901	2634	0.8	836
G1(5p,7d)	1653	615	2141	0.	172
$G_3(5p, 7d)$	922	(fixed)	1418	0.0	550
Eav(5s25p6s)	/3944	18/	74464	· 0.9	994 061
G1(5n.6s)	4220	233 881	A1A1	1.0	563
$E_{av}(5s25n7s)$	105787	145	10631	0 0.0	996
(5n	4331	195	4082	1.0	061
G1(5p.7s)	877	758	1101	0.2	797
Eav(5s25p8s)	117893	14	11900	0.0	991
ζ5p	3949	185	4106	0.9	962
G1(5p,8s)	362	(fixed)	482	0.2	750
Configuration	Parameter	LSF	Accu.	HF	LSF HF
5s5p ³ -	$R^{1}(5p,5p;$	20549	339	30746	0.668
5s ² 5p5d	5s,5d)				
5s5p ³ -	R ¹ (5p,5p;	10273	170	15371	0.668
5s ² 5p6d	5s,6d)				
5s5p ³ - 5s ² 5p7d	R ¹ (5p,5p; 5s,7d)	6739	111	10084	0.668
5s5p ³ -	R ¹ (5p,5p;	-1544	-25	-2309	0.668
5s-5p6s	5s,6s)	026	15	1295	0.669
5s ² 5p7s	5s,7s)	-926	-15	-1385	0.668
5s5p ³ -	R ¹ (5 p ,5 p ;	-647	-11	-968	0.668
5s² 5p8s	5s,8s)				

Table :2 co	ntinued				
5s ² 5p5d-	$R^{0}(5p,5d;$				
5s ² 5p6d	5p,6d)	0	0	0	
	R ² (5p,5d;	5381	89	8052	0.668
	5p,6d)	6,600	100	0000	0.660
	R'(5p,5d;	6609	109	9888	0.668
	$P^{3}(5p, 5d)$	4185	60	6262	0.668
	6d 5n)	4165	09	0202	0.008
5s ² 5n5d-	R ⁰ (5n.5d:	0	0	0	
$5s^25p7d$	5p.7d)	Ŭ	, v	Ŭ	
•	R ² (5p,5d;	3245	54	4855	0.668
	5p,7d)				
	R ¹ (5 p ,5 d ;	4259	70	6372	0.668
	7d,5p)				
	R ³ (5p,5d;	2713	45	4059	0.668
5-25-5-1	7 a,5p)	7209	101	1002	0.669
$5s^{2}5p6s$	K (5p,50;	-/308	-121	-1095	0.008
58 5008	$R^{1}(5p, 5d)$	-2985	-49	-4466	0.668
	6s.5p)	2700			0.000
5s ² 5p5d-	$R^{2}(5p,5d;$	-3026	-50	-4528	0.668
5s ² 5p7s	5p,7s)				
	$R^{1}(5p,5d;$	-1601	-26	-2395	0.668
	7s,5p)				
5s ² 5p5d-	R ² (5 p ,5 d ;	-1899	-31	-2841	0.668
5s-5p8s	5p,8s)	1071	10	1(0)	0.((0
	K ⁻ (5p,5d;	-10/1	-18	-1602	0.008
5s25p6d-	B0(5n 6d·5	0	0	0	
5s25p7d	n.7d)	Ŭ	v	U	
F	R2(5p,6d;5	2319	38	3469	0.668
	p,7d)				
	R1(5p,6d;7	2176	36	3256	0.668
	d,5p)				
	R3(5p,6d;7	1428	24	2136	0.668
5-25-()	d,5p)	1057	17	1501	0.((9
5s25p6a- 5s25p6s	R2(5p,60;5	-1057	-1/	-1581	0.008
3823p08	R1(5n 6d·6	-909	-15	-1360	0.668
	s.5p)	-303	-10	-1500	0.000
5s25p6d-	R2(5p,6d;5	-2040	-34	-3052	0.668
5s25p7s	p,7s)				
	R1(5p,6d;7	-579	-10	-866	0.668
	s,5p)				
5s25p6d-	R2(5p,6d;5	-1385	(fixed)	-1732	0.800
5s25p8s	p,8s)	454	(e !1)	(05	0.750
	K1(5p,00;8	-454	(lixea)	-005	0.750
5s25p7d-	B2(5n 7d·5	-271	(fived)	-362	0.750
5s25p6s	p.6s)	-/1	(IIACU)	202	0.720
	R1(5p,7d;6	-537	(fixed)	-716	0.750
	s,5p)				
5s25p7d-	R2(5p,7d;5	-969	(fixed)	-1292	0.750
5s25p7s	p,7s)				
	R1(5p,7d;7	-367	(fixed)	-489	0.750
5-25-7-1	s,5p)	072	(6 : 1)	1007	0.750
5s25p/a-	$K_2(5p,/d;5)$	-9/2	(fixed)	-1295	0.750
3323µ08	R1(5n 7d·8	-261	(fived)	-340	0.750
	s.5p)	-01	(IIACU)		0.150
5s25n6s-	R0(5n 6s:5	0	(fixed)	0	
5s25p7s	p,7s)	, C	(inter)		
	R1(5p,6s;7	1541	(fixed)	2054	0.750
	s,5p)				
5s25p6s-	R0(5p,6s;5	0	(fixed)	0	
5s25p8s	p,8s)		L	L	
	R1(5p,6s;8	997	(fixed)	1329	0.750
5-25 5	s,5p)	0	(P! 1)	0	
5s25p7s- 5s25p8s	K0(5p,7s;5	U	(fixed)	U	
3323pos	R1(5n 7c+8	545	(fived)	727	0.750
	s,5p)	0.10	(intu)		01120
	σ (mean error)	=	,	268	J
	5 (-	-		

International Journ	al of Lates	t Research in	1 Science	and Technology
international source	a of Laco	nescui en m	<i>i</i> beience	and reennoisy

Table 3 : The experimental and fitted energy level values							
(cm ⁻¹) and their LS- percentage compositions of							
	Odd parity configurations of Sb II						
E(obs)	E(LSF)	Diff.	LS-composition				
<u>J=0</u>							
69137.0	69142.0	-5.0	98% 5s ² 5p6s ³ P				
76862.0	77039.0	-177.0	$\begin{array}{c} 63\% 5s5p^{3} (^{2}P) ^{3}P + 34\% \\ 5s^{2}5p5d ^{3}P \end{array}$				
91125.0	91100.0	25.0	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				
101321.0	101317.0	4.0	100% 5s ² 5p7s ³ P				
112706.0	112617.0	105.0	97% 5s ² 5p6d ³ P				
113/96.0 122933.0n	113901.0 122999 0	-105.0	99% 5s 5p8s P 99% 5s ² 5n7d ³ P				
J=1	122////	-00.0	>>10 00 0pru 1				
66291.0	66369.0	-78.0	65% 5s5p ³ (² D) ³ D+ 27%				
69536.0	69530.0	6.0	5s ² 5p5d ³ D 74% 5s ² 5p6s ³ P + 25% 5s ² 5p6s ¹ P				
75898.0	75887.0	11.0	$56\% 5s^25p6s ^{1}P + 16\%$				
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
85094.0	85207.0	-113.0	$48\% 5s^{2}5p5d ^{3}D+20\%$ $5c5r^{3}(^{2}D) ^{3}D + 12\% 5r^{2}5r^{-}51$				
			$^{1}P + 9\% 5s^{2}5p5d ^{3}P$				
90323.0	90004.0	319.0	59% 5s ² 5p5d ¹ P + 16%				
			5s ² 5p5d ³ D +15%5s5p ³ (² P) ¹ P				
91360.0	91223.0	137.0	$51\% 5s^25p5d {}^{3}P + 27\%$				
			$^{3}D + 4\%5s 5p^{3} (^{2}D) ^{3}D$				
97636.0	97558.0	78.0	$\frac{85\%}{585p^3} \frac{(2)}{(4S)^3S} + \frac{50}{585p^3} \frac{(2)}{(4S)^3S} + \frac{10}{100}$				
101531.0	101537.0	-6.0	70% 5s ² 5p7s ³ P+29% 5s ² 5p7s				
	104942.0		^{-}P 34% 5s ² 5n6d $^{1}P + 24\%$				
	107/72.0		$ \begin{array}{r} 5.76 & 55 & 5764 & 1 + 2476 \\ 585p^3 & (^2P) & ^1P & +22\% & 5s^25p6d \\ ^3D + 8\% & 5s^25p6d & ^3P \end{array} $				
107461.0	107642.0	-181.0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
100-5-5			5s ² 5p5d ¹ P				
108309.0	108311.0	-2.0	68% 5s ² 5p7s ¹ P +28% 5s ² 5p7s ³ P				
112647.0	112525.0	122.0	78% 5s ² 5p6d ³ P+19% 5s ² 5p6d ³ D				
114050.0	113905.0	145.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
	114713.0	+	38% 5s²5p6d ¹ P+20%				
			5s ² 5p7d ¹ P +11% 5s ² 5p7d ³ D + 7% 5s ² 5p6d ³ D				
116776.0n	116796.0	-20.0	46% 5s ² 5p7d ³ D+18%				
			$5s^{2}5p6d ^{1}P+14\% 5s^{2}5p7d$ $^{3}D + 89(5s^{5}r^{3} (^{2}D) ^{1}D)$				
120013.0n	120032.0	-19.0	$\begin{array}{c c} \mathbf{F} + \delta 7_{0} & 5 \mathrm{SSp} & (\mathbf{P}) & \mathbf{P} \\ \hline 67\% & 5 \mathrm{s}^{2} \mathrm{5p8s} & {}^{1}\mathrm{P} & + 30\% \\ \hline 5 \mathrm{s}^{2} \mathrm{5n8s} & {}^{3}\mathrm{P} \end{array}$				
123138.0n	122965.0	173.0	55 5pos F 75% 5s ² 5p7d ³ P+24% 5s ² 5p7d ³ D				
124130.0n	124193.0	-63.0	$\begin{array}{c} 55 \text{ Sp/u D} \\ 69\% & 5s^25p7d {}^{1}\text{P}+ 16\% \\ 5s^25p7d {}^{3}\text{D}+6\% & 5s^25p7d {}^{3}\text{D} \end{array}$				
J=2			os opra Dioros opra I				
51723.0	51806.0	-83.0	98% 5s5p ³ (⁴ S) ⁵ S				
66502.0	66459.0	43.0	63% 5s5p ³ (² D) ³ D+ 25% 5s ² 5p5d ³ D +6% 5s5p ³ (² P) ³ P				
72390.0	72386.0	4.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
75275.0	75259.0	16.0	$\begin{array}{r} 81\% & 5s^25p56 & {}^{3}P + 5\% \\ 5s^25p5d & {}^{3}F + 5\% & 5s5p^3 & ({}^{2}P) & {}^{3}P \\ + & 5\% & 5s^25p5d & {}^{3}P \end{array}$				
76692.0	76737.0	-45.0	$\begin{array}{c} 61\% & 5s^{2}5p5d & {}^{3}F & +11\% \\ 5s^{2}5p6s & {}^{3}P & +9\% & 5s^{2}5p5d \\ {}^{3}P & +6\% & 5s^{5}p^{3}/{}^{2}P \\ \end{array}$				

Table 3 :	Continued			
78391.0	78265.0	126.0	$\begin{array}{r} 31\% \ 5s5p^3 \ (^2P) \ ^3P + \ 22\% \\ 5s^25p5d \ ^3P + \ 21\% \ 5s^25p5d \ ^1D \\ + \ 12\% \ 5s^25p5d \ ^3F \end{array}$	
86025.0	85817.0	208.0	$\begin{array}{cccc} 46\% & 5s^2 \ 5p5d \ ^3D + 20\% \\ 5s^2 5p5d \ ^3P + 15\% & 5s5p^3 \ (^2P) \ ^3P \\ + 13\% & 5s5p^3 \ (^2D) \ ^3D \end{array}$	
91243.0	91044.0	199.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
98856.0	99147.0	-291.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
104723.0	104798.0	-75.0	$\begin{array}{r} 80\% & 5s^2 5p6d \ {}^3F + 10\% \\ 5s^2 5p6d \ {}^3D + 4\% \ 5s^2 5p6d \ {}^1D \end{array}$	
105536.0	105881.0	-345.0	44% 5s ² 5p6d ³ P+28% 5s ² 5p6d ³ D+18% 5s ² 5p6d ¹ D+6% 5s5p ³ (² D) ¹ D	
107825.0	107826.0	-1.0	99% 5s25p7s 3P	
	111687.0		42% 5s ² 5p6d ¹ D + 35% 5s ² 5p6d ³ D +17% 5s ² 5p6d ³ F + 4% 5s5p ³ (² D) ¹ D	
	112461.0		53% 5s ² 5p6d ³ F +16% 5s ² 5p7d ¹ D +5% 5s ² 5p7d ³ D	
115820.0n	115774.0	46.0	47% 5s ² 5p7d ³ P+33% 5s ² 5p7d ³ D+18% 5s ² 5p7d ¹ D	
119832.0	119812.0	20.0	100% 5s ² 5p8s 3P	
122499.0n	122488.0	11.0	$\begin{array}{cccc} 57\% & 5s^2 5p7d & {}^{1}D + \\ 19\% & 5s^2 5p7d & {}^{3}D \end{array}$	
123248.0n	122909.0	339.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
<u>J=3</u>				
67885.0	67643.0	242.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
77727.0	77741.0	-14.0	92% 5s25p5d 3F	
88259.0	88245.0	14.0	$\begin{array}{l} 60\% 5s^25p5d {}^{3}D+20\% \\ 5s5p^3 \ (^{2}D) {}^{3}D+13\% 5s^25p \\ 5d {}^{1}F+5\% 5s^25p5d {}^{3}F \end{array}$	
91226.0	91569.0	-343.0	80% 5s ² 5p5d ¹ F+ 12% 5s ² 5p5d ³ D	
	105580.0		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	111606.0		60% 5s ² 5p6d ³ D 34%5s ² 5p6d ³ F	
	113137.0		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
116410.0n	116008.0	402.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
122433.0n	122616.0	-183.0	59% 5s ² 5p7d ³ D + 38% 5s ² 5p7d ³ F	
123319.0n	123534.0	-215.0	$\begin{array}{c} 71\% \ 5s^{2}5p7d \ ^{1}F + 18\%5s \\ ^{2}5p7d \ ^{3}D + 9\% \ 5s^{2}5p7d \ ^{3}F \end{array}$	
<u>J=4</u>				
81083.0	81226.0	-143.0	100% 5s ² 5p5d ³ F	
	111110.0		99% 5s ² 5p6d ³ F	
	122310.0	<u> </u>	100% 5s ² 5p7d ³ F	
n = new levels				

CONCLUSIONS

Using the scaling from the isoelectronic sequence members from Te III - La VIII [1-6] multi-configuration interaction calculations were performed to predict the $5p^2$ - ($5s5p^3 + 5p5d + 5p6d + 5p7d + 5p6s + 5p7s + 5p8s$) transition array. The analysis is considerably extended to complete the 5p7d, and 5p8s configurations for the first time. Arcimowicz et al had classified 88 lines of Sb II for $5p^2$ - ($5s5p^3 + 5p5d + 5p6s +$

International Journal of Latest Research in Science and Technology. 5p7s) array while presently I have identified more lines in Sb II and have added two more configurations namely 5p7d, and 5p8s in the 446^[] 2076^[] region.

ACKNOWLEDGMENT

By the name of Allah I feel so gratefull of His blessings, I finally completed this paper. I am thankfull to the Natural sciences and Engineering Research Council of Canada (NSERC) for the financial assistance which made my stay possible in Antigonish laboratory in 2002. I am very much thankful to Deanship of Educational Services for providing me all facilities in Qassim University, KSA. I am thankful to Aligarh Muslim University for their continued support to the research program on Atomic Spectra. I would like to express my humble gratitude to Prof. Rahimullah Khan and Dr. Tauheed Ahmad of Aligarh Muslim University (India) for his constant guidance that helped me to complete this paper.

REFERENCES

- Y.N. Joshi, A. Tauheed and I.G. Davison, Canad. J. Phys. 70, 740 (1992)
- [2] A. Tauheed, Y.N Joshi, and V. Kaufman, J.Phys. B: At. Mol. Opt. Phys. 24, 3701 (1991).
- [3] E.H Pinnington, R.N.Gosselin, Q. Ji, J.A. Kernahan and B.Guo; Physica Scripta. 46, 40 (1992).
- [4] A. Tauheed and Y.N Joshi, Physica Scripta. 46, 403 (1992).
- [5] A.Tauheed and Y.N Joshi, Physica Scripta. 46, 403 (1992)
- [6] R.R. Churilov, and Y.N Joshi, Phys. Scr. 58, 441 (1998)
- [7] R. J Lang and E. H. Vestine, Phys. Rev. 42, 233 (1932)
- [8] S. G Krishnamurty, Indian J. Phys. 10, 83 (1936)
- [9] K.Murakawan and S. Suwa, Reports Inst. Sci Tech Tokyo university 1, 121 (1947)
- [10] C.E Moore, Atomic energy levels, 3, N.B.S.Circular 467
 (U.S.Government Printing Bureau, Washington, D.C) 1957
- B. Arcimowicz, Y.N Joshi and V. Kaufman, Canad. J. Phys. 67, 572 (1989)
- [12] Tazeen Rana, A. Tauheed and Y.N. Joshi , Physics Scripta. Vol 63,108-112, (2001)
- [13] R.L; Kelly Atomic and ionic lines below 2000Å; J. Phys. Chem. Ref. Data, 16 [Suppl 1] (1987).R.D. Cowan, "Theory of Atomic Structure and Spectra, Berkeley ,CA,
- [14] University of California Press (1981) and Cowan code programs.