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Abstract- This paper presents an evaluation study of the Multiresolution Spectral Analysis (MRS) method which provides a higher 
temporal accuracy in the upper spectral region and a better frequency resolution in the lower spectral range. We showcase the importance 
of this tool by attempting an automatic transition zone detection and an automatic silence/sonorant/non-sonorant classification. Our 
approach is compared to existing methods based on the MRS and classical spectral analysis by the means of our Visual Assistance of 
Speech Processing (VASP) System and two corpora. Our approach appears to yield better results in the two tasks in question than the 
other methods. 
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I. INTRODUCTION 
Choosing an appropriate window length for spectral 

analysis is not a straightforward process.  A narrow window 
provides a low frequency resolution, approximating only 
roughly the spectral envelope, whereas a wider window 
provides a high frequency resolution and can even show the 
harmonics in the spectrum.  The drawback to analysing a 
greater part of the signal can lead, however, to a lower 
temporal resolution, thus masking or distorting rapid 
acoustic landmarks occurring in speech. [18] thus suggests 
using a wide window for long steady-state vowels and a 
narrow window when investigating stop bursts in which the 
higher frequencies are more important. 

A classic speech spectrogram is a visual representation of 
log-magnitude amplitude (dB) versus time and frequency.  It 
offers a single integration time which is the length of the 
window and implements a uniform bandpass filter, with 

spectral samples being regularly spaced and corresponding 
to equal bandwidths. 

Mallat [20, p.674] makes the remark that "it is difficult to 
analyze the information content of an image directly from 
the gray-level intensity of the image pixels. Generally, the 
structures we want to recognize   have   very  different   
sizes.   Hence,   it   is   not   possible   to   define   a   priori   

an   optimal resolution   for   analyzing   images."   To   
improve   the   standard   spectral   output,   we   calculate   a 
multiresolution (MR) spectrum. In classical litterature, the 
MR analysis is based on discrete wavelet transforms [15,20�
22]. It has since been applied to several domains: image 
analysis [20], time-frequency   analysis   [11],   speech   
enhancement   [14,23],   automatic   signal   segmentation   
from   the scalogram [19]. 

The MR spectrum, a compromise that provides both a 
higher frequency and a higher temporal resolution, is not a 
novelty. In phonetic analysis, Annabi-Elkadri and Hamouda 
[1] presents a study of two common vowels /a/ and /E/ in the   

 
Tunisian dialect and in French. Cheung and Lim [9] 

presents a method for combining a wideband and a 
narrowband spectrogram by evaluating the geometric mean 
of their corresponding pixel values. Chan and al. [7] 
describes the use of MR for clean connected speech and 
noisy phone conversation speech. For music signals, 
Cancela and al. [6] presents two algorithms, the efficient 
constant-Q transform and the MR Fast Fourier transform 
(FFT). These two are reviewed and compared to a new tool 
based on the Infinite Impulse Response filtering of the FFT. 

Additionally, MR FFT has been used as a part of an 
effective melody extraction algorithm. In this context, 
Dressler [13] advance a melody extraction algorithm based 
on an MR FFT whose aim is to extract the sinusoidal 
components of the audio signal. The MRS has also been 
used in speech enhancement [24] and speech synthesis [10]. 

The   aim   of   this   paper   is   to   compare   existing   
tools   to   a classic spectral analysis. We have implemented 
and applied a series of existing methods in the context of 
speech analysis with a focus on transition zones detection 
and silence/sonorant/non-sonorant classification.  

II. MULTIRESOLUTION FFT 
     It is so difficult to choose the ideal window with the ideal 
characteristics.  The size of the ideal window [4] was equal 
to twice the length of the pitch of the signal. A wider 
window show the harmonics in the spectrum, a shorter 
window approximated very roughly the spectral envelope. 
This amounts to estimate the energy dispersion with the 
least error. 
When we calculated the windowed FFT, we supposed that 
the energy was concentrated at the center of the frame [16, 
p.41]. We estimated  the center Cp of the frame and choosed 

an overlap equal to 75% [29]. The spectral S i,k (pi) of 
each step i was : 
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N i− 1
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C i,pi
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i
+1)

4
the center of the frame pi and the 

overlap equal to 75%. 
 
The multiresolution spectral MRS [29] was: 
 
S k (p)=S i,k(p i)  si  k i≤ k≤ k i+1  

 

with: 0≤ k≤ N 0 +N 1+�+N P   and  1≤ p≤ P    
 

Diagrams displayed in Fig. 1 illustrates the difference 
between the standard FFT and the MRS. For a standard 
FFT, the size of the window is equal for each frequency 
band unlike the MRS windows size. It is dependent on the 
frequency band. 
 

Fig. 1 Standard FFT (on the left) and MR FFT (on the right) 
 

Fig. 2 shows the classical sonagram; Hamming window, 
11 ms with an overlap equal to 1/3. The sentence 
pronounced is:  "Le soir approchait, le soir du dernier jour 
de l�année".  

Fig. 3  shows  the  multi-resolution  sonagram  of  the  
same  sentence. It  offers  several time integrations which 
are combinations of several FFT of different lengths 
depending on frequency bandwidth. 
 

Fig. 2  Classical sonagram (Hamming, 11 ms, overlap 1/3) 
of this sentence: "Le soir approchait, le soir du dernier jour 

de l�année" 
 

Fig. 3  MR sonagram; Hamming (23, 20, 15, 11 ms), 
overlap 75%, Band-limits in Hz were [0, 2000, 4000, 7000, 

10000] of this sentence: "Le soir approchait, le soir du 
dernier jour de l�année" 

III. PRINCIPLES OF THE EXISTING APPROACHES 
Approach of Cheung 

Cheung and Lim [9] presents a method for combining a 
wideband and a narrowband spectrogram by estimating the 
geometric mean of their pixels values. The combined 
spectrogram appears to preserve the visual features 
associated with high resolution in both the frequential and 
the temporal domain. 
Approach of Chan 

Chan and al. [7] describes a use of the MR analysis for 
spontaneous speech in a phone conversation. Their 
experiments show that MR cepstra result in a significantly 

lower error rates when compared to Mel-frequency cepstral 
coefficients. 
Approach of Cancela 

For music signals, Cancela and al. [6] presents two 
algorithms, efficient-constant-Q-transform and the   
multiresolution FFT, and compare them to a new proposal 
based on the Infinite Impulse Response filtering (IIF 

filtering) of the FFT. The depicted method appears to be a 
good compromise between design flexibility and reduced 

computational effort. 
Approach of Dressler 

In a melody extraction context, Dressler [13] is interested 
in describing the spectrum analysis for melody extraction 
based on multiresolution spectrograms. The calculation of 
spectra of different frequency resolutions is executed so that 
sinusoids that are stable over different frames of the FFT 
can be detected. The results showed that the MR analysis 
improves the extraction of the sinusoidal. 
Approach of Shin 

Shin and al. [28] combines a wideband and a narrowband 
spectrogram by calculating the average arithmetic and 
geometric mean of both spectra followed by a non-linear 
transformation and a spatial filter. This study is applied on 
medical signals. 

IV.  MATERIALS AND METHODS 

Corpus 
We used two corpora. The French corpus included 

CiVCiV with Ci  being a stop consonant [p t k] and V a 
vowel [i e] [17]. The second corpus included read speech in 
Belgian French [26]. The sampling frequency was equal to 
44.1 KHz, the wav format was adopted in mono-stereo. 

 
VASP Software: Visual Assistance of Speech Processing 
Software 

For our study, we created a prototype System for Visual 
Assistance of Speech Processing (VASP) [29]. VASP 
depicts sound on both time (by means of a waveform) and 
time-frequency (spectral representation; classical 
spectrogram - narrowband and wideband; spectrograms 
calculated with linear prediction and cepstral coefficients; 
Multiresolution spectrogram, etc.). Our system can 
automatically detect silence from speech on the basis of a 
waveform. From the spectrogram, the system can detect 
acoustic cues such as formants, and classify acoustic 
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landmarks automatically into classes: sonorant, silence, non-
sonorant.  

 
 Analysis of Variance (ANOVA)  

ANOVA provides a statistical tool for verifying whether 
the means of several groups are all equal, and therefore 
generalizes the test to more than two groups. We have 
obtained two types of results: the ANOVA table and the 
Tukey box-and-whisker plots [22,23,8,12].  
 
Interquartile Range (IQR) 

IQR is the distance between the 25th  percentile and the 
75th  percentile [25]. The IQR is essentially the range of the 
mid 50% of the data which means that it not affected by 
outliers [25]. 

V. EXPERIMENTAL RESULTS 
We realised two simulations where we tested for 

transition zone detection and silence/sonorant/non-sonorant 
classification. 

 
Multiresolution Spectral Analysis (MRS) 

A MRS was calculated for each speech signal. Hamming 
windows were chosen with the following properties: frame 
length = [23, 20, 15, 11] ms; frequency bandwith = [0-2000, 
2000-4000, 4000-7000, 7000-10000] Hz; degree of 
overlapping = 75%. 

 
 Automatic detection of transition zones 

We calculated the IQR for each frame. All components of 
a frame were real numbers between 0 and 255. Each 
diagram should allow us to clearly visualize the  Tukey  box 
plot and the areas of transitions between the different Tukey 
box-and-whisker plots and thus between the different 
classes. The length of each frame was 10 ms for classical 
spectrograms and 1.7 ms for MRS. 

We calculated the Q1, Q2, Q3 and IQR for each frame 
and we plotted the Tukey box diagrams. We then presented 
our decision rules for transition zone detection and applied 
them to our corpora. We compared our results to 
experimental thresholds for Q3th, Q1th and IQRth [2,27]. 

 
 Automatic Silence/Sonorant/Non-Sonorant detection 

We defined as non-sonorants the fricatives and the stop 
consonants. All other sounds are defined as sonorants. When 

we found many successful sonorants or non-sonorants or 
silence, we considered them to belong to the same group. 
Fig. 4 shows an example of Multiresolution Spectrogram 
calculated with VASP. 

We calculated MRS for each speech signal and applied 
our decision rules for classifying the signal into a 
silence/sonorant/non-sonorant class. For each MR FFT 
spectral frame number i, we performed an ANOVA for each 
group of N frames. All components of a frame were reals 
between 0 and 255.  

Each diagram should allow us to clearly visualize the 
Tukey box plot and the areas of transitions between the 
different Tukey box plots and thus between the different 
classes. The length of each was fixed at 3 ms. We applied 
our decision rules for classifying the signal into a 
silence/sonorant/non-sonorant class. The hypothesis H0 to 
be rejected was that a frame was not classified as a non-

sonorant. We calculated the probability p for each group and 
we plotted the Tukey box diagram [3]. 

 

 
Fig. 4 Example of MRS calculated with VASP. Different 

classes are represented; silence/sonorant/non-sonorant and 
transition zones. 

VI.  DISCUSSIONS 
In this study we presented and tested the performance of a 

method for automatically detecting transition zones by 
means of our proprietary VASP system, MRS analyses and 
two corpora. VASP is an inhouse system regrouping all 
needed tools and presents a visual improvement compared 
to standard spectrograms. It allows for better acoustic cue 
extraction and is an automated, open system. In comparison 
to Praat (freeware), VASP doesn�t allow phonetic/phonemic 
transcription and includes offers less tools; it offers, 
nonetheless, more time-frequency representations and 
allows for an automatic detection of transition zones. 

MR FFT were calculated for each signal and transition 
zones were detected by means of decision rules. We 
observed that the values for Q1, median, Q3 and IQR 
differed when the frame represented silence, a stop 
consonant or a vowel. Decision rules were defined on the 
basis of these variations. All values were compared to 
experimental thresholds for Q3th, Q1th and IQRth. 

The first task consisted in detecting transition zones on 
the basis of IQR variation. This variation was presented as a 
graph with significant peaks which were detected by rules. 
For transition zone detection based on MRS FFT and IQR 
calculation, we obtained a score of 57.5%. The efficiency of 
classical spectral analysis and IQR calculation for the same 
task was of 23.75%. 

In our second task, we classified each sound frame into 

silence/sonorant/non-sonorant according to decision rules. 
Our method for automatically detecting 
silence/sonorant/non-sonorant on the basis of MRS provided 
better results than classical spectral analyses. Detection was 
better and errors were fewer. For detection of silence based 
on ANOVA calculation, a score of 77% was obtained. The 
score of non-sonorant detection with MRS was 75% and that 
for sonorants was 80%. 

When we calculated the mean and standard deviation for 
each frame, we observed an overlapping between the two 
groups; the silence class and the sonorant class and between 
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the two groups; the sonorant class and the non-sonorant 
class.  The score of non-sonorant detection is less then the 
sonorant detection because it is related to the transition CV. 
When the energy on the spectrogram is not visible, the non-
sonorant is omissed and considered as a sonorant. It�s 

difficult to detect the locus of each non-sonorant. For 
ANOVA results, the scores were better to the mean and the 
STD. All results of detection for MRS analysis are better 
then the classical spectral analysis. 

To evaluate  the  efficiency of  our approach,  we 
implemented  and  tested  ten  methods found  in literature; 
Table 1 summarizes the obtained detection rates. Peak 
distinction representing the transition zones was rather low 
in the case of wideband spectrogram SBL1 and SBL2, the 
rates of which did not exceed 50 %. Similar results were 
obtained for Cheung's M1 and M2 approaches.  

This was due to the limited resolution of the output 
spectrogram. Rates of detection average characterize the 
spectrogram to narrow band SBE and the spectrogram of the 
Cheung approach M3 the rate of which amounts to 60 %.  

TABLE I  RESULTS OF COMPARATIVE STUDY 

Results % Zone 
Detection 

% silence  % 
sonorant  

 % non-
sonorant  

S BL 1 20 64  65 40 

S BL 2 33.3 70  40 33 

S BE 60 65  60 33 

S Dressler 67 75  67 67 

Cheung 
M1 

30 20  30 35 

Cheung 
M2 

50 25  34 37 

Cheung 
M3 

60 27  37 38 

Cancela 65 76  64 70 

Shin 74 75  66 67 

MRS 84 77  80 75 

 
In the case of the approach of Cheung M1, M2 and M3, It 

was to be difficult to classify correctly frames. This is due  
to the  quality of the resultant  spectrogram.  The rates  of 
classification  not overtaking the 38%. In the case of the 
wide-band classic spectrograms SBL1 and SBL2 and to 
narrowband SBE, the classification rates are considered 
rather average, even mediocre, for certain classes. They are 
between 33% for non-sonorants and 70% for silence. 

We implemented and tested the approach of Cheung of 
three different manners. M1 corresponds to combining a 128 
samples and a 512 samples spectrogram. M2 combines a 
128 samples and a 1024 samples spectrogram. For M3, it is 
512 and 1024 samples. We noticed that matrice results were 
relatively fuzzy, in the sense that the borderline edges of the 
energy zones are not clear. This lack of precision around the 
edges influenced the accuracy of transition zone detection as 
well as the classification rates for silence/sonorant/non-
sonorant. 

Indeed, these results were lower than 60 % for the 
detection of the zones of transition and varied between 20 % 
and 38 % for the classification. 

The wideband and narrowband spectrograms were 
characterized by a variation of energy among lower and 
higher frequencies, which influenced frequency and time 
precisions in function with the size of the applied window. 

Detection rates for Dressler's, Cancela's and Shin's 
methods were more similar to those for our MRS approach. 
The rates of detection of the transition zones was until 74 % 
for the approach of Shin.  

Our approach MRS give better result with a rate of 84 % 
of detection. This rate strengthens the relevance of our   
approach as well as its precision during has it display of the   
energy zones characterizing phonemes in the spectrogram 
MRS. 

The classification results of Dressler, Cancela and Shin 
approaches yielded similar results as our MRS approach. 
These rates were due to these approaches clear resolution. 

The tested methods were initially implemented and 
applied for domains other than speech analysis.  

We implemented them and adapted them to our working 
context; the opposite was not possible since we didn�t have 

access to those corpora. 
Our MRS approach, however, revealed a better 

classification rate for about 80% of the sonorants.  
This experimental rate supported the theoretical  

contribution  of  the   MR  representation   and  its faculty to 
highlight the phonetic segments energy zones. 

VII. CONCLUSIONS 
In this paper, we   showed   that   classification   rates   

for   our   MRS   analysis   turned   out   better   than   those   
of   the traditional spectral analysis as well as those of the 
other existing multiresolution methods  that we studied.   
We   also   provided evidence that the MRS method yields 
better results for silence/sonorant/non-sonorant 
classification when  coupled with  ANOVA rather than  
when  it is based on standard deviation and mean. For non-
sonorants, other decision rules have to be implemented 
before a phoneme classification and recognition can be 

attempted.  
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