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Abstract- We establish equations for scalar and fermion fields using results obtained from a study on a phase space representation of 
quantum theory that we have performed in a previous work. Our approaches are similar to the historical ones to obtain Klein-Gordon and 
Dirac equations but the main difference is that ours are based on the use of properties of operators called dispersion-codispersion 
operators. We begin with a brief recall about the dispersion-codispersion operators. Then, introducing a mass operator with its canonical 
conjugate coordinate and applying rules of quantization, based on the use of dispersion - codispersion operators , we deduce a second 
order differential operator relation from the relativistic expression relying energy, momentum and mass. Using Dirac matrices, we derive 
from this second order differential operator relation a first order one. The application of the second order differential operator relation on 
a scalar function gives the equation for the scalar field and the use of the first order differential operator relation leads to the equation for 
fermion field. 
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I. INTRODUCTION 

   Using results obtained in our previous work [1] concerning 
a study on a phase space representation of quantum theory, 
our aim in this paper is to obtain equations for scalar and 
fermion fields. Our approaches have some similarities with 
the historical ones used for the obtention of the Klein-Gordon 
and Dirac equations [2],[3],[4],[5] but there are some 
differences. In fact, our approaches are based on the use of 
the properties of operators called dispersion-codispersion 
operators defined in [1]. 
 

   In the reference [1], statistic-probability theory and linear  
algebra are both used. We reserve   the word �covariance� for 

its meaning in linear algebra [8] (variance and covariance of 
a tensor) and the words �dispersion-codispersion� for the 

statistical variance-covariance. It is to be noted also that 
operators are denoted with bold letters. The natural unit 
system for quantum field theory (ℏ = 1, c = 1) is used. 
   

   It is well known that the standard equations in field theory 
for scalar and fermion fields are respectively Klein-Gordon 
and Dirac equations. These field equations are obtained by 
combining quantum theory and special relativity [3], [4], [5], 
[6], [7].  Let us consider the relativistic relation between 
energy, momentum and mass 
ଶ(ܧ)  − ሺ݌Ԧሻଶ −݉ଶ = 0 ⇔ ݃ఓఔ݌ఓ݌ఔ −݉ଶ = 0      (1.1)      ݃଴଴ = 1     ݃௝௝ = −1  for ݆ = 1, 2, 3      ݃ఓఔ = 0 for ߤ ≠   ߥ
 

 
 
By using the quantization rules which consists to replace the 
components of the energy-momentum  quadricovector  by the 
corresponding operators  
  
 
ఓ݌  → ݅ ఓݔ߲߲                                       (1.2) 

 
W e obtain a second order differential operator relation 
    ݃ఓఔ ఓݔ߲߲ ఔݔ߲߲ +݉ଶ = 0                                      
⇔ ߲ଶሺ߲ݔ଴ሻଶ − ߲ଶሺ߲ݔଵሻଶ − ߲ଶሺ߲ݔଶሻଶ − ߲ଶሺ߲ݔଷሻଶ + ݉ଶ = 0   (1.3) 

 
On one hand, the application of this operator relation on a 
scalar function ߶ gives the Klein-Gordon equation      
 (݃ఓఔ ఓݔ߲߲ ఔݔ߲߲ + ݉ଶ)߶ = 0                         (1.4) 

 
On the other hand, by using Dirac matrices ߛఓ which verify 
the anticommutation properties 
ఔߛఓߛ  + ఓߛఔߛ = 2݃ఓఔܫସ                        (1.5) 
   
, in which  ܫସ is the 4 × 4 identity matrix, we can deduce 
from the relation (1.3) a first order differential operator 
relation 
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൬݅ߛఓ ఓݔ߲߲ −݉൰ = 0                         (1.6) 

 
In fact, we have the factorization relation 
                          ݃ఓఔ ఓݔ߲߲ ఔݔ߲߲ + ݉ଶ 

 = − ൬݅ߛఓ ఓݔ߲߲ + ݉൰൬݅ߛఔ ఔݔ߲߲ −݉൰                 (1.7) 

 
The application of the operator relation (1.6) on a spinor 
function  ߰ leads to the Dirac equation 
 ൬݅ߛఓ ఓݔ߲߲ −݉൰߰ = 0                              (1.8) 

 
In the beginning, the Klein-Gordon and Dirac equations were 
expected to be just the relativistic equivalent of the 
Schrödinger equation. But it was later seen that the functions 

which appear in these equations are not to be interpreted as 
wave functions but as fields and the equations themselves 
have their right place and interpretations only in the 
framework of field theory [3], [4], [5], [6], [7]. 
 

  As said, we establish in this work other equations for scalar 
and fermion fields which may be considered as similar to the 
Klein-Gordon and Dirac equations. These equations are given 
in the relations (3.13) and (4.20).     
 

II. RECALL ABOUT DISPERSION-CODISPERSION 
OPERATORS 

 

In our work [1], we have introduced operators called 
dispersion operators. For the one dimensional case, the 
expression of a momentum dispersion operator is 
  ઱ = 12 ቈሺ࢖ − ܲሻଶሺÄ݌ሻଶ + ሺ࢞ − ܺሻଶሺÄݔሻଶ ቉ ሺÄ݌ሻଶ                                    

   = 12 ቈሺ࢖ − ܲሻଶ + ሺÄ݌ሻଶሺÄݔሻଶ ሺ࢞ − ܺሻଶ቉                           (2.1) 

  
the operator ઱ admits as eigenstates the states denoted ȁ�݊,ܺ,ܲ,Äۄ݌ � which are states whose corresponding wave 
functions in the coordinate and momentum representation are 
harmonic Gaussian functions ߮௡ሺݔ,ܺ,ܲ,Ä݌ሻ and their 
Fourier transforms [1]   
,ܲ,ܺ,ȁ݊ݔۦ  Äۧ݌ = ߮௡ሺݔ,ܺ,ܲ,Ä݌ሻ                                                   

                          = ݔ)௡ܪ − ܺξ2Äݔ)ඥ2௡݊!ξ2ߨÄݔ ݁ି(௫ି௑ଶÄ௫ )మା௜௉௫               (2.2) ݌ۦȁ݊,ܺ,ܲ,Äۧ݌ = ෤߮௡ሺ݌,ܺ,ܲ,Ä݌ሻ 
= 1ξ2ߨන߮௡ሺݔ,ܺ,ܲ,Ä݌ሻ ݁ି௜௣௫݀(2.3)             ݔ 

in these expressions, 
 

 ࢞ and ࢖ are respectively the position and momentum 
operators. In the coordinate representation, we have  

࢞  = ࢖           ݔ = −݅ ݔ݀݀                              (2.4) 

  
and in the momentum representation 
࢞   = ݅ ݌݀݀ ࢖         =  (2.5)                             ݌

 
 ܺ and ܲ are respectively the coordinate and momentum 

mean values corresponding to the states ȁ�݊,ܺ,ܲ,Äۄ݌ �        
 ܺ = =                                      ۧ݌ȁ݊,ܺ,ܲ,Ä࢞ȁ݌Ä,ܲ,ܺ,݊ۦ නݔ ȁ߮௡ሺݔ,ܺ,ܲ,Ä݌ሻȁଶ݀(2.6)                        ݔ 

                          ܲ = = ۧ݌ȁ݊,ܺ,ܲ,Ä࢖ȁ݌Ä,ܲ,ܺ,݊ۦ න݌ ȁ ෤߮௡ሺ݌,ܺ,ܲ,Ä݌ሻȁଶ݀(2.7)                       ݌ 

 
 ሺÄݔሻଶ  and ሺÄ݌ሻଶ  are respectively the coordinate and 

momentum dispersions (commonly called statistical 
variances) corresponding to the states ȁ�0,ܺ,ܲ,Äۄ݌ �        

 ሺÄݔሻଶ = ࢞ȁሺ݌Ä,ܲ,ܺ,0ۦ  − ܺሻ૛ȁ0,ܺ,ܲ, Äۧ݌                   = නሺݔ − ܺሻଶ ȁ߮଴ሺݔ,ܺ,ܲ,Ä݌ሻȁଶ݀(2.8)           ݔ  ሺÄ݌ሻଶ = ࢖ȁሺ݌Ä,ܲ,ܺ,0ۦ − ܲሻ૛ȁ0,ܺ,ܲ,Äۧ݌                    = න(݌ − ܲ)ଶ ȁ ෤߮଴ሺ݌,ܺ,ܲ,Ä݌ሻȁଶ݀(2.9)           ݌ 

 

As ෤߮଴ሺ݌,ܺ,ܲ,Ä݌ሻ is the Fourier transform of ߮଴ሺݔ,ܺ,ܲ,Ä݌ሻ, 
Äݔ and Ä݌ are related by the relation: 
݌Äݔ߂  = 12                                     (2.10) 

 ሺÄݔሻଶ   and ሺÄ݌ሻଶ are called respectively coordinate and 
momentum ground dispersions. For a state ȁ�݊,ܺ,ܲ,Äۄ݌ �the 
corresponding values of the coordinate and momentum 
dispersions are 
 
ଶ(௡ݔ߂)                        = ,ܲ,ܺ,݊ۦ  Ä݌ȁሺ࢞ − ܺሻ૛ȁ݊,ܺ,ܲ,Äۧ݌                                = නሺݔ − ܺሻଶ ȁ߮௡ሺݔ,ܺ,ܲ,Ä݌ሻȁଶ݀ݔ              = ሺ2݊ + 1ሻ(ݔ߂)ଶ                              (2.11) 

 

ଶ(௡݌߂)                        = ,ܲ,ܺ,݊ۦ  Ä݌ȁሺ࢖ − ܲሻ૛ȁ݊,ܺ,ܲ,Äۧ݌    = නሺ݌ − ܲሻଶ ȁ ෤߮௡ሺ݌,ܺ,ܲ,Ä݌ሻȁଶ݀݌             = ሺ2݊ + 1ሻ(݌߂)ଶ                              (2.12) 
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It can be shown [1] that the eigenvalue of the momentum 
dispersion operator ઱ (1.1)  corresponding to an eigenstate ȁ�݊,ܺ,ܲ,Äۄ݌ �  is equal to the value of momentum dispersion  
corresponding to this state 
  ઱ȁ�݊,ܺ,ܲ,Äۄ݌ � = =                                  �  ۄ݌ଶȁ�݊,ܺ,ܲ,Ä(௡݌߂) ሺ2݊ + 1ሻሺÄ݌ሻଶȁ�݊,ܺ,ܲ,Ä(2.13)       � ۄ݌ 

From the momentum dispersion operator ઱, we may define 
the momentum quadratic mean operator   
૛തതത࢖    = ܲଶ + ઱                                       (2.14) 
 ૛തതത admits the same eigeinstates as  ઱࢖ 
,ܲ,ܺ,૛തതതȁ�݊࢖  Äۄ݌ � = ሺܲଶ + ઱ ሻȁ�݊,ܺ,ܲ,Äۄ݌          �                             = ሾܲଶ + ሺ2݊ + 1ሻሺÄ݌ሻଶሿȁ�݊,ܺ,ܲ,Ä(2.15) � ۄ݌ 

For the case of quadridimensional relativistic theory, in 
Minkowski space, it has been shown in [1] that as 
generalization of the momentum dispersion ሺÄ݌ሻଶ we have to 
define momentum dispersion �codispersion tensor 
(equivalent to variance-covariance matrix in probability and 
statistics) ℬఓఔ.If the variables are uncorrelated, the 
dispersion-codispersion tensor is diagonal:    
  ℬఓఓ = ൫Ä݌ఓ൯ଶ = 12 Ä݌ఓݔ߂ఓ = 1ሺ2ݔ߂ఓሻଶ                        ℬఓఔ = ߤ ݂݅ 0 ≠ ߤ)   ߥ = 0, 1, 2,3)          (2.16) 

 
If the variables are correlated, this tensor is not 
diagonal:ℬఓఔ ≠ ߤ ݂݅ 0 ≠  Then as generalization of the .ߥ

momentum dispersion operator ઱ , it was also shown in [1] 
that we have to define a dispersion- codispersion tensor 
operator  ઱ࣇࣆ   
                  ઱ࣇࣆ = 12 ൫࢖ఓ − ఓܲ൯ሺ࢖ఔ − ఔܲሻ                                               + 2ℬఓఈℬఔఉሺ࢞ఈ − ఉ࢞ሻ൫ࢻܺ − ܺఉ൯           (2.17) 

 
 The ࢞ఓ and  ࢖ఓ are respectively the operators 

corresponding to the coordinates and the components of 
the energy-momentum quadricovector. They obey the 
following commutation relations (݃ఓఔ  are the components 
of the metric tensor ) : 
ఓ࢖ ൣ  ൧ିࣇ࢞, = ݅݃ఓఔ ఓ࢖ൣ      ൧ିࣇ࢖, = ఓ࢞ൣ   0 ൧ିࣇ࢞, = 0   (2.18) ݃଴଴ = 1   ݃௞௞ = −1  for ݇ = 1,2,3  ݃ఓఔ = 0  if  ߤ ≠  (2.19) ߥ

 
In the coordinate representation, we have 
ఓ࢞  = ఓݔ ఓ࢖        = ݅ ఓݔ߲߲                            (2.20) 

 
In the momentum representation, we have 

ఓ࢞   = −݅ ఓ݌߲߲ ఓ࢖        =  ఓ                          (2.21)݌

 
 The ܺࣆ and the ఔܲ are respectively the mean values of the 

operators ࢞ఓ and  ࢖ఓ when the state of a particle is an 
eigenstate ห�݊,ܺఓ , ఔܲ ,ℬఈఉۄ� of the dispersion- codispersion 
operator ઱[1]ࣇࣆ 

ࣆܺ   = ൻ݊,ܺఓ , ఔܲ ,ℬఈఉห࢞ఓห݊,ܺఓ , ఔܲ ,ℬఈఉൿ           (2.22) 
    ఔܲ = ൻ݊,ܺఓ , ఔܲ ,ℬఈఉห࢖ఔห݊,ܺఓ , ఔܲ ,ℬఈఉൿ            (2.23) 
 
From the dispersion-codispersion operators ઱ࣇࣆ, we can 

define quadratic means operators  (ࣆ࢖)૛തതതതതതത: 
૛തതതതതതത(ࣆ࢖)  = ൫ ൯૛ࣆܲ +  ઱(2.24)                                   ࣆࣆ 
 

III. EQUATION FOR SCALAR FIELD 

Let us consider the relativistic relation between the energy-
momentum and mass 

 ݃ఓఔ݌ఓ݌ఔ = ݉ଶ                                                                      ⇔ ଶ(଴݌) − ଶ(ଵ݌) − ଶ(ଶ݌) − ଶ(ଷ݌) = ݉ଶ            (3.1) 

 
For the quantization of this relation in the framework of our 
approach, we adopt the following hypothesis: 
 
Hypothesis 1: There is a mass operator ࢓  and a canonical 
conjugate coordinate associated with ࢓, denoted ࣎ , such we 
have the commutation relation  
 

,࢓]  ି[࣎ = ݅                                    (3.2)  
 
in the ࣎-representation 
࣎  = ࢓          ߬ = ݅ ߲߲߬                            (3.3)  
 
in the ࢓-representation 
࢓  = ࣎        ݉ = −݅ ߲߲݉                       (3.4) 

 
Then we introduce the mass dispersion and mass quadratic 
mean operators  
ଶܯ−૛തതതത࢓  = 12 ቈሺ࢓ ሻଶܯ− + ሺÄ݉ሻଶሺÄ߬ሻଶ ሺ ࣎− Ôሻଶ቉      (3.5) 
૛തതതത࢓    = ଶܯ + 12 ቈሺ࢓ ሻଶܯ− + ሺÄ݉ሻଶሺÄ߬ሻଶ ሺ ࣎− Ôሻଶ቉      (3.6) 

 
In these expressions, we assume that Ä݉ and Ä߬ are related 
by the relation  
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Ä݉Ä߬ = 12 ⇔ Ä߬ = 12Ä݉                                 
 
So, we have also for the operator  ࢓૛തതതത 
૛തതതത࢓   = ଶܯ + 12 ሺ࢓ ሻଶܯ− + 2ሺÄ݉ሻସሺ ࣎ − Ôሻଶ  (3.7) 

   and  are respectively the mean values of the operators ܯ 
and  when the state is an eigenstate of the mass dispersion 
and mass quadratic mean operators. 
 
Hypothesis 2: For the quantization of the relation , the 

 are replaced by the operators  and   is replaced 

by . We then obtain the following operatorial relation 
 

 
 
We may suppose that between the mean values of the 
momentum components and the mass, we have the following 
relations  
 

 
 
Then the relation   becomes 
 

 
 
The application of this operator relation on a scalar function 
lead to the an equation for the scalar field  
 

 
 
In coordinate representation, we have 
 

 

 

 
 
then the equation  becomes  
 

 

 

 
 

we remark that according to the equation , the field  is 
a function of the five variables and . 
 

IV. EQUATION FOR FERMION FIELD  

Let us consider the relation (3.10)  

 

 

If we look at the expressions (2.17) and (3.7) of   and , 
we remark that the relation (4.1) is a relation between second 
order differential operators. In this paragraph, our aim is to 
deduce from this relation a linear relation between first order 
differential operators with a view to obtain a first order 
differential equation for fermion field. As for the 
establishment of the Dirac equation, we consider the 
following �operator factorization�: 
 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

 

 

 

In these relations, the coefficients   and  are 
considered as matrices which are to be determined.  
By making identification between the relations  and 

, we can deduce the following relations:  
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We can show that a set of matrices which verify the relations 

 to   are: 
 

 
 

 
 

 
 

 
 
The relation   is a relation which relate   and 

.The are the Dirac matrices,    
and  are the  and identity matrices. 
 
Then, the equation for fermion field which can be deduced is 
 

 

 

 Or 
 

 

 
 
According to the equation , the field   has thirty two 
components and it is a function which depends on the five 
variables and .  
 

V. CONCLUSION   

As it is shown by the equations (3.13) and (4.20), our 
approaches, which are based on the use of properties of 
dispersion-codispersion operators lead as expected to the 
obtention of equations for scalar and fermion fields. These 
equations have some similarities with the Klein-Gordon and 
Dirac equations but there are also some differences between 
them. As examples, unlike the case of the fields in the 
equations of Klein-Gordon and Dirac, which depend on the 
four variables , the fields in our equations 
depend on five variables and  . Another 
remarkable difference is the explicit presence of the 
momentum dispersion-codispersion tensor  and the mass 

dispersion  in our equations.  These presences are 
related to the fact that our approaches are based on the use of 
results from a phase space representation of quantum theory 
which takes into account the quantum uncertainty relation. 
Our approach may be then used in the formulation of a 
quantum field theory in phase space. 
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