

International Journal of Latest Research in Science and Technology ISSN (Online):2278-5299
Volume 3, Issue 1: Page No.1-8 ,January-February 2014
https://www.mnkpublication.com/journal/ijlrst/index.php

ISSN:2278-5299 1

Publication History
Manuscript Received : 12 February 2014
Manuscript Accepted : 19 February 2014
Revision Received : 20 February 2014
Manuscript Published : 28 February 2014

A COMPUTER VISION-BASED DRIVER
ASSISTANCE SYSTEM FOR IMPLEMENTATION

ON RECONFIGURABLE HARDWARE

1Ricardo Acevedo, 2Miguel Gonzalez, 3Andres Garcia
 1,2,3 Department of Postgraduate Studies, Tecnológico de Monterrey Campus Estado de México.

Atizapán de Zaragoza, Estado de México, México

Abstract - This paper presents the design of a driver assistance system based on computer vision that provides information about the
environment and the vehicle�s current driving state. The system has been developed to be implemented on an embedded computation
platform. Physical limitations such as memory and computing power are a major concern; this renders existing image processing
algorithms based on PC platforms unsuitable for direct use in this application. Instead, simplified and efficient image processing
algorithms must first be developed for deployment on a reconfigurable architecture. The driver assistance system provides three main
functionalities: Lane Detection, Lane-Change Detection and Obstacle Detection. The core algorithms have been realized as custom
hardware co-processors to be executed on Field Programmable Gate Array (FPGA) hardware, a soft-core CPU performs general system
control and final decision making based on co-processor output.

Keywords - Embedded System Design; Image Processing; Hardware Development; Embedded Computer Vision; Smart Vehicles

I. INTRODUCTION

Road traffic accidents are a serious socio-economic
problem and one of the top ten causes of death in the world,
as shown by a recent World Health Organization report [1].
The potential human and economic implications are large and
cause continuous spending. According to the Report on Road
Traffic Injury Prevention [2], road traffic accidents will be
the third cause of human death at world scale in the year
2020. The research on vehicle safety and accident prevention
systems is therefore presented as an essential component
needed to solve this issue. One of the many problems
automated vehicle safety design faces is to provide the
vehicle with the right means to perceive and act upon the
current environment. Sensors such as lasers, sonar devices
and radars are a common solution for this purpose; however,
recent advances in image processing technologies suggest a
new approach that should require a single sensor to provide
all the useful information about the external world; a
potential solution is to implement smart vehicles equipped
with artificial vision gear.

Computer vision-based driver assistance systems refers to
a set of technologies designed and developed for improving
traffic safety using a video camera as the sole sensor. It relies
on existing road infrastructure and is typically powered by
general computing platforms such as Personal Computers
(PC) that run several algorithms aimed to support human
driving (e.g., road recognition, lane and vehicle detection,
pedestrian detection, etc.). Rather than developing a driver
assistance system for use on a PC, it is possible to design a
real-time embedded system for deployment on-board the
vehicle. Embedded systems focus on a very specific task,
requiring a limited amount of resources to be able to
efficiently perform their functions. However, not all image
processing algorithms are suitable for a feasible embedded

implementation. The hardware complexity of a computer
vision algorithm is often related to the kind of image
processing tasks it must perform. Image processing tasks can
be classified into three categories [3]: low-level,
intermediate-level and high-level computations. Raw pixel
data processing is a crucial task in the low-level category, and
often involves the heaviest amount of computational load.
Common low-level computations are intended for feature
extraction, and may include down sampling, filtering or edge
detection. Intermediate-level operations include object
recognition, scene interpretation, segmentation and labelling.
These tasks rely directly on low-level operations and usually
require less pixel data. High-level tasks, in turn, depend
directly on intermediate-level operations, and are far-less data
intensive than the previous tasks, usually limited to decision-
making, and may include a conceptual description of a scene
in terms of activity, intention and behaviour. A full embedded
driver assistance system should be able to perform tasks of all
the three previous categories in real-time by off-loading each
processing task to dedicated co-processors, a Central
Processing Unit (CPU) can act as a master controller,
performing only supervisor activities and being the general
interface to the user. The embedded approach allows the full
system to be contained in one single chip. The Field-
Programmable Gate Array (FPGA) technology efficiently
allows the building, debugging and reconfiguration of a
Custom Computer Machine [4]. This work discusses the
design and implementation of a Computer Vision-Based
Driver Assistance System on FPGA hardware. An Altera
Cyclone II EP2C70 FPGA is used on this work due to its low
cost, board-integrated components and easy design
environment.

id14334183 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

https://www.mnkpublication.com/journal/ijlrst/index.php

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 2

This paper is organized as follows: Section II covers
related work, Section III describes the algorithms used,
Section IV describes their translation to custom hardware and
the final implementation. In Section V performance and
results are discussed. Conclusions and future work are
presented in Section VI.

II. RELATED WORK

We begin by examining real system prototypes that are
being currently developed in the automotive security
industry. Nissan Motor Company [5] has recently developed
a sensor-based security prototype called the All Around
Collision Free System (AACFS) to help protect the vehicle
from potential risks coming from multiple directions. One of
its main features is the Side Collision Prevention System
(SCPS) in which vehicle-mounted sensors activate a warning
if an approaching vehicle is detected in the driver's current
lane, thus avoiding a potential collision. This solution
encompasses a series of motion sensors grouped together to
form a robust system which can even take control of the
vehicle in a situation of extreme danger. Khan et al. [6]
proposes a similar motion-sensing system based on radars
using the Nios II soft-core CPU developed by Altera; the
Multiple Target Tracking (MTT) system offers the
advantages of a long range sensor as opposed to cameras, but
is dependent on surface material and random presence of
multiple objects can limit the efficiency of this approach. The
Honda Motor Company also developed its own on-board
security system [7] called the Advanced Safety Vehicle
Version 3 System (ASV-3). This set-up uses a wide range of
devices including radar, lasers, global position sensors and
cameras. One of the core features of the system lies on its
capability to transfer data between other ASV3-equipped
vehicles. If an ASV3 unit encounters a dangerous situation, it
is capable of transferring this knowledge to other surrounding
vehicles, minimizing the chance of an accident.

Optic-based sensors offer a clear advantage over other
passive sensors: They can use the existing road infrastructure
as direct input without the need of extra environmental
modifications. The goal is to be able to develop a smart
system capable of perceiving and understanding its
surroundings in a visual manner, similar to what a human
would do[8]. A good practical example of what an already
existing embedded device can achieve is proposed by
Feixiang et al. [9]. The system offers a computer vision-based
Lane Departure Warning System (LDWS) implemented on a
mobile phone. The detection method is based on the Hough
Transform, an often-used algorithm for line detection. Data-
intensive computing algorithms such as the Hough transform
are executed in real-time seamlessly inside the embedded
central processing unit at a frequency of 620 MHz coupled
with an on-board memory of 128 MB for storage purposes.
Another system design is discussed by Cario et al. [10]; it
focuses on an efficient method for designing a LDWS. The
algorithm detects lane markings on the road and models them
as finite line segments. It is then possible to track their angle
(and position) at any time. The two line angles can be added
up and compared against a certain threshold. This
information will tell the driver if the vehicle is leaving the
lane as well as the vehicle's position between two road lanes.

The solutions reviewed so far are applicable only to PC
platforms if real-time execution is needed. Much of these
algorithms make use of floating-point operations, a
simplification is needed for these algorithms to be
implemented as electronic components on fixed-point
architectures. One possible simplification for road detection
would require the transformation of the camera image into a
simpler domain, where line detection would become easy to
perform with straightforward operations. According to
Broggi [11] one such transformation would be the Inverse
Perspective Mapping (IPM) transform. IPM performs a
projective geometry transformation that attempts to correct
the distortion caused by the foreshortening factor and
vanishing point effects. In other words, IPM re-maps all
pixels in a source image to a new position in a new image
according to a defined mapping rule. The resulting image will
resemble a bird's eye view of the source image, effectively
removing the perspective distortion effect. This is an
excellent road simplification model that allows the IPM
transform to be implemented, under certain conditions, as a
simple data movement operation.

III. SYSTEM DESIGN

Fixed-Point Models

Design begins with the development of a software version
of the system that will define the needs and restrictions of
each processing stage that composes the complete pipeline.
Using this design methodology is possible to analyse and
debug each component quickly and easily. Once the
functionality of a specific component is tested, we can
simplify and optimize its design. The Matlab Design
Environment is used to model each one of these stages. The
general outline of the system is proposed as follows:

Image acquisition at a resolution of 640 x 480 pixels,
image RGB conversion to grey-scale, image filtering, image
processing, object analysis (e.g., tracking and recognition)
and finally, decision making. Data noise frequently occurs
and deteriorates the classification and tracking performance,
therefore, an effective data cleansing mechanism must be
implemented. The grey-scale source image runs through a
basic filtering stage composed of dilate and threshold
operations. The road model simplification is applied using
IPM. At this point, a clear (binary - black and white)
approximate model of the road will be generated; with this
information the system can easily detect, estimate and track
the road markings and evaluate the vehicle's current position
within the road.

Image Filtering

Mathematical morphology is described as a set-theoretic
method of image analysis providing a quantitative description
of geometrical structures, and is composed of a series of
morphological operators [12]. These operators manipulate the
interaction between an image f(x,y) (the object of interest)
and a structuring element h(x,y) (that could be expressed as a
convolution mask) to produce an output image g(x,y):

 (1)

Where:
 (2)

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 3

The dilation operation (Eq. 2) essentially expands an
image object, effectively �filling up� holes produced by a
faulty image acquisition, refer to Fig. 1. Note that structuring
element h(x,y) operates on one pixel at a time. In this work, a
basic dilate filter is applied to an incoming grey-scale image
implementing a square structuring element of size 3x3. This
will provide the necessary noise cleaning and will allow to
reproduce the morphological operator using an array of
hardware elements. It is important to consider, however, that
this filter typically operates on an image object stored in
memory. In a hardware pipeline, the image object is not
directly stored, instead it is constituted as a continuous serial
stream of bytes coming directly from the acquisition stage.

Fig. 1 Dilate filter operation. After applying the filter,

holes (black pixels) in the original image will be �filled up�.

Once the source image is filtered by the dilate operation, a

thresholding operation is applied. The basic idea is to clearly
separate the white lane markings from anything else on the
scene, producing a binary image. This is accomplished by
comparing each incoming pixel against a fixed threshold
value T, as show in Eq. 3. Note that the actual
implementation of the operation is a simple comparison.

 (3)

Road Model and Inverse Perspective Mapping

The Hough Transform is a commonly used software-
based method for detecting lines and circles and is constantly
applied in lane detection scenarios due to its robustness to
light variations and image noise [13, 14]. However, its
complexity demands significant computer power [15]; way
beyond the hardware capability of this application. Instead of
using the Hough Transform method for line detection, we
will simplify the road model using IMP. Fig. 2 shows the
image distorted by the camera, along the true image that can
be obtained if a perspective correction method is applied
(also known as projective transformation). It is important to
note that this operation is only a pixel mapping between two
image planes: image plane and world plane.

Fig. 2 Distortion of the world plane and true world plane

Mathematically, IPM can be described as a projection

from a 3D (image plane) Euclidean space onto a 2D plane

(world plane). A perspective mapping is described by Mallot
et al. [16] in the following form:

 (4)

 (5)

The mapping between the two planes can be represented

by a set of matrices. The perspective distortion can be
modelled by the following projective transformation, as
written in Eq. 6, where and are three-element vectors
representing a point (pixel) and is a homogeneous non-
singular 3x3 matrix.

 (6)

Here, represents the original (world) image points,

matrix models the camera's distortion as a �homography
matrix�, and contains the distorted (camera) image points.
The world and pixel coordinate systems are related by a set of
physical parameters known as extrinsic and intrinsic camera
parameters. If we combine both parameters we can generate a
projection matrix. For a projective transformation, the system
can be modelled as the following linear transformation [20]:

z

y

x

hhh

hhh

hhh

z

y

x

*

'

'

'

333231

232221

131211

(7)

The method used for the perspective distortion correction

requires four non-collinear points to create the mapping
between the two planes. It is possible to further simply the
process if the area of the image that will be mapped to the
world plane is assumed constant at all frames. (i.e., the
camera is placed in a fixed position, always facing the same
portion of the road). The constant area is surrounded with a
red polygon (trapezoid) in Fig. 3 The four points needed for
the transformation correspond to each one of the four corners
of the trapezoid shown on the image plane; their equivalent
positions on the world plane are also shown. These points can
be selected manually. With all input information it is possible
to generate a set of eight equations [17, 18]. The equations
can be solved off-line using any mathematical software and a
pair of matrices containing the matching between the world
and image plane pixels can be obtained. With the four point
correspondences discussed above, it is possible to extract
eight equations to generate matrix , as shown in Eq. 8.

3

2

1

0

3

2

1

0

32

31

23

22

21

13

12

11

333333

222222

111111

000000

333333

222222

111111

000000

'

'

'

'

'

'

'

'

*

''1000

''1000

''1000

''1000

''0001

''0001

''0001

''0001

y

y

y

y

x

x

x

x

h

h

h

h

h

h

h

h

yyyxyx

yyyxyx

yyyxyx

yyyxyx

xyxxyx

xyxxyx

xyxxyx

xyxxyx

(8)

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 4

It is important to note that the resulting pixel mapping
operation is constant, regardless of the pixel itself, as long as
the same camera is used, pixels will be always remapped to
the same location in the world plane. Consider the fixed
trapezoid points we have established before, this will let us
save the final position matrix and store it in a Look Up Table
(LUT). While reading incoming pixels, it is possible to know
their final position in the new plane just by looking at the
LUT.

Fig. 3 Camera input image (left) and transformed image

(right).

Road Model and Inverse Perspective Mapping

Once the image has been transformed, it is necessary to
estimate the position (as coordinates) of the two lanes along
the horizontal axis. Fig. 4 shows the ideal image obtained
after the perspective transformation is applied.

Fig. 4 Ideal transformed image. Each lane centroid is

marked with a red square.

Each white lane can be represented as two perfect
rectangles, with maximum width W and minimum height E.
If we consider the distance V from the bottom left to the start
of the white rectangle, then, the centre horizontal coordinate
of this lane can be directly calculated as:

 (9)

In a real image obtained after the perspective correction,

however, the two lanes hardly resemble perfect rectangles, as
shown in Fig. 5. It is possible to process each row of the
image independently and then compute the average of each
value to obtain the final centre coordinate of the white lane.

Fig. 5 Real world image. Real lane centroids are slightly

shifted to the left and right.

To estimate the real positions of each horizontal coordinate
we can proceed as follows: consider each row of the image is
processed from left to right. First, count each black pixel and
store the final value into an accumulator variable Vn. The
white pixels are also counted and the final sum stored into
another accumulator variable Wn. Consider also that, after the
last white pixel has been counted, we process the next row of
the image. If a row has been processed, the row counter
variable E must be increased in one unit, if the number of
processed rows has reached an E predefined bound, the
processing is over and we need to compute the average of
each accumulator variable.

 (10)

 (11)

The lane centroid in the horizontal axis can be finally

computed as:
 (12)

Algorithm 1. Shows the basic steps of the lane detection

system approach. Assume a constant value of E = 16 (i.e., the
number of processed image rows). This simplification will let
us analyse the last 16 rows of the image; the advantage of
setting this value will let us represent the divisions by E as a
right shift in hardware, as shifting right by n bits on an
unsigned binary number has the effect of dividing it by 2n In
this case E = 24 = 16.

Input: Transformed image as a continuous stream of

pixels
Output: A point in the image that represents the lane

position on the horizontal axis.

1. Set Vn = 0, Wn = 0 and processedRows = 0.
2. Process new image row. Set flagVariable = 0.
3. Receive new incoming pixel.

If incoming pixel is black, count incoming pixel and
store result in variable (Vn= Vn + 1).
If last processed pixel was white, set flagVariable = 1
and compute Vn = Vn - 1

4. If flagVariable = 1 go to line 5, else, return to line 3.
5. Compute processedRows = processedRows + 1
6. If processedRows = 16, compute the final results as:

Vt = Vn / processedRows
Wt = Wn / processedRows
Cx = Vt + Wt/2

Else, go to line 2.

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 5

7. The lane centroid (along the x axis) is stored in Cx,
Terminate algorithm.

Algorithm 1. Algorithm that implements the lane

extraction operation.

IV. HARDWARE IMPLEMENTATION

Image pre-processing stages are included before the actual
perspective correction component to increase the system
robustness to light variations and other environmental noise.
The basic operations that are studied in this work are
thresholding and dilation on grey-scale data. The threshold
filter, as seen earlier, is a fairly straightforward operation:
compare the grey-scale value of a pixel against a certain,
fixed value. If the pixel is equal or greater than the threshold
value, output a white pixel, if not, output a black pixel. The
dilate filter, on the other hand, requires particular hardware
considerations, as discussed below.

Morphological Operation

The dilate filter will help define certain areas of the image
by filling in holes that could possibly produce a faulty
detection, as seen in Fig. 6. The main challenge that this filter
presents is that it requires information of at least eight
neighbouring pixels for a 3x3 matrix application (the simplest
implementation of an image filter) before outputting an actual
result. We must design a hardware component that receives a
stream of pixels (encoded in eight bits for grey-scale images)
each clock cycle, for each incoming pixel, the component
must compute its result based on the values of the incoming
pixel and its neighbourhood. The basic conceptual schematic
diagram of this component is shown in Fig 7.

Fig. 6 Output of dilate filter with a structuring element of

size 3x3, note the �expansion� of each white pixel.

Fig. 7 Conceptual diagram of the dilate filter.

A continuous serial stream of pixels is presented at the
input of the component, with this in mind it is necessary to
design a method for storing at least the nine pixels required
for the image filter to output valid data. Once all the needed
pixels are stored, it is possible to immediately operate on
them on the same clock cycle. In the following clock cycle a
new pixel will be received, its neighbourhood data must be
updated as well. The new pixel-neighbourhood will consist of
the same data shifted one pixel to the left, so neighbourhood
information previously gathered must not be discarded. In
fact, we will only discard this information once the filter has
processed three rows of the input image; to operate on a serial
stream of pixels an array of First In First Out (FIFO) memory
blocks is proposed. The FIFO memory will hold the data
needed for the dilate operation.

Fig. 8 Memory array for arranging a 3 x 3 pixel matrix.

Refer to Fig. 8 Each FIFO memory holds an entire image

row minus three positions; those three positions will fill up
the 3x3 matrix, and this pixel data will be held (or delayed)
by three registers. Pixel 1 will be the first pixel entering the
memory array, Pixel 2 will be second, and Pixel 3 will be
third. The FIFO 2 block holds the remaining pixels for that
particular image row. The FIFO array is repeated for the
second image row (i.e., Pixel 4, Pixel 5, Pixel 6 and FIFO 2).
The last three pixels are stored directly in registers. It is
necessary to consider, however, that the first pixel will arrive
to the position Pixel 1 exactly after the last pixel has entered
position Pixel 9, this will introduce a minimum latency for
this component. After the 3x3 array has been filled up with
valid data, it is possible to search for the maximum (in the
case of the dilate operation) grey-value that is currently
stored inside the matrix. This value will be the actual filter's
output. Each processed pixel will then be compared against a
threshold value to create a final, filtered binary image.

Inverse Perspective Mapping

As seen on Section III, once matrix (homography
matrix) is obtained, the world plane pixel positions for any
image plane pixel can be computed. The world plane pixel
positions can be stored in Read-Only Memory. This means
that in the proposed FPGA architecture, each pixel
composing the distorted image can be re-assigned to a new
position according to the data stored in ROM; as shown in
Fig. 9.

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 6

Fig. 9 Conceptual diagram of the IPM component. Each
incoming pixel is located in a new position according to the
data stored in a ROM block.

To fully implement this idea in hardware three major
components are needed: Read-Only Memory to store the
transformed position data, Random-Access Memory to hold
each incoming video frame (previously filtered) and a
RAM/ROM controller to sync-up the data transmission
between the two memory blocks. The RAM/ROM controller
is designed as a finite-state machine model with four main
states (See Fig. 10).

Fig. 10 The finite-state machine that syncs up and controls
the data transmission between the two memory blocks.

This component will effectively apply a perspective

correction to the input image, it is worth noting, however,
that it requires at least four cycles to produce its output, this
will, again, introduce a minimum latency to the overall
system.

Lane Coordinates Estimation

A pure hardware architecture is the final implementation
for this algorithm. The divisions appearing in Eqs. 10, 11 and
12 need to be implemented as digital circuits. As discussed in
Section III, we solve this issue by proposing a E value of 24 =
16 and implementing the division as an arithmetic right shift.
In the case of Eq. 12, it is possible to right-shift the value just
one position. For the actual hardware component, Algorithm
1 was implemented in Very High-Speed Integrated Circuit
Hardware Description Language (VHDL). The algorithm can
be adjusted to compute the two lane coordinates in parallel.
Fig. 11 shows the output of the actual hardware component.

Fig. 11 Output of the lane coordinates extraction
component. Lane centroids are represented as two green

squares.

Data Processing and Lane Change Detection

After computing both centroids, we can finally determine
if a lane is present on the road, a lane-change is taking place
or if an obstacle is lying directly between these two points.
To detect an obstacle the system can threshold the area
between the two lanes, if an obstacle exists, it will show up as
a blob of white pixels. If the blob of pixels exceeds a certain
security distance, an alert can be issued to the driver. In order
to detect a lane change, the processing is a little bit complex,
as a time-tracking of both lane centroids are needed; this is
accomplished by defining a processing window. The
processing window will evaluate the changes presented in 10
video frames, an embedded software algorithm will then
conclude if the vehicle has, in fact, changed lane.

Fig. 12 Obstacle Detection. The corresponding object

identified as an obstacle is easily tracked through time with a
blue frame in the RGB space.

The basic idea is simple: divide the bottom of the image in
two major areas: Left and Right. Further divide those areas in
two halves, so we end up with four sub-areas as shown in
Fig. 13, each lane centroid will cross each region at different
times, depending on the vehicle's direction.

Fig. 13 Lane-change detection. Note the four sub-areas at
the bottom. The red vertical lines represent each of the

idealized lanes.

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 7

If the left centroid moves to the right and the right centroid
moves to the left, disappearing from the scene, then, a change
to the left (probably) has occurred. Conversely, if the right
centroid moves to the left and the left centroid eventually
disappears, the system could infer that a change to the right
has just occurred. A certain threshold value is also needed to
be perfectly sure when a vehicle is really changing direction.
We define the minimum distance thresholds that both
centroids have to cross as the two halves of the left and right
areas in Fig. 13 (red lines).

Previously, a processing window of 10 frames was
defined. If the system notices that both centroids are beyond
the minimum distance threshold in at least 6 frames out of 10,
it can conclude that a real lane-change is taking place in that
instant in time. This algorithm has been implemented as a
program written in C running on a NIOS II soft-core CPU,
the NIOS II is a 32-bit embedded-processor architecture
designed specifically for the Altera FPGAs. Its configuration
for this particular application can be listed as follows:

1. Standard core.

2. 20 K Bytes of on-chip memory.

3. UART JTAG for host communication/debugging.

V. RESULTS

 The first iteration of the system is focused on detecting a
lane-change event. Tests on real-world scenarios were carried
out with the results evaluated by human designers. Each test
involved the evaluation of 10 frames of video in a sequence
of video of varying length. It is important to note that the
system yields a result after 10 frames of video are evaluated,
that way, if detection shows up in at least 6 of 10 frames we
can conclude that, in fact, that detection is positive. The
system was tested at a processing speed of 20 frames per
second. The test vehicle changed lanes randomly through the
whole video. Fig. 14 shows the detection of a right lane-
change with the design discussed in this paper.

 The system is actively detecting and identifying lanes and
lane-change events with enough precision, provided that the
lane markers are correctly painted on the road and the camera
is correctly positioned and fixed during system evaluation.
Tests performed on the lane detection and lane-change
sequence resulted in acceptable accuracy for each video
sequence, in the best detection conditions, the system
correctly identified 9 lane-change events out of 10, in typical
conditions the system correct detection rate was 8 out of 10.
When testing the obstacle and vehicle detection system,
however, results showed that the current version of this
system can improve in future iterations.

Fig. 14 Lane-change detection test from a random video
sequence.

The simple obstacle detection discussed in this paper can
only detect one obstacle at a time, with our approach; the
obstacle closer to the vehicle will be identified and tracked in
time. Out of 10 test video sequences, the system correctly
identified 6 obstacles lying in front of the vehicle. One point
to note, however, is that no occlusion [19] occurred during
these particular test sequences and hence performance was
expected to improve. The full design can be implemented on
the EP2C70 FPGA circuit, as show on Table 1. The core,
simplified, architecture of the proposed system is showed in
Fig 15.

Table 1. Final Component Specification

Parameter Value

Max Frequency 44.69 MHz

Input Image Width 640 px

Input Image Height 480 px

Input Pixel Size 8 bit (Grey-scale)

Memory Consumption 568,854 bits

Total Logic Elements 4,166

Fig. 16 Simplified system architecture.

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 8

VI. CONCLUSIONS
In this paper we proposed an implementation of a Driver

Assistance System running on embedded hardware, which is
a real and promising solution for improved traffic and road
security. A simplified model of road and lane detection using
a perspective transformation technique was developed to take
advantage of a hardware-configurable environment;
additional hardware-based algorithms were designed in order
to extract relevant data from the scene, these algorithms
proved to be efficient and appropriate for an embedded
application. One of the crucial components of this system is
the perspective corrector based on IPM, it is important to note
that, as shown in Eq. 8 this solution can assume constant
extrinsic and intrinsic camera parameters as long as the same
camera is used and correctly positioned on the vehicle, we
must be aware, however, that this approach will transform a
fixed part of the scene (the area covered by the red trapezoid
in Fig. 3) We must note, also, that we�re just processing 16

image rows instead of the complete image, this simplification
let us implement arithmetic integer divisions as shift
operations. Practical tests we carried out to determine the
minimum rows required for acceptable lane identification. At
an image resolution of 640 x 480, 10 to 15 rows showed no
significant deviation in the lane�s position estimation for this

application.

Our proposed system design has proved to be feasible and
reliable according to the experiments conducted, and it is
suggested as a viable solution for the automotive security
problem. There is still room for code and resource
optimizations, in a near future it will be possible to use the
provided modules fully integrated on an actual on-board
vehicle system. During development of the system, a
processing time of 0.008147 seconds per frame was achieved
using gray scale source images at an initial resolution of 640
x 480. The processing time is expected to decrease in future
iterations.

ACKNOWLEDGMENT

We like to express sincere appreciation and deep gratitude
to all participants in this work.

REFERENCES

[1] The World Health Organization �The top 10 causes of Death� (online)

http://www.who.int/mediacentre/factsheets/fs310/en/index.html
(Accessed May 2013).

[2] World Health Organization World Report on Road Traffic Injury
Prevention Edited by Margie Peden. Genova, 2004.

[3] Ratha, N.K., et al, (1997) �FPGA-Based Computing in Computer
Vision� Computer Architecture for Machine Perception. CAMP '97.
pp. 128--135.

[4] Duncan A., Buell, Jeffrey M Arnold, and Walter J. (1996) �Splash
2: FPGAs for Custom Computing Machines� Kleinfelder, Eds., IEEE
Computer Society Press, Los Alamitos.

[5] Nissan's. �All Around Collision Free Prototype� [online]
http://www.nissan-global.com/EN/NEWS/2008/_STORY/081111-02-
e.html (Accessed May 2013).

[6] Khan, J., Niar S., Saghir M., El-Hillali, Y. and Rivenq A. (2009)
�Driver Assistance System Design and its Optimization for FPGA
Based MPSoC� Application Specific Processors, 2009. SASP '09.
IEEE 7th Symposium, San Francisco, CA. pp. 62�64

[7] Honda Motor Company. �Honda Completes Development of ASV-3�
(2005) [online] http://www.rpec.co.uk/archive/Honda\%20ASV.pdf
(Accessed May 2013)

[8] Bertozzi, M., Broggi, A. and Fascioli, A. (2000) �Vision-based
intelligent vehicles: State of the art and perspectives�, Robot. Auton.
Syst., Vol. 32, No.1 pp. 1-�16.

[9] Feixiang, R., Jinsheng, H., Ruyi, J. and Reinhard, K. (2009) �Lane
Detection on the iPhone� Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering.
Vol. 30, 2010, pp. 198--205.

[10] Cario G., Casavola, A., Franze, G., Lupia, M. and Brasili, G. (2009)
�Predictive Time-To-Lane-Crossing Estimation For Lane Departure
Warning Systems� Paper Number 09-0312 Universit`a degli Studi della
Calabri, Italia.

[11] Broggi, A. (1995), �An Image Reorganization Procedure for
Automative Road Following Systems�. International Conference on
Image Processing. IEEE Computer Society. Vol. 3. 1995. pp. 532--535.

[12] Serra, J. (1983), �Image analysis and mathematic morphology�,
Academic Press, Inc. Orlando, FL, USA.

[13] Coifman, B., Beymer, D., McLauchlan, P. and Malik, J. (1998) �A
Real-Time Computer Vision system for Vehicle Tracking and Traffic
Surveillance� Transportation Research Part C: Emerging
Technologies} Vol. 6, No. 4, August 1998, pp. 271�-288.

[14] Mc. Donald, J. (2001) �Application of the Hough Transform to Lane
Detection and Following on High Speed Roads� Signals Systems
Group, Department of Computer Science, National University of
Ireland. Maynooth, Ireland.

[15] Yang, G. (2005), �Computer Vision Hough Transform� Department of
Computing, Imperial College. 2005, London.

[16] Mallot, H., Bülthoff, H., Little, J., and Bohrer, S. (1991) �Inverse
Perspective Mapping simplifies Optical Flow computation�
Biological Cybernetics. January 1991, Vol. 64, No. 3, pp. 177--185.

[17] Reis, B., Teixeira, J., Teichrieb, V. and KElner, J.(2009) �Perspective

Correction Implementation for Embedded (Marker-Based) Augmented
Reality�. Universidad de Federal de Pernambuco, Centro de

Informática, Grupo de Pesquisa em Realidad Virtual e Multimídia.,
2009, Brasil.

[18] Hartley, R., and Zisserman, A. (2003) �Multiple View Geometry in
Computer Vision� Second Edition, Cambridge University Press.,
Cambridge, UK.

[19] Lipski, C., Scholz,B., Berger, K., Linz, C., Stich, T. and Magnor, M.
(2008) �A Fast and Robust Approach to Lane Marking Detection and
Lane Tracking� SSIAI '08 Proceedings of the 2008 IEEE Southwest
Symposium on Image Analysis and Interpretation. pp. 57--60.

http://www.who.int/mediacentre/factsheets/fs310/en/index.html
http://www.nissan-global.com/EN/NEWS/2008/_STORY/081111-02-

