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Abstract-Clustering is one of the most successful techniques for data mining, statistics, neuronal network, territorial design and others. In 
this kind of grouping, the parameters are usually optimized by means of a single objective.In particular, the partitioning is a clustering 
problem in the combinatorial optimization area and it has been well discussed and analyzed. However, real applications are far to be solved 
without the application of Multiobjective approaches. In this research paper we present a bi-objective partitioning proposal to solve the 
problem that involves census-based variables and geographical data for a territorial design problem.This is known to be a high complex 
computational problem and we it named Multiobjetive Clustering (MC).Two quality measures for clustering are chosen, which are 
simultaneously optimized in the partitioning process using Variable Neighborhood Search (VNS) for the optimization phase. The first quality 
measure obeys a geometrical concept of distances, whereas the second measure focuses in the calculus of the balance for a descriptive 
variable. In the multiobjetive clustering algorithm proposed(classification by partitioning), ithighlights a clear advantage with respect to the 
classical clustering algorithms such asK-meansand K-medoids which is the addition of another cost function which performs over variables 
vectors. The obtained results are shown in the Pareto frontier constructed with the approximate solutions generated by VNS, which are non-
dominated and non-comparable with a similar mechanism on which the minimals of a Hasse Diagram and the Maxima Set are reached. 
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I. INTRODUCTION 

Territorial Design (TD) occurs when small areas or 
geographical units must be bringing together into zones that 
result acceptable according to some requirements imposed by 
the problem in question. Geometrical compactness is a 
particular property which is often traduced as the clustering 
process in which a cost function is optimized. The current 
proposals of single-objective clustering in TD are diverse, 
from hierarchical algorithms to automatic classification 
(partitioning) [1, 2, 3]. The k-means clustering method is 
highly popular due to its simplicity for finding a partitioning 
of a data set into k disjoint groups. Here, a cost function is 
optimized by using a distance notion in the plane for data to 
be clustered. This restriction makes this problem to be 
located in the NP-complete category problems. Several 
clustering algorithms have been proposed in the basis of the 
k-means clustering method, with a common trade among 
them: the implicit or explicit optimization of a measure for 
the partitioning in which each group is represented by a 
centroid that attracts the other objects according to the given 
measure. However, due to the high computational cost of this 
problem, and for optimization purposes, the problem has 
been tackled by using different heuristics methods (see Bação 

et al. (2005)). In general terms, without specific constraints, 
usually grouping, clustering and classification are used 
similar mode. In fact, classification by partitioning is also 
known as automatic classification; however, a research line 
barely discussed in literature is the development of clustering  

 
 

methods for multiobjetive problems, which is focused in this 
research work. K-medoids is a combinatorial problem that 
has overcome some limitations of the k-means clustering 
method, however both algorithms keep the high 
computational complexity in the presence of other restrictions 
[4]. 

     The partitioning is a method that belongs to clustering 
around medoids[5]. When the clustering process is performed 
around the medoids, the cost function is treatable as 
geometrical compactness which implicitly is satisfied by the 
properties of this type of partitioning. On the other hand, the 
major problems of TD demand other restrictions different 
than geometrical compactness such as homogeneity, 
contiguity and connectedness, which must be optimized 
simultaneously. In this point, for the particular problem of 
multi-objective clustering, we have focused our efforts in the 
simultaneous satisfaction of an additional restriction known 
as homogeneity for values or weights with descriptive 
variables, which is considered as another goal of interest 
along with compactness. 

    In this paper we introduce two quality measures expressed 
as cost functions that are simultaneously optimized. For the 
clustering process diverse basic aspects of k-medoids have 
been taken. The optimization process is carried out by using 
VNS due to its proved efficiency in difficult combinatorial 
optimization problems [6, 7]. The construction of the Pareto 
frontier is needed due to the fact that in this case we must 
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optimize two cost functions. In order to obtain the 
approximate non-dominated solutions, the order theory was 
studied. We use the Hasse Diagrams with special attention in 
the minimal solutions and the maxima solution set, which 
both are non-dominated and non-comparable. 

The rest of this paper is organized as follows. Section 2 
presents the single-objective clustering algorithm. In Section 
4 we describe the problem from a mathematical point of 
view, describing details of the cost functions for multi-
objective clustering (MC) with VNS. In Section 3 the 
experimental results are discussed. Finally, in Section 6 the 
conclusions and future work are presented. 

II. SINGLE-OBJECTIVE PARTITIONING 
The classification techniques are of high usefulness when 

analyzing data. These techniques aim to bring together 
objects into classes or clusters, which internally are as 
homogeneous as possible, so that the objects that belong to 
the same cluster share a common trait. This level of similarity 
should be greater than the one that this objects have with 
respect to a different cluster. For practical purposes of the 
methodology proposed in this paper, it is necessary to have a 
measure ܦ of dissimilarity among classification objects 
which may be expressed as a quality function. Even though 
many classification methods have been proposed throughout 
history, two broad categories can be distinguished: 
hierarchical methods and non-hierarchical methods or single 
link [8]. In this paper, we focused our attention in partitioning 
methods (non-hierarchical), in particular, based on medoids 
and iterative partitioning due to the strong influence in our 
MC algorithm. The main features of optimization methods is 
that they produce a single partition of ݇ objects (a value 
specified beforehand) of non-overlapping clusters as a result 
of a maximization or minimization of one objective function 
[9]. Usually, these methods start with a initial ݇ partition of 
the whole object set. Each partition has a centroid which is 
therefore used for attracting the rests of the objects. Each 
object is then re-localized to the closest centroid. The 
centroids are re-calculated and the process starts again until 
none change happens in all the clusters. 

In general, the objects are represented by ܦ descriptive 
attributes in the form of vector in the space ܴ , and the 
similarity/dissimilarity measure used as distance, the cluster 
with similar objects are created. Due to in the process of 
constructing the cluster, none previous information about the 
structure of the cluster is given, this process is known as non-
supervised classification. In clustering, variables of each 
object are used in order to measure the similarity among 
them. 

In classification by partitioning we have Ù = ,ଵݔ} . . . ,  {ݔ
as the finite set of ݊ objects to classify and ݇ < ݊ the desired 
number of classes into which the objects are classified. A 
partition ܲ = ,ଵܥ} . . . ,ଵܥ ,} of  into ݇ classesܥ, . . .  , isܥ,
characterized by the following conditions: 

 
    1.  Ù = ڂ  ୀଵ ܥ  
ܥ  .2     ∩ ܥ = ∅for every ݅ ≠ ݆ 
 
The number ݇ is the size of the partition. It�s possible to 

eventually allow some of the ܥ  classes to be empty, in such a 

way that in reality the partitions ܲ = ,ଵܥ} . . .  } consideredܥ,
are partitions of  into ݇ classes or less. However, the 
optimal partitions according to the inertia criteria contain 
exactly ݇ non-empty classes [10]. In general, the desire is to 
obtain classes as homogeneous as possible and such that they 
are sufficiently spaced. 

Let ܲ  be the set of all the partitions of ܲ = ,ଵܥ) . . .  ) ofܥ,
 into ݇ or less classes. Finding �good partitions� is desired, 

this is, those partitions that reflect the existent similarity 
between the objects ݔ ∈ Ù. Every object ݔ ∈ Ù will be 
characterized by  different attributes or variables measured 
in a numerical scale, where each object ݔ will be seen as a 
vector from the Euclidean space ℝ. In this representation 
space we have an Euclidean metric ܯ (positive defined 
symmetrical matrix), that is used to define the internal 
product 〈ݔ|ݔ〉ெ = ∥  between the objects and the normݔܯ௧ݔ ݔ ∥ெଶ =  In the actual programming of the algorithms .ݔܯ௧ݔ
it�s been assumed, without losing generality for convergence 

effects, that ܯ =  In effect, the .(classic Euclidean metric) ݀ܫ
general case ܯ is decomposed as ܷ௧ܷ, and the 
transformation ݖ =   takes us to the classic Euclideanݔܷ
metric, with the new data ݖ . 

The problem presented in this paper poses that given a set 
of ݊ geographical objects ܺ = ,ଵݔ} ⋯,ଶݔ , ݔ }, whereݔ ∈ܴ, and ݇ a positive number previously known. The problem 
of clustering consists of finding a partition ܲ = ⋯,ଵܥ}  {ܥ,
of ܺ with ܥ a cluster made up of similar objects, satisfying 
an objective function ݂: P → ܴ, where  is the collection of 
all the partitions of . In order to measure the similarity 
between two objects ݔ and ݔ, a distance function denoted 
by ݀(ݔ ,  ) is used. The Euclidean distance is the mostݔ
useful similarity measure. Thus, the distance between two 
different elements ݔ = భݔ} ,⋯ , ݔ ವ} andݔ = భݔ} ,⋯ ,  ವ} isݔ
given as shown in Eq. (1).  

,ݔ)݀  (ݔ = ටσ  ୀଵ ݔ) −  )ଶ    (1)ݔ

 The objects belonging to one cluster are similar when the 
distance among them is minimal, this allows to formate the 
compactness objective function as shown in Eq.(2). 

 
(ܲ)ܦ  = σ  ∈ σ  ௫∈ ݔ)݀ , ܲ,)ଶݔ ∈ P         (2) 
 That is, it is required to minimize (2), where ݔ is known 

as the representative element of the cluster ܥ, which is the 
mean of the elements in the cluster C. This mean is calculated 
as shown in Eq. (3) and corresponds to the representative 
center of the cluster. 

 

 ܺ = ଵ||σ  ௫∈      (3)ݔ

 The goodness of ܭ-medoids based partitioning has 
developed diverse single-objective partitioning algorithms 
over geographical data [11]. In the same way, a MC 
multiobjective clustering algorithm presented in this paper, 
has inherit the characteristics of this type of single-objective 
partitioning. On the other hand, when the equation 2 has been 
minimized, is possible to understand that the compactness 
measure is implicitly satisfied. However, in an effort to 
express the geometrical compactness, we considered the 
classic partitioning definition adapting it to our problem [11]. 
In section 4.1 its description can be seen. 
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A. K-MedoidsAlgorithm 

The K-means algorithm is sensitive to outliers since an 
object with an extremely large value may substantially distort 
the distribution of data. How might the algorithm be modified 
to diminish such sensitivity? Instead of taking the mean value 
of the objects in a cluster as a reference point, a Medoid can 
be used, which is the most centrally located object in a 
cluster. Thus the partitioning method can still be performed 
based on the principle of minimizing the sum of the 
dissimilarities between each object and its corresponding 
reference point. This forms the basis of the K-Medoids 
method. The basic strategy of K-Medoids clustering 
algorithms is to find ݇ clusters in n objects by first arbitrarily 
finding a representative object (the Medoids) for each cluster. 
Each remaining object is clustered with the Medoid to which 
it is the most similar. K-Medoids method uses representative 
objects as reference points instead of taking the mean value 
of the objects in each cluster. The algorithm takes the input 
parameter ݇, the number of clusters to be partitioned among a 
set of ݊ objects. A typical K-Medoids algorithm for 
partitioning based on Medoid or central objects is as shown 
in Algorithm1: 
 
Input:ܭ: The number of clusters 
Input:ܦ: A data set containing ݊ objects 
Output:A set of k clusters that minimizes the sum of the 
dissimilarities of all the objects to their nearest medoid. 
 
Arbitrarily choose k objects in D as the initial representative 
objects  
Repeat 

Assign each remaining object to the cluster with the 
nearest medoid; 
Randomly select a non medoid object ܱௗ; 
Compute the total points ܵ of swap point ܱ withܱௗ; 
If ܵ < 0 
 Swap ܱ with ܱௗ  to form the new set of ݇ medoid   
End If 

Until no change; [12]. 
 

Algorithm1.A typical K-Medoids algorithm 
 

B. The Variable Neighborhood Search (VNS) for 
partitioning 

The VNS metaheuristic, proposed by Hansen and 
Mladenovic (1996 and 2003) is based on the observation that 
local minima tend to cluster in one or more areas of the 
searching space. Therefore when a local optimum is found, 
one can get advantage of the information it contains. For 
example, the value of several variables may be equal or close 
to their values at the global optimum. Looking for better 
solutions, VNS starts exploring, first the nearby 
neighborhoods of its current solution, and gradually the more 
distant ones. There is a current solution ܵ and a 
neighborhood of order ݇ associated to each iteration of VNS. 
Two steps are executed in every iteration: first, the generation 
of a neighbor solution of ܵ, named ܵ ܰ(ܵ), and second, 
the application of a local search procedure on ܵ, that leads to 
a new solution ݈ܵ. If ݈ܵ improves the current solution ܵ, 

then the searching procedure will restart now from sol using ݇ = 1. Otherwise, ݇ is incremented and the procedure is 
repeated from ܵ . The algorithm stops after a certain number 
of times that the complete exploration sequence ଵܰ; ଶܰ;⋯ ; ܰ௫  is performed (see Algorithm 2). 
 

/* Nk : k = 1, ... , kmax, neighborhood structures*/ 
/* Sa:current solution*/ 
/* Sp: neighbor solution ofSa*/ 
/* Sol:local optima solution*/ 
BEGIN 
repeat k = 1; until END; 
repeat 

/* Generate neighbor Spof the k-th neighborhood  
of Sa(SpNk(Sa))*/ 
Sp = GetNeighbor(Sa; Nk); 
Sol = LocalSearch(Sp);- 
ifSol is better than Sathen 

Sa = Sol; 
else 

k = k + 1; 
end 

untilk = kmax; 
END 
 

Algorithm 2.Procedure Variable Neighborhood Search [13]. 
 
When the VNS method is incorporated in a partitioning 

algorithm, it obtains good results with respect to compactness 
and quality of solutions with a reasonable time of computing 
[11]. 

III. MULTI-OBJECTIVE PRELIMINARS 
The multiobjective formulation is informally an 

optimization problem that presents two or more objective 
functions. The main inconvenient in this kind of problems in 
relation to a single objective model resides in the subjectivity 
of the solution found. A multiobjective problem doesn�t have 

a unique optimal solution, generates a set of solutions that 
can�t be considered different between the objectives it 
optimizes. The set of optimal solutions is denominated Pareto 
Frontier (PF) where the frontier of solutions contains all the 
points that aren�t overcome in all of the objectives by another 

solution. This concept is denominated dominance, such that 
the PF consists only of non-dominated solutions, then, a 
solution dominates another one if and only if, it is at least as 
good as the other in all of their objectives and is at least better 
in one of them [14]. 

The precision of these problems can be given can be 
achieved if the relationships between its characteristics, its 
restrictions and the objectives are identified, then it is 
possible to express it as a mathematical function. The 
improvement all together, means that all the functions must 
be optimized simultaneously, which leads to the following 
definition: 

 
Definition 3.1A multiobjective problem (MOP) can be 

defined in the case of minimization (and analogously for the 
case of maximization) as follows: Minimize f(x) 

such that f: F ⊆ R୬ → R୯, q ≥ 2 with feasible region in A = {a ∈ F: g୧(a) ≤ 0, i = 1,⋯ , m} ≠ ∅ 
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The set  is known as feasible region and it is said that the 
problem is subject to the restrictions g୧: R୬ → R that are any 
functions. 

In multiobjective optimization a certain scheme has to be 
selected that defines the improvement of one solution over 
another, frequently known as domination scheme and its 
definition is mainly based in that the solution of a 
multiobjective problem it is not unique and therefore the 
decision maker must choose one among a range of possible 
solutions that cannot out best each other, that is, that they 
don�t dominate each other. The clarity of this concept is 

given when we think that within the real numbers field the 
order is defined in a natural way. For R୬, is possible to 
extend the concept by means of the following definition. 

 

Definition 3.2Given x, y vectors in R୬ with x∠y if and 
only if x୩ ≤ y୩ for every k ∈ {1,⋯ , n} and x∠y if and only if x∠y with x ≠ y, where  is the usual order in . 
 
A. Pareto Frontier 

The dominance relationship is known as Pareto dominance 
defined as follows: 
 

Definition 3.3 Given a multiobjective problem, minimize f(x), where f: F ⊆ R୬ → R୯, q ≥ 2 with A ⊆ F the feasible 
region. We say that a vector x∗ ∈ A is non-dominated or an 
optimal Pareto if there is no vector x ∈ A such that x∠x∗.  

 
Thus, the answer to the problem of finding the best 

solutions (the non-dominated solutions, however the 
domination is defined within the technique) in a 
multiobjective problem is what is known as the solution set 
of the problem and the set of values of the objective function 
with a domain restricted to the vectors of the solution set (that 
is, the non-dominated vectors) is what we know as Pareto 
Frontier. In this way, the concept of set of non-dominated 
vectors, logically leads to the concept of partially ordered set. 

 
Definition 3.4 The set E(A; f) of Pareto efficient solutions 

(also known as set of Pareto optima) is defined as follows: E(A, f) = {a ∈ A:∃b ∈ Athat satisfies f(b)∠f(a)} 
 That is, the set of all the non-dominated vectors under the 

Pareto scheme. Summing up, the set Pareto optimum is the 
solution space of the problem, and the Pareto Frontier is its 
image in relation to the function to optimize. f: F ⊆ R୬ → R୯, q ≥ 2 
 

A concept closely related with the Pareto Frontier is the 
one of Pareto optimum. The Pareto optimum as well as the 
Pareto Frontier are the frame over which the multicriteria 
decision making is worked. The set of Pareto optimum for a 
given multiobjective problem, is a partially ordered set 
(poset) seen in a formal way. In the multiobjective problems, 
the minimal elements are searched for in the solution space 
seen as a poset with the relation ∠ given in definition 3.2. At 
this point a brief parenthesis over the concepts of order has 
been relevant to achieve the PF that we incorporate to the 
process of MC with VNS: 

 

Definition 3.5 Given a set  and ( ) a partial order 
relationship over it, we call the couple (A,⊀) a partially 
ordered set also referred as Poset.  

 

Definition 3.6 Given (A,⊀) a Poset, the subset X ⊆ A it is 
said to be a total order or chain in relation to ( ), if and only 
if x ≺ y or y ≺ x is fulfilled for every x, y ∈ X. In this case it 
is said that (X,⊀) is a totally ordered set.  

 

From a partial order the domination relationship ( ) can 
be defined in the following way: x ≺ y ⇔ x ⊀ y ∧ x|negy 
When occurs that x ⊀ y ∧ y ⊀ x it is said that they are not 
comparable, which is denoted by x ∥ y. 

On the other hand is important as well citing the lemma of 
Zorn, also known as Kuratowski-Zorn [15], it is a proposition 
of the sets theory that states the following: 

Any not empty partially ordered set in which any chain 
(totally ordered subset) has an upper bound, contains at least 
one maximal element. 

A maximal element of a partially ordered set  is an 
element  that is not lower than any other element. The term 
minimal element is defined in the dual way. 

 
Definition 3.7 Let (P,⊀) be a partially ordered set; m ∈ P 

is a maximal element of  if the only x ∈ P such that m ⊀ xis x = m. The definition of a minimal element is obtained by 
changing the symbol by .  

 
At first sight it would seem that m should be a maximum 

element, which is not always true because the definition of a 
maximal element is something weaker. In fact, maximal 
elements can exist even if there is no maximum. The reason 
is that, in general,  is only a partial order in ; if  is a 
maximal and p ∈ P, there is the chance that neither p ⊀ m 
nor m ⊀ p, therefore  would not be a maximum. This 
allows, furthermore, that there might be more than one 
maximal element in a set. 

However, if m ∈ P is maximal and  has a maximum, it 
will be fulfilled that max(P) ⊀ m; by definition of maximum 
it must have m ⊀ max(P) and therefore m = max(P); in 
other words, a maximum, if exists, it is the only maximal as 
well. 

It is not hard to see that if  is a total order in , the 
notions of maximum and maximal, coincide. Let m ∈ P be a 
maximal element, and p ∈ P arbitrary; by the condition of 
total order, either p ⊀ mor m ⊀ p; in the second case it 
would be p = m by the definition of maximal, by which p ⊀ m, and therefore, m = max(P). 

Not always the maximal elements exist, not even in the 
case where  is totally ordered [16]. 
 
Maximal and minimal elements in a Hasse diagram 

Let (A ⊀) be a CPO. Let m, n ∈ A. Then   
    1.   is a maximal element in  if and only if (∀x)(n ⊀x ⇒ n = x) 
    2.   is a minimal element in  if and only if (∀x)(x ⊀m ⇒ x = m) 
 
Intuitively, an element  of a CPO (A ⊀) is maximal of  

if there is no element in  that is strictly greater than . 
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Analogously, an element  of  is a minimal of  if there 
is no element of  that is strictly less than . 

Variable Neighborhood Search in the multiobjective 
partitioning �implicitly identifies branches� of the Hasse 

diagram where each non-dominated point of each branch is 
the maxima set (that contains all of the maximals) and is the 
Pareto Frontier and is the set of non-comparable minimal 
points, that is, is the Maxima set (Minima its dual) [17]. 
 
B. Approach to the problem 

The problem being treated here is about Multiobjective 
Partitioning in DT and the main conflict is to optimize 
simultaneously the functions of compactness for the 
geographical location and homogeneity for census variables. 
As a case of study, the data to group are Basic Geo-statistical 
Areas (AGEBs by its initials in Spanish) and answers to 
different population problems about concentration or 
distribution of a census value in a determined metropolitan 
zone are searched for. This distribution has a value associated 
that must be balanced for each of the groups of the whole 
territorial extension (homogeneity) and at the same time 
respect the property of physical proximity between the Agebs 
that form a group (compactness). The approximation of the 
cost function is done with VNS and it is combined with a 
method that supports on the order theory to find a set of non-
dominated solutions and non-comparable through the 
minimal points of a Hasse diagram that form the Maxima set 
[18]. It has been proposed a variant to the Pareto order 
relationship (see definition 3.2, 3.3 and 3.4). This variant 
guarantees finding non-comparable and non-dominated 
solutions, with a simple strategy: evaluate that the solutions 
generated by VNS over compact and homogeneous 
partitioning, meet the Pareto order and at the same time that 
they are non-comparable. 

Translating the Pareto order we have that: 
Given a solution (a, b) the next solution (a′, b′) is accepted 

if: (∗) a′ > ܽ ∧ ܾ′ = ܾ ∨ ܾ′ > ܾ ∧ ܽ′ = ܽ ∨ ܽ′ > ܽ ∧ ܾ′ > ܾ ∨ ܽ= ܽ ∧ ܾ = ܾ′ 
The trivial implication of logically negating the 

expressions gives place to obtain the following: Let�s 

consider inequality again  
 (a, b) < (ܽ′, ܾ′) 
Then the negation of this relationship produces the 

following equivalences: 
 
 ¬((a, b) < (ܽ′, ܾ′)) ≡ ¬[(ܽ < ܽ′ ∨ ܽ = ܽ′) ∧ 
 (b < ܾ′ ∨ ܾ = ܾ′)]   ≡ 
   ≡ ¬(a < ܽ′ ∨ ܽ = ܽ′) ∨ 
 ¬(b < ܾ′ ∨ ܾ = ܾ′) ≡ 
   ≡ (a ≥ a′ ∧ a ≠ a′) ∨ 
 ሺb ≥ bᇱ ∧ b ≠ bᇱሻ    ≡ 
   ≡ (a > ܽ′ ∨ ܾ > ܾ) (4) 
 
In the same way we have  
 ¬((a′, b′) < (ܽ, ܾ)) ≡ (ܽ′ > ܽ ∨ ܾ′ > ܾ) 
Therefore, it is concluded that (a, b) y (a′, b′) are non-

comparable if (a > ܽ′ ∨ ܾ > ܾ′) ∧ (ܽ′ > ܽ ∨ ܾ′ > ܾ). Under 
this non-comparable order properly adjusted with the Pareto 
Order all the pairs of minimal solutions are obtained 

satisfying in this way the conflict of the compromised 
solutions. 

In general terms, our algorithm generates a history of all 
the minimal candidate solutions. This process is repeated 
until the VNS� parameters allow it, thus collecting the set of 

minimal solutions that from the Pareto Frontier. The 
contribution in this work is the improvement of the algorithm 
reported in [18]. The challenge has been obtaining the exact 
Pareto Frontier of the solutions filtered with Nodom[17]. On 
the other hand, the result we have presented in previous 
works consisted in revealing a list of minimals that from the 
PF. However, only one solution from these minimals, the best 
found, was explicit in the sense that it showed the clusters 
and the objects that belonged to it. The improvement of the 
exposed algorithm in this paper not only resides in showing 
the PF without additional solutions �even if they are close to 

the PF�, the program creates a more complete output file, 

where each minimal solution has its cluster associated, 
compactness-homogeneity cost and files to create the maps. 
This result benefits considerably to the multicriteria decision 
maker. 

IV. MULTI-OBJECTIVE VNS 
MC with VNS consists in the clustering of geographical 

objects in which a bi-objective function simultaneously 
minimizes compactness for the geographical location, and 
homogeneity over the descriptive variables. In MC, the 
creation of groups/clusters considers geographical data in the 
aggregation, defined by a variable vector with population 
attributes. The clusters represented by two cost functions are 
subject to the satisfaction of the minimization process with 
VNS: a distance measure in the geographical space and 
another distance of balance for the population variables. 

Optimization with VNS is reduced to search the minimum 
for each solution (partition generated), which is made up by a 
pair of values (compactness, homogeneity) denoted by (c୧, h୧), where i ≤ number_of_objects. By a process, 
analogous to the obtaining of Hasse Diagram minimals, the 
solutions (c୧, h୧) are paralleled evaluated with a special order 
relationship named non-comparable order, which is 
integrated into the Pareto Dominance (PD). This procedure 
obtains a set of non-comparable and non-dominated pairs (c୧, h୧), i.e., minimal solutions that form the Pareto frontier: 
 
A. First objective: Geometrical compactness 

Even though many authors in literature have dedicated 
efforts for describing compactness in a quantitative manner, 
this concept has not been defined in a precise manner. In [19] 
more than 20 different measures may be reviewed. 
Intuitively, when we talk about geometrical compactness in a 
territory, we think that each zone cluster resembles a convex 
geometrical figure such as a circle or a square. This leads to 
consider that the measures that have been proposed up to now 
are not totally convincing [20]. Some examples of the 
compactness measures proposed are shown in Equations (5), 
(6), (7) and (8). 

 
 σ  ୨ σ  ୧∈ౠ d୧,୨    (5) 

whered୧,୨ represents the Euclidean distance between the -
th geographical unit and the center of the zone that contains 
it. 
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 σ  ୧ ୮୰మୟ      (6) 

wherepr୧ is the perimeter of the zone, and a୧ is the area for 
the -th zone. 

 

 
σ  ౠ∈ెୖౠ(୶)ିୖଶୖ     (7) 

whereR୨(x) is the perimeter of the zone  in the solution , 
and  is the perimeter of the total territory. 

 

 σ  ୧∈ ଵି
మಘඨఽౠ(౮)ಘౠ(౮)୫             (8) 

whereR୨(x) is the perimeter of the zone  in the solution , 
and A୨(x) is the circle that has the same area than the zone . 

Some of the characteristics that a good compactness 
measures should have are the following:   

    1.  The measure should be applicable to all the 
geometrical forms: regulars and irregulars.  

    2.  The measure must be independent of transformations 
such as scaling and orientation changing.  

    3.  The measure must be dimensionless, and being 
defined preferably in a scale between 0 and 1, with 1 
describing a highly compact region.  

    4.  The measure does not have to be affected by one or 
two extreme points.  

    5.  The measure must correspond with the �intuition�.  
 
For the problem addressed in this paper, we informally say 

that there exist compactness when various objects �closely 

meet� so that there are no gaps, or these gaps are so few, that 
it meets that the distance among the objects toward the 
centroid representing the group be minimum, achieving 
implicitly clusters without geometric deformations. 
Therefore, when the objects are geographical, it is necessary 
to define a distance measure between clusters. Let be X = {1,2,⋯ , n} the set of  objects to be classified, the task 
consists of splitting  into  clusters X = {Cଵ, Cଶ,⋯ , C୩}with k < ݊, so that:   

ڂ �      ୩୧ୀଵ C୧ = X 
    � C୧ځ  C୨ = ∅withi ≠ j 
    � |C୧| ≥ 1withi = 1,⋯ , k 
 
A cluster C୫ with |C୫| > 1 is compact if for each object t ∈ C୫ is fulfills Eq.(9). 
 
 Min୧∈େౣ,୧ஷ୲d(t, i) < ,n୨∈ିେౣd(t݅ܯ j)         (9) 
 
A cluster C୫ with |C୫| = 1 is compact if its object t ∈ C୫ 

is fulfills Eq.(10). 
 
 Min୧∈ି{୲}d(t, i) < ,n୪∈େ,∀ஷ୫d(t݅ܯ l) (10) 
 
From this criteria and the formulation described in Eq.(2), 

let say fଵ(x), it we can state that this geometrical 
compactness function is correct for the problem in question. 
 
B. Second objective: homogeneity 

Different methods for calculate the population balance 
among the clusters has been proposed. Even if some 

proposals are similar there is no evidence about the 
advantages when a particular method is applied. Some useful 
formulas for the homogeneity calculation follow:   

    1.  The simplest way for measuring population balance 
consists on summing the absolute values of the difference 
between the population of each zone and the average 
population by zone.  

 σ  |P୧ − P| 
Where P୧ is the population of the zone , and P is the 

average population by zone calculated as P = σ  ୩∈ ౡ୬ , with 

 equal to the number of zones to create,  is the set of all the 
geographical units, and P୩ is the population of the -th 
geographical unit.  

    2.  The population difference between the most 
populated zone and the less populated one.  

 MAX − MINౡ
 

In some situations, this difference is divided by the 
average population as follows:  

 
ଡ଼ౌ ି୍ౌౡ  

 
    3.  The division of the most populated zone between the 

less populated one.  

 
ଡ଼ౌ
୍ౌౡ  

 
    4.  The following method is given by the function  

 
σ  ౠ∈ె    ୫ୟ୶   {ౠି(ଵାஒ)ିౠ,}  

where  is the set of all the zones, P୨ is the population in 

zone , P is the average population by zone,  is the 
percentage of population standard deviation. In this way, it is 
intended that the population of each zone is between the 
interval [(1 − â)P, (1 + â)P], with 0 ≤ â ≤ 1. This function 
will take the value of zero if the population of each zone is in 
the interval [(1− â)P, (1 + â)P], otherwise, it will take a 
positive value equal to the sum of the standard deviations 
with respect to this bounds [21].  

 
For the MC problem presented in this paper, the second 

objective consists of finding a balance of an interest variable 
(homogeneity variable) for the geographical objects 
described by quantified attributes. After pre-processing the 
data, the filtered variables that are involved in the MC 
process are obtained. These variables can be: a) All the 
variables without restrictions, b) all the bounded variables, c) 
some variables without restrictions and the remaining do not 
participate, d) some variables with restrictions and the 
remaining do not participate. 

The process for selecting these variables is described 
through a participation matrix (see Definition 4.1). 

 
Definition 4.1 Let be Ù′ = {OGଵ, OGଶ,⋯ , OG୬} a set of  

objects, and VC = {Xଵ, Xଶ,⋯ , X୰} a set of census variables 
that describe the objects. Each variable X୧ is a function of the 
object set Ù′ with positive and real values Rା. Given 
intervals I୨ = [á୨, â୨], j = 1,⋯ , r, and the characteristic 
functions ÷[ౠ,ஒౠ]: VC → {0,1},  
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 ÷[ౠ,ஒౠ](X) = ൬1, ifx ∈ [á୨, â୨]0, otherwise �  (11) 

 
The matrix of participation associated to the cluster of 

objects Ù′ with variables VC and conditions l୨ (j = 1,⋯ , r) is 
defined as the matrix 

 
 M = (v୧,୨)୬×୰,    (12) 
where v୍,୨ = ÷[ౠ,ஒౠ](X୨)X୨(OG୧). 

 
Therefore, the matrix  contains all the values of the 

variables participating in the respective objects. If v୧,୨ = 0, 
then we say that the variable X୨ do not participate in the 
object OG୧. The following step is to homogenize the clusters. 
By analyzing different homogeneity proposal, we have noted 
that there is sensibility in the results, which implied to 
propose an ad-hoc homogeneity measure for the current 
problem as follows. The ideal average for the interest 
variable is obtained. Let assume that the variable of interest is X୨ and that its ideal average is V୨, (this phenomenon occur 
when all the clusters have the same value). Of course, this 
results if uncommon, and, therefore, it leads to propose a 
more sensible measure that calculate the real average for each 

group (
ଵ୬σ  ୬୧ୀଵ v୧,୨) subtracting this value from the ideal 

average as shown in Eq.(13).  
 

 V୨ − ଵ୬σ  ୬୧ୀଵ v୧,୨ = ଵ୬σ  ୬୧ୀଵ (V୨ − v୧,୨) (13) 

 
By minimizing this difference in absolute value, the cost 

for the homogeneity cost function is acquired. The 
compactness cost is given by Eq.(2), whereas the 
homogeneity cost is given by Eq.(13) and denoted by fଶ(x). 

Let fଵ(x) be the compactness function that requires the 
object geographical location for obtaining the distance matrix 
with the Euclidean measure (Eq. 2), which is the input for the 
function fଵ(x). Let fଶ(x) be the homogeneity function with 
the participation matrix (obtained by Eq. 13) as input of the 
algorithm. This calculus needs the quantified variable set 
associated to each geographical object. 

The MC algorithm with VNS adopts the following 
restrictions:   

    1.  Each object must belong to a single cluster  
    2.  The value of each parameter in a cluster is the value 

of the census variable  
    3.  The clusters are disjoint  
    4.  There are not empty clusters  
    5.  The descriptive variables may or not be bounded  
    6.  The cluster may contain all or a subset of variables  
    7.  The objects assigned to each cluster must conform a 

compact cluster (compactness cost function)  
    8.  The clusters must be balanced with respect to the 

goal of balance for some measurable characteristic 
(homogeneity cost function)  

 
In order to implement the algorithm VNS for MC, the 

aspects of partitioning with descending VNS has been 
integrated. y = f(x) = (fଵ(x), fଶ(x))has been simultaneously 
optimized with the Pareto dominance [18]. The algorithm is 
shown in the following subsection. 

When multiple objectives are required to be optimized, the 
evident difficult arises due to the search of efficient optimal 
and non-dominated partitions. This particular problem is 
hardly treated in the literature. The variable homogeneity is 
an additional restriction required together with compactness 
for a demographic problem of DT. In this paper, we deal with 
the problem of MC maintaining the properties of single-
objective clustering and including the homogeneity as an 
extension of the clustering method. Once the partitions have 
been constructed under the minimization of distances, the 
homogeneity is calculated for the compact partition already 
created. In [22] we may read the following affirmation: �For 

multi-objective problems, the cost function to be optimized 
has the same domain for all the objectives�. This declaration 

means that for our particular problem, the two objectives are 
optimized over the same partition. 

In MC, the local optima are avoided by using VNS. In 
order to obtain the non-dominated solutions the properties of 
the maxima solution set has been exploited [17]. 

 
C. The multi-objective clustering with VNS algorithm 

The following algorithm, is a procedure that has been 
taken from [18], where the first version of MC was exposed. 
In this work we have improved the approaching to the pareto 
frontier where the all the generated solutions are non-
dominated and non-comparable. In the previous work a 
couple of non-dominated solutions went through. Precisely 
the instruction  CurrentCost ←getCompCost(CurrentSol, getHomCost(CurrentSol))has 
been adjusted with the Pareto Dominance order, and with a 
relationship of special order that is described in the following 
section. 
 
/* Let be: */ 
/* n The number of objects to classify */ 
/* k The number of groups */ 
/* Vali  The value that has the AGEB i for the variable that 
the homogeneity will be kept for*/ 
/* Ug  The geographical unit*/ 
/* MaxV NS The number of times that the neighborhood 
structures will be run through*/ 
/*MaxBL The maximum number of iterations for local 
search*/ 
Begin 
kNeighborhood Generate a random number between 1-n ; 
CurrentSol Generate a random solution that is found in the 
neighborhood kNeighborhood ; 
CurrentCostgetCompCost(CurrentSol),getHomCost(Curre
ntSol) ; 
cont 1 ; 
whilecont<MaxV NS do 

kNeighborhood1 ; 
whilekNeighborhood≤ n do 

SolCandGenerate a random solution that is found 
in the neighborhoodkNeighborhood ; 
SolCandLocalSearch(SolCand); 
CostCandgetCompCost(SolCand),getHomCost(S
olCand) ; 
if(costCand<CurrentCost) then 

CurrentSolSolCand ; 
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CurrentCost-costCand ; 
else 
kNeighborhoodkNeighborhood + 1 ; 
end 

end 
contcont+1 ; 

end 
Return CurrentSol ; 
 

Algorithm 3. The multi-objective clustering with VNS 
algorithm 

 
NumLoops0 ; 
BetterSolSol ; 
costSolImpgetCompCost(BetterSol), 
getHomCost(BetterSol) ; 
whileNumLoops<MaxBLdo 
SolCandGenerate random neighbor solution of BetterSol ; 
costCandCompgetCompCost(SolCand), 
getHomCost(SolCand) ; 

if (costCandComp≤costSolImp ) then 
BetterSolSolCand ; 
NumLoopsMaxBL + 1 ; 
else 
NumLoopsNumLoops + 1 ; 
end 

end 
Return BetterSol ; 

 
Algorithm 4: The local search algorithm: Function 

LocalSearch(Sol) 
 
/* Returns an integer value that indicates how good is the 
solution Sol with respect to compactness (the smaller the 
value the better the solution) */ 
i1 ; 
cost0 ; 
while i ≤ n do 

ifUgi is not a centroid then 
/* Distance between Sol1and the object i */ 
dmindist(Sol1;Ugi) ; 

j 2 ;  
while j ≤ k do 
ifdist(Sol j;Ugi) <dminthendmindist(Sol j;Ugi) ; 
end 
jj + 1 ;  

end 
costcost + dmin ; 

end 
ii + 1 ;  

end 
getCompCost(Sol)  cost ; 

 
Algorithm 5: Function getCompCost(Sol) 

 
/* Returns an integer value that indicates how good is the 
solution Sol with respect to homogeneity (the smaller the 
value the better the solution)*/ 
Total0 ; 
cost0 ; 
fori 1 to ndo 

ng Get the number of the group to which the AGEB i 
belongs to ; 
totaltotal +Vali ; 
totalGroupngVali ; 

end 
IdealAverage total/k ; 
forj1 to k do 

costcost + |jtotalGroupj�IdealAveragej |; 
end 
getHomCost(Sol)cost ; 
 

Algorithm 6: Function getHomCost(Sol) 

V. MODELING 
We have pointed out that we are interested in finding 

partitions of  (AGEBs) that minimize the compactness and 
homogeneity, some small adaptations to the definitions 4.1, 
3.2 and 3.3 are required. For this we consider the collection 
of all the partitions of :  

 P = {P: P   is  a  partition  of   Ù} 
Let f: P → Rଶ be the function such that f(P) =(C(P), H(P)) where  y  are the compactness and 

homogeneity functions respectively, both with domain in  
and values in . The function of compactness  is given by:  

 
 C(P) = σ  େ∈ σ  ୧,୨∈େ d(i, j)                     (14) 
 
Analytically the function of homogeneity , the second 

objective, has been described in the equation 13 as  
 

 V୨ − ଵ୬σ  ୬୧ୀଵ v୧,୨ = ଵ୬σ  ୬୧ୀଵ (V୨ − v୧,୨)       (15) 

 
In our case the definition (3.1) is reduced to the following 

multiobjective problem: Minimize f(P) such that f: P ⊂ 2ஐ →Rଶ, with feasible region in P = {P ∈ 2ஐ: P   is  partition  of   Ù}, where 2ஐ is the power 
set of  and f(P) = (C(P), H(P)) 

Given the previous multiobjective problem we can include 
a partial order ∠ over the set of partitionsP in the following 
way: P∠P′ if and only if f(P)∠f(P′), where ∠ is the order 
given in definition 3.2. Analogously to definition 3.3, we say 
that a partition P∗ ∈ P is non-dominated or a Pareto optimum 
if there is not a partition P ∈ P such that P∠P∗, where ∠ is 
the strict order induced by the partial order ∠. 

Then the set of Pareto optima E(f, P) in our case is 
definedas: E(f, P) = {P ∈ P:∃P′ ∈ P   that  meets   P′∠P}. 
Observe that the set of the partitions  P is generated from the 
finite set  then the image (Pareto Frontier) of the objective 
function  is finite, and thus the Pareto Frontier is a discrete 
set. The goodness of the mechanism of our work to search for 
solutions of better compromise resides in the way the 
grouping is solved: it returns a set of diverse partitions with 
the use of VNS. On the other hand, to find the set of efficient 
solutions and non-dominated, the solutions generated along 
the process are evaluated, checking that they are non-
dominated and non-comparable. 

Finally the optimization for the objective of compactness 
has been solved by a partitioning algorithm based in the 
method of -medoids. 
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Given a partition P ∈ P for each C ∈ P we choose in a 
random way a c ∈ C and define the sum 

 
 S(P) = σ  େ∈ σ  ୧∈େ d(i, c)  (16) 
 
Then the number 
 
 Min{S(P): P ∈ P}   (17) 
 
minimizes the intra class distance between AGEBs. 

Having as restrictions:   
    � C ≠ ∅ (the groups are not empty).  
    � Cځ  C′ = ∅forC ≠ C′ (there are not AGEBs repeated 

in different groups).  
ڂ �      େ∈ C = P (the union of all the groups consists of all 

the AGEBs).  
 
The random choice of the  centroids cଵ,⋯ , c୩ generates a 

partition P = Cଵ, Cଶ, C୩ where each c୧ is a representative of 
the class C୧ 

This partition is built in the following way:   
    1.  An element i ∈ Ù is chosen.  
2.  The min{d(i, c୲): t = 1,⋯ , k} is calculated.  
    3.   is located in the class C୲ᇱ where C୲ᇱ is the centroid, 

where the min{d(i, c୲): t = 1,⋯ , k} is reached.  
 Then partitions are generated, as many as the random 

selections of centroids made. The number of random 
selections is the number of iterations and is denoted by . 
Because the number of partitions of  can be very big [10], 
the formulas (14) and (17) are restricted to the subset P′ of  
of all the partitions generated from the different selections of 
the groups of centroids. Observe that the cardinality of P� is 

the number of iterations . Depending on the type of problem 
is necessary to fix a number of groups that the geographical 
zone will be partitioned into, this is, each element of the set 
P� has the same size as . Therefore P� is a set of all the 

partitions of size  formed by  selections of groups of  
centroids. The second objective, consists in the Minimization 
of homogeneity for a census variable (Equation 18)  

 V୨ − ଵ୬σ  ୬୧ୀଵ v୧,୨ = ଵ୬σ  ୬୧ୀଵ (V୨ − v୧,୨) (18) 

 
The model in question is mixed integer and makes use of 

the binary variables for models of the kind. Considering the 
above, the general model  is:  

  Minimize   y = f(x) = (fଵ(x), fଶ(x)) (19) fଵ: is the cost of minimizing the distance between AGEBs 
according to equation 14 that must be formulated as function, 
and fଶ: is the cost of homogenizing (minimizing the 
homogeneity) a census variable of the AGEBs. Considering fଵ = yଵand fଶ = yଶ, this function can be expressed as y = (yଵ, yଶ) ∈ Y ⊂ Rଶ is the objective vector. 

In the next subsection the final algorithm for MC with 
VNS in pseudocode is shown, as can be observed, unlike the 
algorithm in [18], presented in Section 4, a refinement to 
obtain the minimals has been achieved. (See Function 
UpdateMaximals(Comp, Hom)). 

Due to the fact that the literature about order theory 
underlines the term maximals, this term has been kept in the 
pseudo code. Of course, for the problem we have solved, by 

minimizing 2 functions, by duality it is assumed that we 
obtain minimals in PF. 
 
A. VNS for multi-objective clustering 
 
/* Let be:    */  
/* n The number of objects to classify */  
/* k The number of groups  */  
/* Vali  The value that has the AGEB i for the variable that 
the homogeneity will be kept */  
/* Ug  The geographical unit */  
/* MaxV NS The number of times that the neighborhood 
structures will be run through */  
/* MaxBL The maximum number of iterations for local 
search */  
/* ec  The compactness epsilon */  
/* eh  The homogeneity epsilon */  
/* Maximi  The set of maximals (i-th maximal)  
Begin 
kNeighborhoodGenerate a random number between 1 and 
n ;   
CurrentSolGenerate a random solution that is found in the 
neighborhoodkNeighborhood ;   
CurrentCompCostgetCompCost(CurrentSol) ; 
CurrentHomCostgetHomCost(CurrentSol) ;  
UpdateMaximals(CurrentCompCost,CurrentHomCo  
cont1 ;      
/* The set of maximals is the empty set (initially) */ 
MaximØ;      
whilecont<MaxV NS do     

kNeighborhood1 ;    
whilekNeighborhood ≠n do   
SolCandGenerate a random solution that is found in the 
neighborhoodkNeighborhood ; /* Local search */  
NumLoops0 ;   
BetterSolSolCand ;   
costCandCompgetCompCost(BetterSol) ; 
costCandHomgetHomCost(BetterSol) ; 
UpdateMaximals(costCandComp ,costCandHom ) ; 

whileNumLoops<MaxBL do 
SolCandBLGenerate random neighbor solution of 
BetterSol ; 
costCandBLCompgetCompCost(SolCandBL) ; 
costCandBLHomgetHomCost(SolCandBL) ; 

UpdateMaximals(costCandBLComp ,costCandBLHom ) ; 
if (costCandBLHom<costCandHom 
AndcostCandBLComp≤costCandComp ) 
Or(costCandBLHom≤ costCandHom 
AndcostCandBLComp<costCandComp)  
Or(|costCandBLHom �costCandHom|<eh 
And|costCandBLComp �costCandComp|<ec)  
then BetterSolSolCandBL;  

costCandCompcostCandBLComp ;
 costCandHomcostCandBLHom ; 

NumLoopsMaxBL + 1 ;  
else      
NumLoopsNumLoops + 1 ; 
end    

end    
 SolCandBetterSol ; /* End local search*/
  



 
International Journal of Latest Research in Science and Technology. 

ISSN:2278-5299                                                                                                                                                                                 67 
 

if (costCandHom<CurrentHomCost And 
costCandComp≤CurrentCompCost) 
Or(costCandHom≤CurrentHomCost And 
costCandComp<CurrentCompCost) Or(|costCandHom �
CurrentHomCostj|< ehAnd |costCandComp� 
CurrentCompCost|<ec) then   
CurrentSolSolCand ; 

CurrentCompCostcostCandComp ;   
CurrentHomCostcostCandHom ;   
else      
kNeighborhoodkNeighborhood + 1 ;  

end      
end      
contcont+1 ;     
end       
Return CurrentSol; 
 
Algorithm 7. Compactness and homogeneity with Pareto and 

maximals condition 
 
/* It checks if the pair (Comp; Hom) is a current maximal, in 
that case it is added to the set of Maximals Maxim and the 
pair dominated by this is removed from the set (if it exists)*/ 
/* if the set of Maximals is not empty*/  
if |Maxim| > 0 then   
/* for each element of the set of maximals */ 
for i 1 to |Maxim| do   
(CompMax, HomMax) Maximi ;  
/* If they are comparable and the pair (Comp,Hom) 
dominates (CompMax,HomMax)*/  
if (Hom<HomMax And Comp ≤CompMax) Or 
(Hom≤HomMax AndComp <CompMax) then 
  
/* (Comp,Hom) is the maximal until this moment and 
replaces(CompMax,HomMax)*/  
/*Remove(CompMax,CompHom) fromthe set of maximals*/
  

MaximiMaximi-(CompMax,CompHom) 
/* Add (Comp,Hom) to the set of maximals*/  

MaximiMaximi (Comp,Hom); else 
/* If they are comparable and the pair 
(CompMax,HomMax)dominates (Comp,Hom) */
  
ifHomMax<Hom And CompMax≤ Comp) Or 
(HomMax≤Hom And CompMax< Comp) then  
/* (CompMax,HomMax) remains as the maximal and 
(Comp,Hom)is discarded*/  
Exit the function;  
end    
/* if they are not comparable, keep comparing with the rest 
ofthe current maximals */  
end    
end    
end    
/* If this step is reached it means that (Comp; Hom) is not 
comparablewith any of the current maximals or that the set of 
maximals iscurrently empty, therefore it becomes a maximal
 */  
MaximiMaximi (Comp,Hom); 
  

Algorithm 10. Function U pdateMaximals(Comp,Hom) 
 

B. Tests 

The pre-processing of spatial and census data, is common 
when it is important to retrieve relevant information for the 
problem to solve. For MC, the census data correspond to a 
data base of the INEGI census from the year 2000 [23] 
currently these databases are not available anymore due to the 
update of the 2010 census. These data are known as AGEBs. 
Example: Assume that there is a government program to 
attend education issues for the underage masculine 
population, in such a way that the distribution of this sector 
of the population must be known. Suppose that an expert of 
the population problem asks for groupings of 2, 8, 32, 64 and 
100 groups having 469 Agebs to process. In accordance to 
things described in previous sections, the answer to a 
problem as the one we have defined starts with the selection 
of the variables of interest. These variables have the 
nomenclature X + natural number or Z + natural number and 
they are retrieved from a database to form the matrix of 
partitioning for homogeneity (see equation 12). The SQL 
query to choose the variables that take part in the grouping is: 

 
 censo15.mdb  
 
SELECT id AS Ageb, Z002 AsVar from cdata 
WHERE (x001 BETWEEN (SELECT MAX(x001) 

FROM cdata) * 0 / 100 AND (SELECT MAX(x001) FROM 
cdata) * 100 / 100) AND (x003 BETWEEN (SELECT 
MAX(x003) FROM cdata) * 0 / 100 AND (SELECT 
MAX(x003) FROM cdata) * 100 / 100) AND (x007 
BETWEEN (SELECT MAX(x007) FROM cdata) * 0 / 100 
AND (SELECT MAX(x007) FROM cdata) * 100 / 100) 

 

TABLE I POPULATION VARIABLES 

AGEB Var 
x001 Masculine population under 6 years old 
x003 Masculine populations between 6 and 11 years old 
x007 Masculine population from 15 to 17 years old 
z002 Masculine population (Homogeneity Variable) 

  
 

 
Our MC algorithm starts with a random solution in 

accordance to VNS. It is estimated that at least 10 runs for 
each instance must be done to trust an approximated result. 
However, each solution returns a set of minimal solutions 
that from the PF. The minimals from each run have been 
concentrated in a list to get a final set of minimals with 
Nodom[17]. For illustrative purposes Table 0 presents 5 runs 
for the instance of 2 groups with VNS parameters of 15 for 
local search and 2 for neighborhood structures. The CPU 
used is a dual core AMD of 2.0 Ghz and 2 GB in RAM. 

 

TABLE II FINAL RESULTS FOR FIVE RUNS OVER THE 
INSTANCE OF TWO GROUPS 

Test 
number for 
two groups Time (seconds) Minimals 

1 180 4651927 5830 
  4027761 7586 
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  3998703 
  8418672 
  3860558 

2 191 3896887 
  4062652 
  5221435 
  3896898 

3 199 4274664 
  3911128 
  3962195 
  3861364 
  4462969 
  4225945 
  3964625 
  4075477 
  3800188 
  4028417 
  3853377 

4 178 4060232 
  5098746 
  3977408 
  3775415 

5 200 4099570 
  3939251 
  4132966 
  4193850 
  3830369 
 

 
Finally, in Figure 1 the minimals for the 10 runs associated 

to each instance (2, 8, 32, 64 and 100 groups) are shown. It is 
estimated that the greater the number of groups the 
homogeneity value presents better approximation but the 
compactness remains relatively stable, result that must be 
proven. 

 

Fig. 1 Pareto frontier for 2, 8, 32, 64 and 100 groups
 

VI. CONCLUSIONS 

Along this work we have presented a process of clustering 
development. The first proposal, reported with Simulated 
Annealing and VNS, is single-objective with optimization for 
geometric compactness. The second inherits the properties of 
partitioning to solve MC with relative weakness in the 
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Finally, in Figure 1 the minimals for the 10 runs associated 
to each instance (2, 8, 32, 64 and 100 groups) are shown. It is 
estimated that the greater the number of groups the 

y value presents better approximation but the 
compactness remains relatively stable, result that must be 
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Along this work we have presented a process of clustering 
he first proposal, reported with Simulated 

objective with optimization for 
geometric compactness. The second inherits the properties of 
partitioning to solve MC with relative weakness in the 

minimals due to the fact that the PF
even 4 additional dominated solutions, very close to the PF. 
The third proposal, our contribution, denominated MC is a 
partitioning around the medoids algorithm within a 
multiobjective context with VNS, it surpasses the previous 
algorithm despite it keeps central procedures. However, a 
diversification in the neighborhood structures has been 
implemented observing a Pareto Frontier with better 
distribution of the solutions along the frontier. Furthermore, 
our final algorithm has interesting properties because it 
achieves the Pareto frontier with a reliable method, analogous 
to the properties of the minimals in a Hasse Diagram, where 
these minimals are non-dominated and non
points. The efficiency of the minimal solutions genera
our algorithm is confirmed when the generated solutions are 
ran through Nodom, an algorithm that filters non
solutions. On the other hand, most of the grouping algorithms 
with only one optimized quality measure can work well but 
only for certain number of data or some lack robustness with 
respect to the variations in shape and uniformity of the 
cluster, furthermore the proximity to the optimum. In this 
work, we have proposed an alternative approach: optimizing 
simultaneously two objectives with VNS in a clustering 
problem for spatial data, however, our algorithm can group 
other kind of data. We have showed that with the approach 
described to solve MC, our method offers robustness in the 
selected solutions that form the Pareto Frontier but a 
that concerns many researchers in multiobjective is yet to be 
attended: the real Pareto Frontier. 
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