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Abstract- In this paper, an efficient numerical technique is presented to solve the partial fractional space equations with variable
coefficients on a finite domain. This technique based on nodal Galerkin method. The fractional derivatives are described in the Caputo
sense. Also, a fully discrete scheme is given for a type of nonlinear space-fractional anomalous advection-diffusion equation. In this
paper, the problems can be reduced to a set of linear algebraic equations by using the Chebyshev nodal Galerkin method. The existence
and uniqueness of the solution for the linear semi discrete weak form solutions are proved. And the stability analysis for the linear semi
and fully discrete schemes are discussed. Numerical solutions obtained by this method are in excellent agreement and efficient to use with

those obtained by previous work in the literature.
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1. INTRODUCTION

In recent years, alot of attention has been devoted to the
study of fractional differential equations. Fractiond
derivatives arise in many physical and engineering problems
such as electric transmission, ultrasonic wave propagation in
human cancellous bone, modeling of speech signals,
modeling the cardiac tissue electrode interface,
viscoelasticity, wave propagation in viscoelastic horns and
fluid mechanics[13] and [3].

In this paper, we present a direct computational technique for
the one-dimensional space fractional diffusion equation of the
form:

u, = A(x),DMu+ f(xt),

a<s<x<h,0<y<1 0<t<T, (@)
with initial and homogenous boundary conditions as follows:
u(x,0) = p(x), a<x<h,
u@t)=u(b,t)=0, O0<t<T, 2
where the anomalous item _D’uis theyth order fractional
derivative of U with respect to the space variable X in the
Caputo sense which will be introduced later on. We always
consider: 0<n, < A(X) <n,, where n,,n,are constants.

The fractional order diffusion equations are generalizations of
classical diffusion equations. These equations play important
roles in modeling anomal ous diffusion and sub-diffusion
systems, description of afractional random walk, unification
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of diffusion and wave propagation phenomena, see, e.g., [20],
and the references therein. Many numerical investigations
were carried out by many authors to solve this problem. In
[2] the backward Euler finite difference schemeis appliedin
order to obtain numerical solutions for the equation.
Existence and stability of the approximate solutions are
carried out by using the right shifted Griinwald formula for
the fractional derivative term in the spatia direction. In [21]
approximation techniques based on the shifted Legendre-tau
idea are presented to solve a class of initial-boundary value
problems for the fractional diffusion equations. The
technique is derived by expanding the required approximate
solution as the elements of shifted Legendre polynomials. In
[10] Legendre pseudo-spectral method with the finite
difference method is used to obtain the numerical solution of
the fractional diffusion equation. Also, we mainly study one
kind of typical nonlinear space-fractional partial differential
equations which is called fractional anomalous diffusion and
has the following form:

w, =D, (a(w),D]w) + p(x)D,w+ f (x,t,w),
a<x<b,ye(0,1),0<t<T, (3)

with initial and boundary conditions as follows:

W(x,0) =w(X), a<x<b,

w(a,t)=w(b,t)=0, O0O<t<T, 4

where D! istheqth order fractional derivative with respect

to the space variable x in the Caputo sense. Now the
fractional anomalous diffusion becomes a hot topic because
of its widely applications in the evolution of various
dynamical systems under the influence of stochastic forces.
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For example, it is a well-suited tool for the description of
anomalous transport processes in both absence and presence
of external velocities or force fields. Moreover, the fractional
anomalous diffusion have numerous applications in statistical
physics, biophysics, chemistry, hydrogeology, and biology,
see for more details[8],[16] and [17]. There are some authors
studying the special anomalous diffusion equation in
theoretical analysis and numerical simulations, see [6], [14]
and [23].

In this paper, we used El-gendi nodal Galerkin method which
is easier technique than the usual Galerkin method. In
Galerkin method, each basis polynomial chosen must satisfy
the boundary conditions individualy which causes the
Galerkin formulation to become complicated, particularly
when the boundary conditions are time-dependent [1].
Furthermore, the presence of nonlinear term complicates the
computation of the stiffness matrix [9]. However, the
Galerkin method is based on a variation formulation which
preserves essential properties of the continuous problem such
as coercively, continuity and symmetry of the bilinear form
and it usually leadsto optimal error estimates [22].

On the other hand, the main advantage of the nodal Galerkin
method is its simplicity and flexibility in implementation. In
addition, this method deals with nonlinear terms more easily
than Galerkin methods. Moreover, the problems with variable
coefficients and general boundary conditions are treated as
the same way as problems with constant coefficients and
simple boundary conditions. In fact, In El-gendi Chebyshev
noda Galerkin method, we start from a weak form of the
equations, but we replace hard to evaluate integrals by El-
gendi quadrature. The formula of El-gendi quadrature is
satisfying a symmetric property. Hence, we can reduce the
number of operations to 50% which implies to decrease the
rounding error. Also, El-gendi quadrature is an alternating
series which converges as N — oo (N is the number of grid
points).

The remainder of this paper is organized as follows: In
section 2, we present the procedure of solution for the partia
fractional space equation in a linear and nonlinear case. In
section 3, we present the error analysis. In section 4, we give
numerical experimentsto clarify the method.

2. Fractional Derivative Space
In this section we will give the fractional derivative space.
Firstly, we will give the following definitions:

Definition 1. The fractional derivative in the Riemann-

Liouville version of function f(X) is defined as follows

[19].

(0= "t f(s
( 7) dx™ 2 (x—g)

wherem—-1<y <m,me N.

ds,
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An dternative definition, known as the Caputo fractional
derivativeis:

X g (m)

D f(g=—— [ g, (5)
r(m-y), (x=9)

The two definitions are not in general equivalent but they are

related by the following relation:

X7 £9(0)
D f(X)=,J; f (X

Dy F ()= T (%) - Zr(k+1 )
Generally, when we consider the fractional differentia
equations the Caputo definition is often preferred since it is
easy for imposing initial and boundary conditions on classic
derivatives. But for the Riemann-Liouville definition, these
conditions must be imposed on fractional derivatives and this
is often not available. So that, we will use the Caputo
definition in this paper.

Definition 2. [19] Fory > 0, the fractional derivative
space |7 (a,b) is defined as follows:
I7(a,b) ={f e Lz(a,b):aDjf e L*(a,b),

m-1<y <m},
endowed with the semi-norm:
‘f‘l ab) 2(ab)’
and the norm
L (\ i(abﬁufuﬂab)”%

and let I ”(@a,b) denotes the closure of C; (a,b) with respect
to the above norm and seminorm.
Definition 3. [15] The fractional spaceE’” (a,b)defined
below
E’(a,b) ={ f e L?(a,b);,D f € L*(a,b),

D/ f el’(a,b),m-1<y<m},
endowed with the seminorm

#],0 00 =02 T DL
and the norm
R (e [ o

and let E” (a, b) denotes the closure of C;’(a,b) with respect
to the above norm and seminorm.

Definition 4. [7] For » > 0, define the seminorm

[l e :H‘“"y':(f) b’
and the norm
R (N L N o

where F(f)is the Fourier transform of the function f and
which can define another fractional derivative space

H”(a,b). Let HJ(a,b)be the closure of C;(a,b)with
respect to the above norm and seminorm.
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Theorem 1.[7] Thespacesl’(a,b), E”(a,b)and
H{ (a,b) are equal in the sense that their semi norms as well
as norms are equivalent.
Lemma 1. [6 (Fractional Poincaré—Friedrichs)]
For f e H} (a,b), we have

[ ]z <CIf
andfor O<a<y, azm-1/2, meZ*,
|f <C|f

L%(a,b) H (ab)’

H§ (a,b) Hj(ab)’

Lemma2.[7] For f el (a,b), 0<a <y, then
DX F (=D, D F (%)

a-— X

3. NUMERICAL TREATEMENTS FOR THE
PARTIALFRACTIONAL SPACE

In this section, we present the numerical solution for time-
space fractional linear and nonlinear equations, respectively,
where the space fractional derivative isthe Caputo derivative.

3.1 EL-GENDI NODAL GALERKIN METHOD FOR
LINEAR CASE

This method starts with the weak form and the trail space
coincides with the test function space. The weak form of
problem (1) and (2) incase a=0,b= L isgiven asfollows:

Find ue H§*"'2(0,L) such that
(V) = ~((,D7Y). D (A(0))+ (F (x.8),v),
vwve HY™'?(0,L),t >0, @)

where the inner product (u,v)is defined as

L

(u,v)= _[u(x)v(x)dx.

0
Next, we will prove the existence and unigueness of the weak
form (7). So, we give the properties of the fractional diffusion
operator which is givenin [14] asfollows:

1- ((,D;*u),u)= ((,D{u), D,u))2 oy ulf, .. COBrCivity
on H (0y+1)/2(0, L),
2 ((,D7"u).v)= ((,D7v). D)

< 0-2” u ||,2_|(y+1)/2|| V”,z_'(m)/z

continuity on HY*2(0,L)x HY*'?(0,L), where o,,0,are

constants.
Applying the implicit Euler approximation to approximate
the time derivative, we define

t, =(At,0<t, <T =12,... and At isthetime step.
Then equation (7) is approximated as follows: Find
u“te HY'2(0,L) suchthat

) 0181005000
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(' v)+At(f 2 v) weHU2(0,L),t>0, (8)
where f " = f(x.t,,). Let

B(UHl,V) = (U (;‘+1,V)+ At((oleu“l)’ Dx (/I(X)V))'

and

F(v)= (u” + At f”l,v)= (9.V),

then the semi-discrete problem (8) can be written in a simple
form like that:

BU,v)=F(), Ye H{*'2(0,L),t>0, ©)

Theorem 2 (Existence and Uniqueness).
For 0<n, < A(X) <n,,and for a sufficiently small step size
At >0, there exists a unique solution U’ satisfying (9).

Proof. Firstly, we will prove the coercivity of the bilinear
form B(u‘**,v) by using the properties of the fractional
diffusion operator and Fractional Poincaré—Friedrichs
inequality,
B(uf+1'uZ+1) — (u€+1,u/f+1) + At(ODli/qu, Dx(ﬂ(X)U“l))
2||u“1 2
L2(o,L)
2

/+1 2

+At772|u

H /20,1 )

> C|| uk+l

HD2(q )’

then bilinear form B(.-)is coercive over H{*/?(0,L).
Next, we will prove the continuity of the bilinear form
B(-,-)over H{™'2(0,L) x HY*P'?(0, L) asfollows:

| B v) [ =] (U, v) + At (DU, D, (A()V))|

< H uf+1

L2(0, L)" V”L2 (o.L)

(+1

+At772|| u

HD/20 1) || v ||H (D120, 1)
< 6” u't
Moreover, we can aso prove the continuity of F(-)over

HY™"2(0,L) asfollows:

‘ F(V) ‘ = ‘ (g,v)\ S H g HLZ(O,L)HVHLZ(O,L)

< CH g HH(’*D/Z(O,L)‘ HUD20 L) "
Therefore, the hypotheses of Lax-Milgram theorem are

satisfied [14] and then there exist a unique solution for the
semi-discrete weak form (9). o

H <;«+1)/2(0y,_)” V”H(f“*l)’z(O,L) '

V]

Theorem 3 (Stability of the semi-discrete problem).

(+1
Ju

For 0<1, < A(X) <1,,and for asufficiently small step size
At > 0, the problem (9) is stable, and it holds
¢
o —[”uo ot A 1 LZ(O’L)J.
Proof. For ¢ = 0and v =u* then problem (8) will be
(ut,ut)+ At((,D7ub), D, (A(x)u"))
= (uo,v)+ At(fl,ul). (10)
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Theright hand side of (10) will be
(ul, u1>+ At((OD{ul), Dx(ﬂ(x)u1)>

2

> C:1 ut Ho('wl)/z(O,L) . (11)
The left hand side of (10)
(uo,ul)+ At(f l,ul)
< 0 1 1 1
- H u LZ(O,L)H u L2(0,L) +AtH f LZ(O,L)H L2(0,L)
(From Lemma 1)
= H u® + At” ft “ u'
L2(0,L) L2(0,L) L2(0,L)
< 0 1 1 . 12
< CZUU o HAY T LZ(O,LJH gy @2
From (11) and (12 we have
C

1 < 2 0 1 ) 13
H u HIP 2 0L ~ C, (H u 2(0,L) +AtH f LZ(O,L)) (13)
For />1s0 we have

l < /-1 I3
Hu HIP 200 © C3O L2(0,L) H f Lz(o,l_))' (14)

From (13), (14) we obtain

/
10 g O )
HIP 0L = C“[ u 12(0,L) + At; f L2(o.L)

Now, El-gendi nodal Galerkin method discretization proceeds
by approximating the solution the polynomials of high
degree. So we introduce a finite dimensional space

P' =P"NH{™M'?(0,L)whereP"is the space of all
polynomials in which the polynomial degree is less than or
equal toN and the  space is  given as
follows " = span{ ¢, (X), @, (X), .., @1} .

where ¢, (x) aregiven by:

H U“l

0, (=15 0T, (@21L)x, ~ 1T, (2/ X1,

j=01..,N, (15
forall 6, =1,except 6, =6, =1/2and
0 if j=k,
(”J'(Xk):{l it j =k

The grid points x, are the extrema points of the shifted
Chebyshev polynomial T, ((2/ L)x—1) . Let the approximate
solution is given asfollows

u(x,t) ~u(x,t) = ZN:U‘ 0 (%), (16)

to ensure the approximations satisfy the boundary conditions,
weset U =U, =0. Also, since the test functionV(x) as a

function of Nthorder polynomials so we can write these
polynomialsin the equivalent cardinal form

v(x) =ZV| 2 (%)

ISSN:2278-5299

where the nodal values V are arbitrary, except that
V,=V,=0to ensure that Vsatisfies the boundary

conditions. Now the discrete weak form is given as follows:
find ur e P
(W V), = (D), D, (W), +(£.v),.

vvePR',t>0, 17
where the inner product (g, h)N is evaluated asfollows

(9.h)y = X Byg(x)h(x,):
and

X :%(yi +1), i=0...N,

y, = CO{K]T]’ i=01...,N.

The quantities by are given by: [9]

4N2 g 2jri .
b, =— ) —2—cos———, =12,..,N-1,
N N§4i2—1 N :
1
bNO :bNN = Nz—ll (18)

Since 0< x < L then the mapped weights will be given from

the following relation BNj = 2 by - Then the first discrete inner
L
product becomes
N N N
W' v =, [Zu RACO)IANES )j :
j=0 =0 m=0

since o, (X,-) = 5“. , then the sum reduces to

N .
(U ,v), = > bUv,, (19
j=0
where
du,
Tt

For evaluating the second termin (17), let
N

o,Du" =D"u" :ZU|(t)¢|V(X)’ O0<y<y
1=0

then the fractional derivative of the cardinal function can be

written as
26, N

@/ (X) = N D 6T (/L)% DT, ((2/L)x-1),

=01...,N,
where
iz

X =%(yi +1),y Z_CO{N) i=0,..,N,

and the Caputo fractional derivative of the Shifted Chebyshev
polynomial is:

1 TTk’((ZI Lt-1

DT ((2/L)x~1) = ra oy

13
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for 0< y <1, where the derivatives of Chebyshev polynomial
T, satisfy

T, T! T

T:T’szizl"'VT_ i+l _—IIZZ
oty 21+ 2(3i-2)

s0, we can deduce that the recurrence relations

T =0, T'=2i(T, ,+T ,+..4+T,), ieven, (20)
=2i(T, ;+T 5 +...+0.5T,), i odd. (21)

Then from eg. (20-21) we can deduce the origina modal

differentiation matrix D in the spectral space. D is a sparse
upper triangular matrix with interties

o0, if i=j,
d; =<0, if (j—i) even,
2j, otherwise
Then the Caputo fractional derivative of the Shifted
Chebyshev polynomial is[4]and given as follows:
X7 2/L)x*7 X7
o(x) 1(X): ( ) - !
20-y) 1-72-7) @-7)
2-y 1-y
_ 4(2/ L)X + X (24)

(23

42/ L)*x>7

M 2(X) = !
B-1N2-nl-7) @-1N2-y) @-7)
and for n=3,4,...,Nwe have the following recurrence
relation

(“ 1_kyj<Mk(x» = 2((2/ Lx-)(M,,(x))"7

1-y 2(-D*
+ [—l+ k—ZJ(M (X)) —( k-2 JX (25)

hence, by substituting (23), (24) and (25) in (22), then we
have

D'T, ((2/L)x-1) = i )denM (X) - (26)

Consequently, the fractional derivative of the cardina
function is given in the following form:

D' (X) = NF(l ZZHT((ZIL)X ~1d,, M, (x),

I=04..,N,0<x<L.
The second term in (11) can be evaluated as follows:

(@), = 2V, (BID U (R 09

+2 (99,00, . @
where the first derivative of the cardina functions ¢, (X) a

the points X, is derived in [11]. Similarly, the source term is
given asfollows:

N
(Fv v = by £, - (29)
j=0
From equations (19), (27) and (28) we have
N ~ . N ) ,
2.V (byU; + > by [D'uM (N[ A(X)¢ (X)
j=0 k=0

ISSN:2278-5299

+ (00, 01|, ~byf* =0.
Since Vj ’s are linearly independent, the coefficient of each

Vj must be zero, so

t~’NjU i _Z_: t~)Nk[DVUN (DA (X} () + 2 ()¢, (X))]‘x:x

+bNJ ;=L N-1,
and
byU :-Z(B +C,)U, +by £,
j=1..,N-1,
U,=U, =0, (29)
where
N ~
=szk2’(Xk)¢ly(Xk)§D;(Xk)' Ci =ij/’{"(Xj )W(Xj)-

k=0
Let A, =—(B; +C,), then (29) can be written as

- . N -
byU; =X AU +hf", j=1.,N-1,
1=0

with the boundary conditions
U,=U, =0.

Then the fully discrete problem is given in the following
form

U +1 U ‘
ij( ] Z A U /41 + bNJ fJ/+l,

j=L.,.N-1,/=12,...,
with the boundary conditions
Ugt=U"=0. (30)

3.2STABILITY FOR FULL DISCRETE PROBLEM

In this section we use recall Leray-Schauder fixed point
theorem [18] to prove the existence of the solution for eq.
(30).

Lemma 3. For a given open and bounded domain QcR"

containing the origin0eQand let E:Q—>R" be a
continuous function. If E(x)= ux foral x>1 and xeQ

then E has afixed point in Q whichisthe closure of Q.

We introduce discrete norm which induced from the discrete
inner product

ol =00, <[ S oo -

Theorem 4. The equation (30) has a solution.

Proof. Let O = B(0,a) c R" be a ball centered at the
origin 0e Qwith radius aand consider 6 Q be the boundary
of Q.Let U=(,,...,U) beavector on the boundary 6 Q
such that for some ¢ >1

14
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cU=EU)+U", (31)
where

N
E (U)_~_Z /’+1+Atf_(+1

U

by taking a dlscrete inner product of (30) with U then we
have

g|Ul.., . =(E(U)U)+U"U)

L2(0,L)
=—F(AU,U)+At(f,U)+(U4,U),

by;

from [2] and since f(x,t)is continuous on
[0,L]x[0,T]then by Gronwal Lemma we have

| f|<x, x>0and by applying Caushy-Schwarz
inequality we have

At
e[l < AV I+ atu [

Nj
“Jur| vl 32)
where || A || is bounded by a positive number. Divide both
sides of (32) by||U ||2 then we have

Jul,
c<—1| A At
A T

then for large ||U ||N and for very small Atthen ¢ <l1which

implies to contradiction. So
sU=EU)+U", Ve>1, UeoQ.
Hence there is a solutionU eoQsuch  that

U=EU)+U". m
Theorem 5. For any fixed N, the full discrete scheme (30) is
stable.

Proof. From equation (30) and by taking a discrete inner
product with U “*and since H f HN <k, k>0. Then, from
Caushy-Schwarz inequality we have

HU 041 |2 _HU/ 2 SgHAHHUul 2
N bNj N

2
+ KAt|| u, (33)
then by summing (33) from ¢=0to /=M , weobtain

At Mo
I O e LY

by the discrete inequality, we obtain

T (R I
ij
1
2}2. o
N

Gronwall

M )
« z HU r+1
1=0

ISSN:2278-5299

3.3NONLINEAR CASE

In this section we will illustrate how we can use the nodal
Chebyshev Galerkin method to solve the nonlinear diffusion
equation. So, we will give the weak form of problem (3) and
(4) in case a=0,b=L is given as folows Find

ue HY*™'2(0,L) suchthat:

~((a(w),D;w), D)~ (w, D, (p) )
+(f(x,t,W),v),vve HI*™'2(0,L),t > 0.

The existence and uniqueness of the weak form is proved in
[23]. Let the approximate solution is given as follows:

N
w(x,t) = W (x,t) = D Wi (t)¢ (X) »
i=0
so the above weak form can be written as
(w",v)y =~{(aw")oD}w"),D,V)\ - (W*, D, () ),
+(F ot wh),v)y  wve PNt 0. (34)
After some mani pulati ons we have

IZB”W ZC”W
0
N

Z JW f(x tw), J=1., N =1, (35)

(w,v)=

where
— N~
= Zkaa(WlL\‘ )¢|y(xk)¢; (%)
k=0

C, =by p(X)9(X)

ﬁj| = BNI P (x)p (%),
and hence (35) isgiven as

N N
:_ZBH\Nl _ZAH\/V'
1=0 1=0
+f(x,tw), j=1.,N-1, (36)
where

A C  + Hy,

To apprommate the time derivative, we will use the backward
Euler finite difference for the linear parts while the forward
Euler finite difference for the nonlinear part. Let f," is the

approximation of f (x, ,t,) . Then (36) is approximated by
_~ N p—
byW/ ™+ AtY A W, =

1=0

BNjoé - Atz [Z BNka(Wk[{ )¢|V(P; (x)]

1=0 k=0
/ /
+f, W), j=L.,N-1/=12,.,
with the boundary conditions
W 041 _ W r+1 0 i (37)
4. NUMERICAL EXPERIAMENTS

In this section we will give numerical examples and we will
use MATLARB 8 software to obtain the numerical results.
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Example 1: Consider the following space fractional order
differential equation:

u, - (CL.2)x*)Dr%u = f(xt), 0<x<10<t<],

where f (x,t) = (6x°*-3x%)e™ with the initiad and
boundary conditions:

u(x,0) = (x* = x%), 0<x<1],
u(0,t) =0, u(Lt) =0, 0<t<T.

The exact solution isu(x,t) = (x* — x*)e™". The numerical
results are shown in table 1 and figures 1. In table 1, we give
the absol ute errors between the exact solution u(x,t) and the
approximate solutiony™ (x,t) and we make a comparison

with results obtained by method in [12] at the interior points
atfinal time T = 2 withtime step At = 0.0025 .

TABLE 1: The absolute error between the exact and
approximate solutionsin theinterior pointsat T = 2.

Example 2: Consider the following nonlinear space
fractional order differential equation [23]:

w, = D (WDJ°w) — d(x,t)Dw—w— f(x,t)w?,
0<x<10<t<],

where
1.5 0.5

d(x.t) = 26 2x(x— 1) 2X__ X" |

r.5 T1(@.5

0.5 -0.5
ot =et| 2o X |
5 T1(0.5

with the initial and boundary conditions:
w(x,0) =x(x-1), 0<x<],
w(0,t) =w(Lt)=0, 0<t<l.

In this case the exact solution isu(x,t) = e 'x(x—1). The

numerical results are shown in table 2 and figure 2. In table 2,
we give the maximum error between the exact solution

w(x,t) and the approximate solutionw,(X,t), in the
interior points with different time steps. Note that the

maximum error is defined as follows:

Iw=w| = mxax(|w(xi 1) — Wy (%, 1)] ) i=1..,N-1.
TABLE 2: The maximum error for N =10

X Nodal Method [12]
Method
01 | 533e06 | 4.20e05
02 | 826606 | 376605
03 | 885606 | 844605
04 | 834606 | 32705
05 | 745606 | 361e05
06 | 632606 1.94e05
07 | 507606 | 295e05
08 | 271e06 | 49205
09 | 98le07 | 283e05

uapprox

At T=1 T=3 T=5 T=10
107t 5.60 e-03 1.80e-03 3.90e-04 6.22 e-06
1072 2.60e-03 4.67 e-04 7.09 e-05 6.19 e-07
1073 2.40e-03 3.83e-04 5.28 e-05 3.68 e-07
10 2.40e-03 3.75e04 5.10e-05 3.45e-07

TABLE 3: The comparison between El-gendi nodal Galerkin
and pseudo-spectral methods for different N andtime T =5.

(b)
Fig.1: (a) plot of the approximate solution, (b) plot of the
exact solutionfor N =30 andAt=0.1.

It is noted from Table 1 and Fig. 1that we can achieve a good
approximation for the exact solution by using El-gendi
Galerkin method and also our results are in good agreement
with the method introduced in [12].
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At N =20 N =30
Nodal Pseudo Nodal Pseudo
Method Method Method Method
107t 3.94e04 553e04 3.95e04 554 e-04
1072 7.05 e-05 1.37e-04 7.12 e-05 1.42 e-04
10% | 536e05 101e04 5.50 e-05 1.06 e-04
1074 520 e-05 9.92 e-05 3.37e05 1.03 e-04
x 10
0 T
| | Exact
: : — pseudo
05 N - ——1—-———1————1— —f +
| | | |
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(b)
Fig 2. (a) Pseudo Method atT =5, At =102 andN = 30,

(b) El-gendi Nodal method at T =5, At =102

andN =30.
It is clear from table 2, when the time step be smaller; we
obtain a good accuracy although for long time. On the other
hand, in table 3, we make a comparison between the noda
method and the pseudo-spectral method for constant final
time and for different number of grid points at different time

steps. We note that at the time step At =10 “and for N = 20
the maximum error of the nodal method is (5.20 e-05).
Moreover, when the number of grid points increased
(N =30) the maximum error decrease to reach (3.37e-05).
However, pseudo-spectral method at the same time step and
when the number of grid points increased the maximum error
increased from (9.92 e-05) to (1.03 e-04). Also, we can
observe that from Figure 2 which ensures our numerical
results. So, our method is convergent and stable in the
numerical sense.

5. CONCLUSION

In this article, we propose a new technique for solving linear
and nonlinear fractional advection-diffusion equation
numerically. The method based on the Chebyshev
polynomial and the fractional derivatives are described in the
Caputo sense. The solution obtained using the proposed
method shows that this approach can solve the problem
effectively. Comparisons are made between the approximate
and exact solutions illustrate the validity and the great
potential of the proposed technique.
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