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Abstract- In this paper, an efficient numerical technique is presented to solve the partial fractional space equations with variable 
coefficients on a finite domain. This technique based on nodal Galerkin method. The fractional derivatives are described in the Caputo 
sense. Also, a fully discrete scheme is given for a type of nonlinear space-fractional anomalous advection-diffusion equation. In this 
paper, the problems can be reduced to a set of linear algebraic equations by using the Chebyshev nodal Galerkin method.  The existence 
and uniqueness of the solution for the linear semi discrete weak form solutions are proved. And the stability analysis for the linear semi 
and fully discrete schemes are discussed. Numerical solutions obtained by this method are in excellent agreement and efficient to use with 
those obtained by previous work in the literature.  
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1. INTRODUCTION 

   In recent years, a lot of attention has been devoted to the 
study of fractional differential equations. Fractional 
derivatives arise in many physical and engineering problems 
such as electric transmission, ultrasonic wave propagation in 
human cancellous bone, modeling of speech signals, 
modeling the cardiac tissue electrode interface, 
viscoelasticity, wave propagation in viscoelastic horns and 
fluid mechanics [13] and [3]. 

In this paper, we present a direct computational technique for 
the one-dimensional space fractional diffusion equation of the 
form: 

),,()( 1 txfuDxu xat                                                    
                    ,0,10, Ttbxa                  (1) 

with initial and homogenous boundary conditions as follows: 
),()0,( xxu                 ,bxa   

,0,0),(),( Tttbutau                                    (2) 

where the anomalous item uDxa
 is the th  order fractional 

derivative of u  with respect to the space variable x in the 
Caputo sense which will be introduced later on. We always 
consider: ,)(0 21   x where 

21, are constants. 

The fractional order diffusion equations are generalizations of 
classical diffusion equations. These equations play important 
roles in modeling anomalous diffusion and sub-diffusion 
systems, description of a fractional random walk, unification 
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of diffusion and wave propagation phenomena, see, e.g., [20], 
and the references therein. Many numerical investigations 
were carried out by many authors to solve this problem. In 
[2] the backward Euler finite difference scheme is applied in  
order to obtain numerical solutions for the equation. 
Existence and stability of the approximate solutions are 
carried out by using the right shifted Grünwald formula for 

the fractional derivative term in the spatial direction. In [21] 
approximation techniques based on the shifted Legendre-tau 
idea are presented to solve a class of initial-boundary value 
problems for the fractional diffusion equations. The 
technique is derived by expanding the required approximate 
solution as the elements of shifted Legendre polynomials. In 
[10] Legendre pseudo-spectral method with the finite 
difference method is used to obtain the numerical solution of 
the fractional diffusion equation. Also, we mainly study one 
kind of typical nonlinear space-fractional partial differential 
equations which is called fractional anomalous diffusion and 
has the following form:  

),,,()())(( wtxfwDxwDwaDw xxaxt  

 
       

                            ,0),1,0(, Ttbxa           (3) 

with initial and boundary conditions as follows: 
),()0,( xxw             ,bxa   

,0,0),(),( Tttbwtaw                                    (4) 
 

where 
xDa

is the th  order fractional derivative with respect 

to the space variable x in the Caputo sense. Now the 
fractional anomalous diffusion becomes a hot topic because 
of its widely applications in the evolution of various 
dynamical systems under the influence of stochastic forces. 
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For example, it is a well-suited tool for the description of 
anomalous transport processes in both absence and presence 
of external velocities or force fields. Moreover, the fractional 
anomalous diffusion have numerous applications in statistical 
physics, biophysics, chemistry, hydrogeology, and biology, 
see for more details [8],[16] and [17]. There are some authors 
studying the special anomalous diffusion equation in 
theoretical analysis and numerical simulations, see [6], [14] 
and [23]. 
 

In this paper, we used El-gendi nodal Galerkin method which 
is easier technique than the usual Galerkin method. In 
Galerkin method, each basis polynomial chosen must satisfy 
the boundary conditions individually which causes the 
Galerkin formulation to become complicated, particularly 
when the boundary conditions are time-dependent [1]. 
Furthermore, the presence of nonlinear term complicates the 
computation of the stiffness matrix [9]. However, the 
Galerkin method is based on a variation formulation which 
preserves essential properties of the continuous problem such 
as coercively, continuity and symmetry of the bilinear form 
and it usually leads to optimal error estimates [22]. 
  

On the other hand, the main advantage of the nodal Galerkin 
method is its simplicity and flexibility in implementation. In 
addition, this method deals with nonlinear terms more easily 
than Galerkin methods. Moreover, the problems with variable 
coefficients and general boundary conditions are treated as 
the same way as problems with constant coefficients and 
simple boundary conditions. In fact, In El-gendi Chebyshev 
nodal Galerkin method, we start from a weak form of the 
equations, but we replace hard to evaluate integrals by El-
gendi quadrature. The formula of El-gendi quadrature is 
satisfying a symmetric property. Hence, we can reduce the 
number of operations to 50% which implies to decrease the 
rounding error. Also, El-gendi quadrature is an alternating 
series which converges as N ( N is the number of grid 
points).   
 

The remainder of this paper is organized as follows: In 
section 2, we present the procedure of solution for the partial 
fractional space equation in a linear and nonlinear case. In 
section 3, we present the error analysis. In section 4, we give 
numerical experiments to clarify the method. 
 

2. Fractional Derivative Space  
 

     In this section we will give the fractional derivative space. 
Firstly, we will give the following definitions: 
 
Definition 1. The fractional derivative in the Riemann-
Liouville version of function )(xf  is defined as follows 

[19]. 

 


x

a
mm

m

xa ds
sx

sf

dx

d

n
xfJ

1)(
)(

)(
1

)(





,                   

where .,1 Nmmm    
 

An alternative definition, known as the Caputo fractional 
derivative is: 

 


x

a
m

m

xa ds
sx

sf

m
xfD

1

)(

)(
)(

)(
1

)(





.                           (5) 

The two definitions are not in general equivalent but they are 
related by the following relation: 

 










1

0

)(

)1(

)0(
)()(

m

k

kk

xaxa k

fx
xfJxfD




 . 

Generally, when we consider the fractional differential 
equations the Caputo definition is often preferred since it is 
easy for imposing initial and boundary conditions on classic 
derivatives. But for the Riemann-Liouville definition, these 
conditions must be imposed on fractional derivatives and this 
is often not available. So that, we will use the Caputo 
definition in this paper. 
 

Definition 2. [19] For 0 , the fractional derivative 

space ),( baI  is defined as follows:
              

),,():,({),( 22 baLfDbaLfbaI xa 
  

                                                  },1 mm    

endowed with the semi-norm:
         

,
),(),( 2 baLxabaI

fDf 
   

and the norm 

  ,2/12

),(

2

),(),( 2 baLbaIbaI
fff    

and let ),( baI  denotes the closure of ),(0 baC with respect 

to the above norm and seminorm. 
 

Definition 3. [15] The fractional space ),( baE defined 

below 

),,():,({),( 22 baLfDbaLfbaE xa    

                          },1),,(2 mmbaLfDbx    

endowed with the seminorm 

  ,,
2/1

),(
fDfDf bxxaba


 

  
and the norm 

  ,2/12

),(

2

),(),( 2 baLbaEbaE
fff    

and let ),( baE denotes the closure of ),(0 baC with respect 

to the above norm and seminorm. 
 

Definition 4. [7] For 0 , define the seminorm  

,)(
),(),( 2 baLbaH

fFf


   

and the norm  

  ,2/12

),(

2

),(),( 2 baLbaHbaH
fff    

where )( fF is the Fourier transform of the function f and 

which can define another fractional derivative space 

),( baH  . Let ),(0 baH  be the closure of ),(0 baC with 

respect to the above norm and seminorm. 
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Theorem 1. [7] The spaces ),( baI  , ),( baE and 

),(0 baH  are equal in the sense that their semi norms as well 

as norms are equivalent. 
 

Lemma 1. [6 (Fractional Poincaré�Friedrichs)] 

For ),(0 baHf  , we have 

               
,

),(),( 0
2 baHbaL

fCf   

and for  0 , 2/1m , Zm , 

               
.

),(),( 00 baHbaH
fCf    

 

Lemma 2. [7] For ),(0 baIf  ,  0 , then 

              
)()( xfDDxfD xaxaxa

  . 
 

3. NUMERICAL TREATEMENTS FOR THE 
PARTIALFRACTIONAL SPACE 

In this section, we present the numerical solution for time�
space fractional linear and nonlinear equations, respectively, 
where the space fractional derivative is the Caputo derivative. 
 

3.1 EL-GENDI NODAL GALERKIN METHOD FOR 
LINEAR CASE 

   This method starts with the weak form and the trail space 
coincides with the test function space. The weak form of 
problem (1) and (2) in case Lba  ,0  is given as follows: 

Find ),0(2/)1(
0 LHu 

  such that
           

     ,),,())((),(, 0 vtxfvxDuDvu xLt  

0),,0(2/)1(
0 
 tLHv  ,                                                (7) 

where the inner product  vu, is defined as 

            
  

L

dxxvxuvu
0

.)()(,  

Next, we will prove the existence and uniqueness of the weak 
form (7). So, we give the properties of the fractional diffusion 
operator which is given in [14] as follows: 

1-     2

10
1

0 2/)1()),(),( 


HxLL uuDuDuuD coercivity 

on ),,0(2/)1(
0 LH   

2-    )),(),( 0
1

0 vDuDvuD xLL



  

                     
22

2 2/)1(2/)1(  
HH

vu  

continuity on ),0(),0( 2/)1(
0

2/)1(
0 LHLH 


 , where 21, are 

constants. 
Applying the implicit Euler approximation to approximate 
the time derivative, we define 

...,2,10,  Tttt


  and t is the time step. 

Then equation (7) is approximated as follows: Find 

),0(2/)1(
0

1 LHu    such that
 

     ))((),(, 1
0

1 vxDuDtvu xL      

             vftvu ,, 1  0),,0(2/)1(
0   tLHv  ,     (8) 

where ),( 1
1








 txff . Let   

   ))((),(,),( 1
0

11 vxDuDtvuvuB xL  


 ,        

and 

  ),,(,)( 1 vgvftuvF    

then the semi-discrete problem (8) can be written in a simple 
form like that: 

),(),( 1 vFvuB  0),,0(2/)1(
0   tLHv  ,                     (9)

      
 

 

Theorem 2 (Existence and Uniqueness).  

For ,)(0 21   x and for a sufficiently small step size 

0t , there exists a unique solution 1u  satisfying (9). 
 

Proof. Firstly, we will prove the coercivity of the bilinear 
form ),( 1 vuB  by using the properties of the fractional 

diffusion operator and Fractional Poincaré�Friedrichs 
inequality, 

)))((,(),(),( 11
0

1111 


 uxDuDtuuuuB xL 

                    

                       
2

),0(

1
2

2

),0(

1
2/)1(2 LHLL

utu


 


 

 

                       
,

2

),0(

1
2/)1( LH

uC







  

then bilinear form ),( B is coercive over ),0(2/)1(
0 LH  . 

Next, we will prove the continuity of the bilinear form 

),( B over ),0(),0( 2/)1(
0

2/)1(
0 LHLH    as follows: 

)))((,(),(),( 1
0

11 vxDuDtvuvuB xL  


  

                    ),0(),0(

1
22 LLLL

vu 




 

                 
),0(),0(

1
2 2/)1(2/)1( LHLH

vut 


 
 

 

                    ),0(),0(

1
2/)1(2/)1(

~
LHLH

vuC 


 

 . 

Moreover, we can also prove the continuity of )(F over 

),0(2/)1(
0 LH  as follows: 

),()( vgvF 
),0(),0( 22 LLLL

vg
 

                    ),0(),0( 2/)1(2/)1( LHLH
vgC  



. 

Therefore, the hypotheses of Lax-Milgram theorem are 
satisfied [14] and then there exist a unique solution for the 
semi-discrete weak form (9). □ 
 

Theorem 3 (Stability of the semi-discrete problem).  

For ,)(0 21   x and for a sufficiently small step size 

0t , the problem (9) is stable, and it holds 














 











0
),0(

1

),0(

0

),0(

1
222/)1(

j
LLLLLH

ftuu


. 

Proof. For 0 and 1uv   then problem (8) will be  

   ))((),(, 11
0

11 uxDuDtuu xL   

                           110 ,, uftvu  .                        (10) 
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The right hand side of (10) will be 

   ))((),(, 11
0

11 uxDuDtuu xL   

                       
2

),0(

1
2/)1(

0
1 LH

uC   .                                   (11) 

 The left hand side of (10) 

   1110 ,, uftuu 
 

),0(

1

),0(

1

),0(

1

),0(

0
2222 LLLLLLLL

uftuu   

(From Lemma 1) 

),0(

1

),0(

1

),0(

0
222 LLLLLL

uftu 




 

                                         

),0(

1

),0(

1

),0(

0
2/)1(

0
222

LHLLLL
uftuC







  .        (12) 

From (11) and (12) we have
           

),0(

1
2/)1(

0 LH
u  





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),0(

1

),0(

0
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1

2

LLLL
ftu

C

C
.     (13) 

For 1 so we have
            

),0(
2/)1(

0 LH
u 








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

),0(),0(

1
3 22 LLLL

ftuC  .   (14) 

From (13), (14) we obtain
 

),0(

1
2/)1(

0 LH
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

















 







0
),0(),0(4 22

j
LLLL

ftuC .    □ 

Now, El-gendi nodal Galerkin method discretization proceeds 
by approximating the solution the polynomials of high 
degree. So we introduce a finite dimensional space 

),0(2/)1(
00 LHPP NN 




 where NP is the space of all 

polynomials in which the polynomial degree is less than or 

equal to N and the space is given as 

follows }...,),(),({ 1210  N
N xxspanP  ,  

where ( )j x  are given by:  

,)1)/2(()1)/2((
2

)(
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



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kjkk

j
j xLTxLT

N
x 


                     

                                                       ,...,,1,0 Nj   (15) 

for all ,1k except 2/10  N and 

0 ,
( )

1 .j k

if j k
x

if j k



 


 

The grid points 
kx are the extrema points of the shifted 

Chebyshev polynomial )1)/2(( xLTk . Let the approximate 

solution is given as follows 





N

i
i

N xtUtxutxu
i

0

)()(),(),(  ,                               (16) 

to ensure the approximations satisfy the boundary conditions, 
we set 0

0
 NUU . Also, since the test function )(xv as a 

function of thN order polynomials so we can write these 
polynomials in the equivalent cardinal form 

 




N

l
ll xVxv

0

)()(  ,                                                                                          

where the nodal values 
lV  are arbitrary, except that 

00  NVV to ensure that v satisfies the boundary 

conditions. Now the discrete weak form is given as follows: 

find NPu N

0  

      ,,))(),(, 0 NNxLN
N
t vfvDuDvu NN    

                                                  0,0  tPv N ,                (17) 

where the inner product  Nhg, is evaluated as follows 
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


N

j
jjNjN xhxgbhg

0

)()(
~

, , 

and
           

,,...,0),1(
2

Niy
L

x ii 

Nj
N

j
y j ...,,1,0,cos 











. 

The quantities 
Njb  are given by: [9] 

 

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
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0
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cos

14
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s
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iN
b


,    1...,,2,1  Nj , 
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1
20



N

bb NNN
.                                                        (18) 

Since Lx 0 then the mapped weights will be given from 

the following relation
NjNj b

L
b

2~
 . Then the first discrete inner 

product becomes 

  



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


 



N

m
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t xVxUvu

000

)()(,   , 

since 
ijji x  )( , then the sum reduces to 

  N
N
t vu , ,

~

0



N

j
jjNj VUb                                                           (19) 

where 
 

dt

dU
U j

j 
 . 

For evaluating the second term in (17), let

  ,10,)()(
0

0  


 
N

l
ll

NN
L xtUuDuD  

then the fractional derivative of the cardinal function can be 

written as:                 

,)1)/2(()1)/2((
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)(
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
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
N

k
kjkk

l
l xLTDxLT

N
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  

                                                      ,...,,1,0 Nl   
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L
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
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
     

 
and the Caputo fractional derivative of the Shifted Chebyshev 
polynomial is:

      
 






x
k

k dt
tx

tLT
xLTD

0 )(

)1)/2((

)1(

1
)1)/2((
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


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for 10   , where the derivatives of Chebyshev polynomial 

iT  satisfy 

10 TT  , 
4
2

1

T
T


 , ..., 

)1(2)1(2
11









 

i

T

i

T
T ii

i , 2i , 

 
so, we can deduce that the recurrence relations 

0
2
0 
T

, ),...(2 131 TTTiT iii  
  i even,               (20)  

),5.0...(2 031 TTTiT iii  
         i odd.                 (21) 

Then from eq. (20-21) we can deduce the original modal 
differentiation matrix D

~
 in the spectral space. D

~
 is a sparse 

upper triangular matrix with interties  

 















.,2

,)(,0

,,0
~

otherwisej

evenijif

jiif

dij
 

Then the Caputo fractional derivative of the Shifted 
Chebyshev polynomial is [4]and given as follows:  

 )1(2
)(

1

0







x
xM ,

)1()2)(1(

)/2(
)(

12

1










 xxL
xM ,      (23) 

 )1()2)(1(

)/2(4

)1)(2)(3(

)/2(4
)(

1232

2













 xxLxL
xM ,  (24) 

and for Nn ...,,4,3 we have the following recurrence 

relation 

 








 


1
1 ))()(1)/2((2))((

1
1 xMxLxM

k kk
  

                 x
kk

xM
k

k

k 
























  )2(

)1(2
))((

2

1
1 2

   (25) 

hence, by substituting (23), (24) and (25) in (22), then we 
have 

)(
~

)1(
1

)1)/2((
0

xMdxLTD n

N

n
knk 






 .                 (26) 

Consequently, the fractional derivative of the cardinal 
function is given in the following form:

          ,)(
~

)1)/2((
)1(

2
)(

0 0

 





N

k
n

N

n
knjkk

l
l xMdxLT

N
xD 




  

                                           LxNl  0,...,,1,0 .    

The second term in (11) can be evaluated as follows: 

 
N

N vuD ))(),(   
 


N

j

N

k
j

N
Nkj xxxuDbV

0 0

)()()(([
~

(   

                                         
kxxj xx


 ))])()(  ,   (27) 

where the first derivative of the cardinal functions )(xj  at 

the points kx is derived in [11]. Similarly, the source term is 

given as follows: 

 
  j

N

j

N
jNjN

N Vfbvf 



0

~
, .                                                    (28)    

From equations (19), (27) and (28) we have 





N

k
j

N
NkjNj

N

j
j xxxuDbUbV

00

)()()[([
~~

(   

                    0
~

)]]()( 


N
jNjxxj fbxx

k

 . 

Since jV �s are linearly independent, the coefficient of each 

jV  must be zero, so 







N

k
xxjj

N
NkjNj

k

xxxxxuDbUb
0

))]()()()()(([
~~



                                            N
jNj fb

~
 , 1...,,1  Nj ,    

and 

,
~

)(
~

0




N

l

N
jNjljljNj fbUCBUb

jl

           

                                                               1...,,1  Nj ,                                           

00  NUU ,                                                                   (29) 

where 





N

k
kjklkNkjl xxxbB

0

)()()(
~

  , )()(
~

jljNjjl xxbC  .  

Let )( jljljl CBA  , then (29) can be written as 

,
~~

0




N

l

N
jNjljNj fbUAUb

jl

     1...,,1  Nj ,    

with the boundary conditions                                         

00  NUU .      

Then the fully discrete problem is given in the following 
form

          

 

,
~~ 1

0

1
1



























 



jNj

N

l
ljl

jj
Nj fbUA

t

UU
b  

                                       ...,2,1,1...,,1  Nj , 

with the boundary conditions                                         

 
011

0 
 

NUU .                                                               (30) 
 

3.2 STABILITY FOR FULL DISCRETE PROBLEM 

In this section we use recall Leray-Schauder fixed point 
theorem [18] to prove the existence of the solution for eq. 
(30). 

Lemma 3. For a given open and bounded domain nR  
containing the origin 0 and let nR :  be a 
continuous function. If xx  )(  for all 1  and x  

then   has a fixed point in which is the closure of
 
 . 

 

We introduce discrete norm which induced from the discrete 
inner product

 

             
  .)()(

~
,

2/1

0













 



N

j
jjNjNN

xgxgbggg  

 
Theorem 4. The equation (30) has a solution. 
 

Proof. Let nRaB  ),0(  be a ball centered at the 

origin 0 with radius a and consider   be the boundary 

of  . Let )...,,( 0 NUUU   be a vector on the boundary   

such that for some 1   
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UUEU  )(  ,                                                         (31) 

where 

)(UE N ,~
1

0

1 







 



j

N

l
ljl

Nj

ftUA
b

t                                                                               

by taking a discrete inner product of (30) with U then we 
have 

),()),((
2

),0(2 UUUUEU
LL



                            
),,(),(),(~ UUUftUAU

b

t

Nj




  

from [2] and since ),( txf is continuous on 

],0[],0[ TL  then by Gronwall Lemma we have: 

0,  f and by applying Caushy-Schwarz 

inequality we have

            222
~ NN

Nj
N

UtUA
b

t
U 


                                            

                                    ,
NN

UU               (32) 

where A is bounded by a positive number. Divide both 

sides of (32) by 2

N
U then we have

 
,~

N

N

Nj U

U
tA

b

t





 

 
then for large 

N
U and for very small t then 1 which 

implies to contradiction. So 
,)( UUEU         1 ,  .U  

 

Hence there is a solution U such that 
UUEU  )( .                                                                   □ 

 

Theorem 5. For any fixed N , the full discrete scheme (30) is 

stable. 
 

Proof. From equation (30) and by taking a discrete inner 

product with 1U and since 0,  
N

f . Then, from 

Caushy-Schwarz inequality we have 
21221

~
N

Nj
NN

UA
b

t
UU  

                                          

                              ,
21

N
Ut                         (33)  

then by summing (33) from 0 to M , we obtain 

,~
0

21202
























M

N
Nj

NN

M UtA
b

t
UU



  

by the discrete Gronwall inequality, we obtain

          

































 tA

b

t
U

CT
U

Nj
NN

M ~
2

exp
20

                           

 

                                           
2

1

0

21




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


M

N
U



 .           □

    

 

                        

 

3.3 NONLINEAR CASE 

In this section we will illustrate how we can use the nodal 
Chebyshev Galerkin method to solve the nonlinear diffusion 
equation. So, we will give the weak form of problem (3) and 
(4) in case Lba  ,0  is given as follows: Find 

),0(2/)1(
0 LHu    such that:  

     )(,),)((, 0 vDwvDwDwavw xxxt         

                 vwtxf ),,,( , 0),,0(2/)1(
0   tLHv  . 

The existence and uniqueness of the weak form is proved in 
[23]. Let the approximate solution is given as follows: 

          




N

i
ii

N xtWtxwtxw
0

)()(),(),(  , 

so the above weak form can be written as  

     Nx
N

Nx
N

x
N

N
N
t vDwvDwDwavw )(,),)((, 0 

   

                N
N vwtxf ),,,( , .0,0  tPv N              (34) 

After some manipulations we have 





N

l
ljl

N

l
ljljNj WCWBWb

00

~
  

           ),,,(
0

N
j

N

l
ljl jwtxfWH 



1...,,1  Nj , (35) 

where 





N

k
kjkl

N
kNkjl xxwabB

0

)()()(
~

  ,  

)()(
~

ljlNljl xxbC   ,  

 
),()(

~
lljNljl xxbH    

 and hence (35) is given as 





N

l
ljl

N

l
ljljNj WAWBWb

00

~
   

            ),,,( N
j jwtxf 1...,,1  Nj ,                      (36) 

where 

 jljl CA ,jlH  

To approximate the time derivative, we will use the backward 
Euler finite difference for the linear parts while the forward 
Euler finite difference for the nonlinear part. Let 

kf  is the 

approximation of ),(


txf k
. Then (36) is approximated by 









1

0

1~


l

N

l
jljNj WAtWb

 

            
)]()(

~
[

~

0 0
kjl

N

l

N

k
kNkjNj xWabtWb     

 

  

          ...,,2,1,1...,,1),(  
 NjWf jj

 

with the boundary conditions 
1

0
W  01 

NW .                                                          (37) 
 

4. NUMERICAL EXPERIAMENTS 

In this section we will give numerical examples and we will 
use MATLAB 8 software to obtain the numerical results.   
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Example 1: Consider the following space fractional order 
differential equation:                 

,10,10),,())2.1(( 8.18.1
 txtxfuDxu xt    

where texxtxf  )36(),( 23  with the initial and 

boundary conditions: 

),()0,( 32 xxxu                                        ,10  x  

,0),1(,0),0(  tutu                                         Tt 0 . 
The exact solution is texxtxu  )(),( 32 . The numerical 

results are shown in table 1 and figures 1. In table 1, we give 
the absolute errors between the exact solution ),( txu  and the 

approximate solution ),( txu N and we make a comparison 

with results obtained by method in [12] at the interior points 
at final time 2T with time step 0025.0 t . 
 

TABLE 1: The absolute error between the exact and 
approximate solutions in the interior points at 2T . 

X Nodal 
Method 

Method [12] 

0.1 5.33 e-06 4.20 e-05 
0.2 8.26 e-06 3.76 e-05 
0.3 8.85 e-06 8.44 e-05 
0.4 8.34 e-06 3.27 e-05 
0.5 7.45 e-06 3.61 e-05 

0.6 6.32 e-06 1.94 e-05 
0.7 5.07 e-06 2.95 e-05 
0.8 2.71 e-06 4.92 e-05 
0.9 9.81 e-07 2.83 e-05 
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(b) 

Fig.1: (a) plot of the approximate solution, (b) plot of the 
exact solution for 30N  and 1.0t  . 

 
It is noted from Table 1 and Fig. 1that we can achieve a good 
approximation for the exact solution by using El-gendi 
Galerkin method and also our results are in good agreement 
with the method introduced in [12]. 
 

Example 2: Consider the following nonlinear space 
fractional order differential equation [23]:

            
,),(),()( 25.02 wtxfwwDtxdwDwDw xxxt 
 

                                                    ,10,10  tx
 

where 
 


















)5.1()5.2(

2
)1(2),(

5.05.1
2 xx

xxetxd t , 



















)5.0()5.1(

2
),(

5.05.0 xx
etxf t ,

 

with the initial and boundary conditions: 

,10),1()0,(  xxxxw
10,0),1(),0(  ttwtw . 

In this case the exact solution is )1(),(   xxetxu t . The 

numerical results are shown in table 2 and figure 2. In table 2, 
we give the maximum error between the exact solution 

),( txw  and the approximate solution ),,( txwN  in the 

interior points with different time steps. Note that the 
maximum error is defined as follows:     
         

  1,...,1,),(),(max 


Nitxwtxwww iNi
x

N
i

. 

TABLE 2: The maximum error for 10N  
t 1T 3T 5T 10T 

110  5.60 e-03 1.80 e-03 3.90 e-04 6.22 e-06 
210  2.60 e-03 4.67 e-04 7.09 e-05 6.19 e-07 
310  2.40 e-03 3.83 e-04 5.28 e-05 3.68 e-07 
410 2.40 e-03 3.75 e-04 5.10 e-05 3.45 e-07 

 
TABLE 3: The comparison between El-gendi nodal Galerkin 
and pseudo-spectral methods for different N and time 5T . 

 

t 20N     
    

 30N     
    

 

 Nodal 
Method 

Pseudo 
Method 

Nodal 
Method 

Pseudo 
Method 

110   3.94 e-04 5.53 e-04 3.95 e-04 5.54 e-04 
210  7.05 e-05 1.37 e-04 7.12 e-05 1.42 e-04 
310  5.36 e-05 1.01 e-04 5.50 e-05 1.06 e-04 
410  5.20 e-05 9.92 e-05 3.37 e-05 1.03 e-04 
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Fig 2. (a) Pseudo Method at 5T , 210
 t  and 30N ,     

   (b) El-gendi Nodal method at 5T , 210
 t  

and 30N . 
It is clear from table 2, when the time step be smaller; we 
obtain a good accuracy although for long time. On the other 
hand, in table 3, we make a comparison between the nodal 
method and the pseudo-spectral method for constant final 
time and for different number of grid points at different time 

steps. We note that at the time step 410
t and for 20N  

the maximum error of the nodal method is ( 20.5  e-05). 
Moreover, when the number of grid points increased 
( 30N ) the maximum error decrease to reach (3.37e-05). 
However, pseudo-spectral method at the same time step and 
when the number of grid points increased the maximum error 
increased from (9.92 e-05) to (1.03 e-04). Also, we can 
observe that from Figure 2 which ensures our numerical 
results. So, our method is convergent and stable in the 
numerical sense. 
 

5. CONCLUSION 

In this article, we propose a new technique for solving linear 
and nonlinear fractional advection-diffusion equation 
numerically. The method based on the Chebyshev 
polynomial and the fractional derivatives are described in the 
Caputo sense. The solution obtained using the proposed 
method shows that this approach can solve the problem 
effectively. Comparisons are made between the approximate 
and exact solutions illustrate the validity and the great 
potential of the proposed technique.  

 ACKNOWLEDGMENT 

We like to express sincere appreciation and deep gratitude 
to all participants in this work. 

REFERENCES 
 

[1] Boyd, J.P., �Chebyshev and Fourier spectral methods,� Dover, 
Mineola, 2001. 

[2] Choi, H. W., Chung, S. K., Lee, Y. J., �Numerical solutions for 
spacefractional  dispersion equations with nonlinear source terms,� 
Bull. Korean Math. Soc. 47, 1225-1234, 2010. 

[3] Dalir, M., Bashour, M., �Applications of fractional  calculus, � Appl. 

Math. Sci. 4, 1021�1032, 2010. 

[4] Diethelm, K., �The Analysis of Fractional Differential Equations: An 
Application-Oriented Exposition Using Differential Operators of 
Caputo Type,� Springer, 2004. 

[5] Elbarbary, M.E., El-Sayed, M., �Higher order pseudospectral 
differentiation matrices,� Applied Numerical Mathematics. 55, 425�
438, 2005. 

[6] Ervin, V. J., Heuer, N., Roop, J. P., �Numerical approximation of a 
time dependent, nonlinear, spacefractional diffusion equation,� SIAM 
Journal on Numerical Analysis. 45 (2), 572�591, 2008. 

[7] Ervin, V.J., Roop, J.P., �Variational formulation for the stationary 
fractional advection dispersion equation,� Numer. Meth. Part. D. E. 
22(3), 558-576, 2006. 

[8] Henry, B. I., M. Langlands, T. A., Wearne, S. L., �Anomalous 
diffusion with linear reaction dynamics: from continuous time random 
walks to fractional reaction-diffusion equations, Physical Review E, 
article 031116, 74 (3), 2006. 

[9] Hesthaven, J.S., Gottlieb, S., Gottlieb, D., �Spectral Methods for 
Time-Dependent Problems,� The Cambridge monographs on applied 
and computational mathematics, 2007. 

[10] Khader, M.M., Sweilam, N.H., Mahdy, A.S., �An efficient numerical 
method for solving the fractional diffusion equation,� Journal of 
Applied Mathematics & Bioinformatics. 1, 1-12, 2011. 

[11] Khater, A.H., Temsah, R.S., Hassan, M.M., �A Chebyshev spectral 
collocation method for solving Burgers�-type equations,� J. of 
computational and applied mathematics. 222, 333�350, 2008. 

[12] Khader, M.M., �On the numerical solutions for the fractional diffusion 
equation,� Commun. Nonlinear Sci. Numer. Simul. 16, 2535�2542, 
2011.  

[13] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., �Theory and 
Applications of Fractional Differential Equations,� Elsevier, San 
Diego, 2006.  

[14] Li, C. P., Zhao, Z. G., Chen, Y. Q., �Numerical approximation of 
nonlinear fractional differential equations with subdiffusion and 
superdiffusion,� Computers  & Mathematics with Applications. 62, 
855�875, 2011.  

[15] Li, X.J., Xu, C.J., �A space-time spectral method for the time 
fractional differential equation,� SIAM J. Numer. Anal. 47(3), 2108-
2131, 2009. 

[16] Magin, R. L., Abdullah, O., Baleanu, D., Zhou, X. J., �Anomalous 
diffusion expressed through fractional order differential operators in 
the Bloch-Torrey equation,� Journal of Magnetic Resonance. 190 (2), 
255�270, 2008. 

[17] Meerschaert, M. M., Benson, D. A., Baeumer, B., �Operator Levy 
motion and multiscaling anomalous diffusion,� Physical Review E. 
article 021112, 63 (2I), 2001. 

[18] Ortega, J. M., Rheinboldt, W. C., �Iterative Solution of Nonlinear 
Equations in Several Variables,� Academic Press, New York-London, 
1970. 

[19] Podlubny, I., �Fractional Differential Equations,� vol. 198, Academic 
Press, San Diego, Calif, USA, 1999. 

[20] Ray, S.S., �Analytical solution for the space fractional diffusion 
equation by two-step Adomian decomposition method,� Commun. 
Nonlinear Sci. Numer. Simul. 14, 1295�1306, 2009.  

[21] Saadatmandi, A., Dehghan, M., �A tau approach for solution of the 
space fractional diffusion equation,� Computers and Mathematics with 
Applications. 62 1135�1142, 2011. 

[22] Shen, J., Tang, T., �Spectral and High-Order Methods with 
Applications,� Science Press of China, 2006.  

[23] Zheng, Y., Zhao, Z., �A fully discrete Galerkin method for a 
nonlinear Space-fractional diffusion Equation,� Mathematical 
Problems in Engineering. Article 171620, 20 pages, 2011. 

 
 
 
 


