

OBSERVATIONS ON THE HYPERBOLOID OF TWO SHEETS
 $7 X^{2}-3 Y^{2}=Z^{2}+Z(Y-X)+4$.

S.Vidhyalakshmi ${ }^{1}$, M.AGopalan ${ }^{2}$, and A.kavitha ${ }^{3}$
${ }^{1,2,3}$ Professor, Department of Mathematics SIGC, Trichy-2.

Abstract - Infinitely many non-zero distinct integral points on the hyperboloid of two sheets given by $7 x^{2}-3 y^{2}=z^{2}+z(y-x)+4$ are
obtained. A few interesting properties among the solutions are presented.
Keyword - Ternary quadratic equation, Hyperboloid of two sheets, Integral points, MSC 2000 Mathematics subject classification: 11D09.

NOTATIONS

* $\mathrm{T}_{\mathrm{m}, \mathrm{n}}$ - Polygonal number of rank n with size m
* P_{n}^{m} - Pyramidal number of rank n with size m

INTRODUCTION

The ternary quadratic Diophantine equations offer an unlimited field for research because of their variety [1,2]. For an extensive review of various problems one may refer [3-11]. In this context, one may also refer [12-18].This communication concerns with yet another interesting ternary quadratic equation $7 x^{2}-3 y^{2}=z^{2}+z(y-x)+4$ representing hyperboloid of two sheets for determining its infinitely many non zero integral solutions. Also a few interesting relations among the solutions are presented. Employing the integral solution on the given hyperboloid of two sheets, a few fascinating relations among special, polygonal and pyramidal numbers are given..

METHOD OF ANALYSIS

The ternary quadratic equation representing the hyperboloid of two sheets is

$$
\begin{equation*}
7 x^{2}-3 y^{2}=z^{2}+z(y-x)+4 \tag{1}
\end{equation*}
$$

Introduction of the linear transformations

$$
\begin{equation*}
\mathrm{x}=\mathrm{X}+3 \mathrm{~T}, \quad \mathrm{y}=\mathrm{X}+7 \mathrm{~T}, \quad \mathrm{z}=2 \mathrm{~T} \tag{2}
\end{equation*}
$$

in equation (1) leads to

$$
\mathrm{X}^{2}=24 \mathrm{~T}^{2}+1
$$

which is the well known Pellian equation whose general solution $\left(X_{n}, T_{n}\right)$ is given by,

$$
\begin{gathered}
\mathrm{X}_{\mathrm{n}}= \\
\frac{1}{2}\left[(5+2 \sqrt{6})^{n+1}+(5-2 \sqrt{6})^{n+1}\right]
\end{gathered}
$$

$$
\frac{1}{4 \sqrt{6}}\left[(5+2 \sqrt{6})^{n+1}-(5-2 \sqrt{6})^{n+1}\right]
$$

In view of (2), the non zero integral solutions of (1) are given by

$$
\mathrm{x}_{\mathrm{n}}=\frac{f}{2}+\frac{3 g}{2 \sqrt{24}}, \quad \mathrm{y}_{\mathrm{n}}=\frac{f}{2}+\frac{7 g}{2 \sqrt{24}}, \quad \mathrm{z}_{\mathrm{n}}=\frac{g}{\sqrt{24}}
$$

where

$$
\begin{aligned}
& \mathrm{f}=(5+2 \sqrt{6})^{n+1}+(5-2 \sqrt{6})^{n+1} \\
& \mathrm{~g}=(5+2 \sqrt{6})^{n+1}-(5-2 \sqrt{6})^{n+1}
\end{aligned}
$$

The recurrence relations satisfied by $\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{z}_{\mathrm{n}}$ are correspondingly exhibited below:

$$
x_{1}=79
$$

$y_{1}=119$
$\mathrm{z}_{1}=20$.

$$
\begin{array}{ll}
x_{n}-10 x_{n+1}+x_{n+2}=0 & \\
y_{n}-10 y_{n+1}+y_{n+2}=0 \\
(4) & y_{0}=\int_{n}=2, \\
z_{n}-10 z_{n+1}+z_{n+2}=0 & z_{0}=2,
\end{array}
$$

A few interesting relations observed among the solutions (7) are presented below:
(i) $2 \mathrm{x}_{\mathrm{n}+1}-16 \mathrm{x}_{\mathrm{n}}=15 \mathrm{z}_{\mathrm{n}}$
(ii) $\mathrm{x}_{\mathrm{n}+2}-79 \mathrm{x}_{\mathrm{n}}=75 \mathrm{z}_{\mathrm{n}}$
(iii) $y_{n}-x_{n}=2 z_{n}$
(iv) $2 y_{n+1}-24 y_{n}=-25 z_{n}$
(v) $\mathrm{y}_{\mathrm{n}+2}-119 \mathrm{y}_{\mathrm{n}}=-125 \mathrm{z}_{\mathrm{n}}$

REMARKABLE OBSERVATIONS

Let ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) be any non-zero distinct integral solution of (1).

Publication History

1) Each of the following two triples also satisfies (1)
(i) $(-55 x+36 y+2 z,-84 x+55 y+3 z, \quad z)$
(ii) $\quad(-16 x+3 y+5 z, \quad y, \quad-51 x+9 y+16 z)$
2) A few relations noticed among the special polygonal and pyramidal numbers are presented below:
(i)
$7\left(P_{x}^{5}\right)^{2}\left(T_{3, y+1}^{2}\right)\left(T_{3, z-2}^{2}\right)-3\left(3 P_{y}^{3}\right)^{2}\left(T_{3, x}^{2}\right)\left(T_{3, z-2}^{2}\right)-\left(3 P_{z-2}^{3}\right)^{2}\left(T_{3, x}^{2}\right)\left(T_{3, y+1}^{2}\right)$
$-\left(3 P_{z-2}^{3}\right)\left(3 P_{y}^{3}\right)\left(T_{3, x}^{2}\right)\left(T_{3, y+1}\right)\left(T_{3, z-2}\right)+\left(3 P_{z-2}^{3}\right)\left(P_{x}^{5}\right)\left(T_{3, y+1}^{2}\right)\left(T_{3, x}\right)\left(T_{3, z-2}\right)$
$=4\left(T_{3, x}^{2}\right)\left(T_{3, y+1}^{2}\right)\left(T_{3, z-2}^{2}\right)$.
(ii)
$7\left(P_{x}^{3}\right)^{2}\left(T_{3, y-2}^{2}\right)\left(T_{3, z}^{2}\right)-3\left(3 P_{y-2}^{2}\right)^{2}\left(T_{3, x+1}^{2}\right)\left(T_{3, z}^{2}\right)-\left(P_{z}^{5}\right)^{2}\left(T_{3, x+1}^{2}\right)\left(T_{3, y-2}^{2}\right)-$
$\left(P_{z}^{5}\right)\left(3 P_{y-2}^{3}\right)\left(T_{3, x+1}^{2}\right)\left(T_{3, y-2}\right)\left(T_{3, z}\right)+\left(P_{z}^{5}\right)\left(3 P_{x}^{3}\right)\left(T_{3, y-2}^{2}\right)\left(T_{z, 3}\right)\left(T_{3, x+1}\right)$ $=4\left(T_{3, x+1}^{2}\right)\left(T_{3, y-2}^{2}\right)\left(T_{3, z}^{2}\right)$.
3) Each of the following is a perfect square:
(i)
$7\left(3 P_{x-2}^{3}\right)^{2}\left(T_{3, y}^{2}\right)\left(T_{3, z+1}^{2}\right)-3\left(P_{y}^{5}\right)^{2}\left(T_{3, x-2}^{2}\right)\left(T_{3, z+1}^{2}\right)-\left(3 P_{z}^{3}\right)^{2}\left(T_{3, x-2}^{2}\right)\left(T_{3, y}^{2}\right)$
$-\left(3 P_{z}^{3}\right)\left(P_{y}^{5}\right)\left(T_{3, x-2}^{2}\right)\left(T_{3, y}^{2}\right)\left(T_{3, z+1}\right)+\left(3 P_{z}^{3}\right)\left(3 P_{x-2}^{3}\right)\left(T_{3, y}^{2}\right)\left(T_{3, x-2}\right)\left(T_{3, z+1}\right)$
(ii)
$\lambda\left(P_{x}^{3}\right)^{2}\left(T_{3, y}^{2}\right)\left(T_{3, z-2}^{2}\right)-3\left(P_{y}^{5}\right)^{2}\left(T_{3, x+1}^{2}\right)\left(T_{3, z-2}^{2}\right)-\left(3 P_{z-2}^{3}\right)^{2}\left(T_{3, x+1}^{2}\right)\left(T_{3, y}^{2}\right)-$
$\left(3 P_{z-2}^{3}\right)\left(P_{y}^{5}\right)\left(T_{3, x+1}^{2}\right)\left(T_{3, y}\right)\left(T_{3, z-2}\right)+\left(P_{x}^{3}\right)\left(3 P_{z-2}^{3}\right)\left(T_{3, y}^{2}\right)\left(T_{3, x+1}\right)\left(T_{3, z-2}\right)$
4) Each of the following is congruent to zero modulo 4
(i)

$$
7\left(3 P_{x-2}^{3}\right)^{2}\left(T_{3, y+1}^{2}\right)\left(T_{3, z}^{2}\right)-3\left(3 P_{y}^{3}\right)^{2}\left(T_{3, x-2}^{2}\right)\left(T_{3, z}^{2}\right)-\left(P_{z}^{5}\right)^{2}\left(T_{3, x-2}^{2}\right)\left(T_{3, y+1}^{2}\right)
$$

$$
\begin{equation*}
-\left(P_{z}^{5}\right)\left(3 P_{y}^{3}\right)\left(T_{3, x-2}^{2}\right)\left(T_{3, y+1}\right)\left(T_{3, z}\right)+\left(P_{z}^{5}\right)\left(3 P_{x-2}^{3}\right)\left(T_{3, y+1}^{2}\right)\left(T_{3, x-2}\right)\left(T_{3, z}\right) \tag{ii}
\end{equation*}
$$

$7\left(P_{x}^{5}\right)^{2}\left(T_{3, y-2}^{2}\right)\left(T_{3, z-1}^{2}\right)-3\left(3 P_{y-2}^{3}\right)^{2}\left(T_{3, x}^{2}\right)\left(T_{3, z+1}^{2}\right)-\left(3 P_{z}^{3}\right)^{2}\left(T_{3, x}^{2}\right)\left(T_{3, y-2}^{2}\right)$

$$
-\left(3 P_{z}^{3}\right)\left(P_{y-2}^{3}\right)\left(T_{3, x}^{2}\right)\left(T_{3, y-2}\right)\left(T_{3, z+1}\right)+\left(3 P_{z}^{3}\right)\left(P_{x}^{5}\right)\left(T_{3, y-2}^{2}\right)\left(T_{3, x}\right)\left(T_{3, z+1}\right)
$$

APPLICATION

Let ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) be any non zero positive integer solution of (1). Let m, n, r, s be any four non-zero positive integers. Choose r and s such that $r>s$ and $r-s=z$. Treat r, s as the generators of the Pythagorean triangle ($\mathrm{X}, \mathrm{Y}, \mathrm{W}$), where $X=2 r s, Y=r^{2}-s^{2}, W=r^{2}+s^{2}$. Then, the relation between the solution of (1), the sides of Pythagorean triangle and special numbers is given by
$\left.(W-X)\left(T_{3, y+1}^{2}\right)\left(T_{3, x}^{2}\right)+\sqrt{W-X}\left(T_{3, x}\right)\left(T_{3, y+1}\right)\left(3 P_{y}^{3}\right) T_{3, x}-\left(P_{x}^{5}\right) T_{3, y+1}\right]$
$=7\left(P_{x}^{5}\right)^{2}\left(T_{3, y+1}^{2}\right)-27\left(P_{y}^{3}\right)^{2}\left(T_{3, x}^{2}\right)-4\left(T_{3, y+1}\right)\left(T_{3, x}\right)$
In addition to the above solution pattern, we have three more patterns which are presented below:

Pattern:I

$$
\begin{aligned}
24 \mathrm{x}_{\mathrm{n}} & =12 \mathrm{f}+3 \sqrt{6} \mathrm{~g} \\
24 \mathrm{y}_{\mathrm{n}} & =12 \mathrm{f}-7 \sqrt{6} \mathrm{~g} \\
24 \mathrm{z}_{\mathrm{n}} & =-2 \sqrt{6} \mathrm{~g}
\end{aligned}
$$

Pattern:II

$$
\begin{aligned}
& 24 x_{n}=12 F-3 \sqrt{6} G \\
& 24 y_{n}=12 F-7 \sqrt{6} G \\
& 24 z_{n}=2 \sqrt{6} G
\end{aligned}
$$

Where $\quad F=(9+4 \sqrt{5})^{n+1}+(9-4 \sqrt{5})^{n+1}$

$$
G=(9+4 \sqrt{5})^{n+1}-(9-4 \sqrt{5})^{n+1}
$$

Pattern:III

$$
\begin{aligned}
& 24 x_{n}=12 \mathrm{~F}+3 \sqrt{6} G \\
& 24 \mathrm{y}_{\mathrm{n}}=12 \mathrm{~F}+7 \sqrt{6} \mathrm{G} \\
& 24 \mathrm{z}_{\mathrm{n}}=-2 \sqrt{6} \mathrm{G}
\end{aligned}
$$

CONCLUSION

To conclude one may search for other pattern of solutions and their corresponding properties.

REFERENCES

[1] L.E.Dickson, History of Theory of Numbers, Vol.2, Chelsea Publishing Company, New York (1952).
[2] L.J.M Ordell, Diophantine equations, Academic Press, New York (1969).
[3] M.A.Gopalan, V.Pondichevi, Integral solution of ternary quadratic equation $\mathrm{z}(\mathrm{x}+\mathrm{y})=4 \mathrm{xy}$, Actociencia Indica, Vol. XXXIVM, No.3,1353, (2008).
[4] M.A. Gopalan, J.Kaliga Rani, Observation on the Diophantine equation $y^{2}=D x^{2}+z^{2}$, Impact J.sci tech; $\operatorname{Vol}(2)$, No.2, 91-95, 2008.
[5] M.A.Gopalan, V.Pondichevi, On ternary quadratic equation $x^{2}+y^{2}=$ $z^{2}+1$, Impact J.sci tech; $\operatorname{Vol}(2)$, No.2, 55-58, 2008.
[6] M.A. Gopalan, Manju somanath, N.Vanitha, Integral solutions of ternary quadratic diaphantine equation $\mathrm{x}^{2}+\mathrm{y}^{2}=\left(\mathrm{k}^{2}+1\right)^{\mathrm{n}} \mathrm{z}^{2}$ Impact J.sci Tech; Vol2(4), 175-178, 2008.
[7] M.A. Gopalan, Manju somanath, Integral solution of ternary quadratic diaphantine equation $\mathrm{xy}+\mathrm{yz}=\mathrm{zx}$, Actociencia Indica, Math, 5(1) (2008), 1-5.
[8] M.A. Gopalan and A. Gnanam, Pythagorean triangles and special polygonal numbers, International Journal of Mathematical Science, Vol.(9), No.1-2,211-215, Jan-Jun2010.
[9] M.A.Gopalan and A. Vijayasankar, Observations on a Pythagorean problem, Acta Ciencia Indica, Vol.XXXVIM, No.4, 517-520, 2010.
[10] M.A. Gopalan and V.Pandichelvi, , Integral solutions of ternary quadratic equation $z(x-y)=4 x y$, Impact J.sci Tech; $\operatorname{Vol}(5)$, No.1, 0106,2011.
[11] M.A. Gopalan and J.Kaliga Rani, On ternary quadratic equation $x^{2}+y^{2}$ $=\mathrm{z}^{2}+8$, Impact J.sci Tech; Vol(5),No.1, 39-43, 2011.
[12] M.A.Gopalan and D.Geetha, Lattice points on the hyperbolid of two sheets
$x^{2}-6 x y+y^{2}+6 x-2 y+5=z^{2}+4$, Impact J.sci Tech; $\operatorname{Vol}(4)$, No.1,2332,2010.
[13] M.A. Gopalan, S.Vidhyalakshmi and A.Kavitha, Integral points on the homogeneous cone $Z^{2}=2 x^{2}-7 y^{2}$, Diophantus J.Math., 1(2), 127-136, 2012.
[14] M.A.Gopalan, S.Vidhyalakshmi and T.R.Usharani, Integral points on the Non-homogeneous cone $2 z^{2}+4 x y+8 x-4 z+2=0$, Globel journal of Mathematics and Mathematical sciences, $\operatorname{Vol}(2)$, No.1, 61-67,2012.
[15] M.A.Gopalan, S.Vidhyalakshmi and G.Sumathi, Lattice points on the hyperboloid of one sheets $4 z^{2}=2 x^{2}+3 y^{2}-4$, Diophantus J.Math.1(2),109-115,2012.
[16] M.A.Gopalan, S.Vidhyalakshmi K.Lakshmi, Integral points on the hyperboloid of two sheets $3 y^{2}=7 x^{2}-z^{2}+21$, Diophantus J.Math.1(2),99107,2012.
[17] M.A.Gopalan, S.Vidhyalakshmi and G.Sumathi, Lattice points on the Elliptic paraboloid $9 \mathrm{x}^{2}+4 \mathrm{x}^{2}=\mathrm{z}$ Advances in theoretical and Applied Mathematics, vol(7), No.4, 379-385, 2012.
[18] M.A.Gopalan, V.Geetha, Lattice points on the homogeneous cone $\mathrm{z}^{2}=4 \mathrm{x}^{2}+10 \mathrm{y}^{2}$, Indian journal of science, $\operatorname{vol}(1), \mathrm{N} 0.2,89-91,2012$.

