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Abstract —A study on a method for the establishment of a phase space representation of quantum theory is presented. The approach
utilizes the properties of Gaussian distribution, the properties of Hermite polynomials, Fourier analysis and the current formulation of
quantum mechanics which is based on the use of Hilbert space and linear operators theory. Phase space representation of quantum states
and wave functions in phase space are introduced using properties of a set of functions called harmonic Gaussian functions. Then, new
operators called dispersion operators are defined and identified as the operators which admit as eigenstates the basis states of the phase
space representation. Generalization of the approach for multidimensional cases is shown. Examples of applications are given.
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. INTRODUCTION

According to the uncertainty relation, it is well known that in
general the exact values of coordinate and momentum of a
particle cannot be measured and known simultaneoudly. Let
us consider a particle which move along a one dimensional
axis: let x be his coordinate and p his momentum. Let |y} be
the quantum vector state of the particle and let 3 and i be
its wave functions respectively in coordinate and momentum
representations [1]. We have
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Let X and P be the mean vaues of x and p
. .. daj(p) .
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The standard deviations &4x and & respectively of x
and p are
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Using properties of Fourier transform and Cauchy-Schwarz
inequality, it may be shown that we have the inequality

il
Axrip = El (1.8)

The inequality (1.8) is the uncertainty relation. Because of
this uncertainty relation, it seems not easy to talk about phase
space in quantum mechanics. However, some authors has
aready study the possibility of formulating quantum theory
in phase space. A well known approach is based on the use of
Wigner function [2],[3],[4],[5] instead of the wave function.
This approach permits to obtain interesting results [6],[7],[8]
but the physical interpretation of the Wigner function is not
easy because it isnot a positive definite distribution [9] ,[10].
In this work, we adopt another approach to tackle the
problem of formulation of quantum theory in phase space.
We utilize properties of a set of functions called harmonic
Gaussian functions. Phase space states are introduced to build
a basis in state space which permits to define the phase space
representation. And wave functions in phase space are
defined as wave functions corresponding to this
representation. Then, it is shown that positive definite
probability density function may be defined using these phase
space wave functions. Important insights in our approach are
the introduction of new operators called dispersion operators.
Our approach may be applied to nonrelativstic or relativistic
Cases.

Statistic-probability theory and linear algebra are both used.
So to avoid confusion with the use of the same words
“variance” and “covariance” in statistical meaning and in
linear algebra meaning (covariance of a tensor), we will use
the word “dispersion” and “codispersion” to designate
statistical variance and covariance.

26


https://www.mnkpublication.com/journal/ijlrst/index.php
mailto:tokhiniaina@gmail.com
mailto:raoelinasp@gmail.com,
mailto:raoelinasp@yahoo.fr,
mailto:instn@moov.mg
mailto:infotsara@gmail.com,
mailto:mailrivo@gmail.com
mailto:r_raboanary@yahoo.fr

International Journal of Latest Research in Science and Technology.

[I. HARMONIC GAUSSIAN FUNCTIONS

For postive integers n, let us consider the set of
orthonormalized functions defined by the relations

Hr- (.r.'_—z.] i
hal A X=X Px
@y (x. X, P, Ax) S S r"ﬁx' B

A 2mn! A Zrix
f(p;(;r,X,P,,ﬂx](mer,X,P.ﬂx]d.r = fym (2.2

H,,(u) is Hermite polynomial of degree n. We may establish

J‘x O lx X P A Ydx = X (2.3

J‘{x - XV, (. X PAx)Pdx = (2n + 10827 (24)

According to the relations (2.3) and (2.4), .{ is the coordinate
mean value and {Ax,’F = {2n &+ 13(Ax)% the coordinate
dispersion corresponding to g2, . For further utilization, we
call the coordinate dispersion {Axy)* = (Ax)* corresponding
to ¢ the “ground coordinate dispersion”{=n = ). Asin our
work [11], we call ¢, aharmonic Gaussian function.
According to the relation (2.2), a function ., may be
considered as a wave function in coordinate representation,
the corresponding wave function ¢, in momentum
representation is

@, (p. X, P, Ap) = ,_I-pi,.{x X.PAx)e” l’ dx

.l.'n!-l

P
O"HE=D) o o
- VAp -Gm) s o
—:'_9 ness ) ':—-5:]
[2n 0! 2xAp
inwhich
i i ,
ﬁp—m w‘:.’h."l.r"l.;"r—E (2.6)

Asfor the case of the functions ¢2,,, we have the following
properties for ¢,

f P X P.APG X P.0p)dp =6pm (2]

jphﬁﬂ':p,X,P,ﬂp:] *dp=P (2.8)

f{,«: — P, (p. X, F.Ap) Pdy = (2n + D (Ap}* (2.9)

According to the relation (2.8) and (2.9), P is the momentum
mean value and {4p,)" — (2n + 13{4p)”" the momentum
dispersion corresponding to the function gi,.For further
utilization, we designate the momentum dispersion
(Apg)* = (Ap)? corresponding to ¢ the “ground momentum
dispersion”.

Because of the relation {2 &}, it is sufficient to use only one
of the parameters 4Ax or Ap. So from now on we will use Ap
in al expressions. For instance, we will utilize the notation
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@, (x, X, P, Ap) instead of g, (x, X, P,Ax) for the functions
P

The set of functions {e,,} and {¢,,} are orthonormal basisin
the vector space £* of Lebesgue square integrable functions.
Let 3 and 3 two wave functions, corresponding to a state
lwd, respectively in  coordinate and  momentum
representations. The functions 1,3 are elements of £*. We
have the expansions respectively inthebasis {g,1 and {¢i,}:

b = (xly) = ) W (1.P.0p) @, (x. X.P.0p)  (2.10)
ip) ={,"".nh,ﬂa'}:Z‘P“{X,P,ﬂp:]cﬁﬂ{p,k',?,ﬂp] (211)

Y02, P.0p) = [ 03 (e X.P bRyl dix .12)
= f(ﬁé {(p.X.P.Ap)yj(p) dp {2.13)

From the relations (2.10), (2.11) and the orhonormality of the
basis {w,1and {g,1, we may deduce the relations

flv,t(x] 2 dx = J‘hE':p] " dp = Z (P ap) P (214)

We may show, that between the functions .3 and ¥'™*, we
have also the relations

) ——fw"{k P, Ap) p,(x, X, P, Ap)dXdP (2.15)

Plp) =— f Wz, P, Ap) @, (p. X.P, Ap)dXdP (2.16)

I11. PHASE SPACE REPRESENTATION

I11.1- Phase space states and phase space representation
According to the results obtained in the section I, the
functions ¢, (x.X.P.Ap) and &, (p.X.P.Ap) may be
considered as wave functions respectively in coordinate and

momentum representations. If we denote |n.x.F.ap! the
state which corresponds to these wave functions, we have

tpr{x;)f,f",ip:] = {.r|:l1,X,P,.ﬂp} (3.1)
@, (p. X, P.Ap) = {pln X, P, Ap) (3.2)

According to the relations (2.3),(2.4), (2.8, (2.9), the state
In, i, P,Ap) is a state characterized by

o the coordinate mean value X

o the momentum mean value P

o the coordinate dispersion {4x,)* — (2a + 1)(Ax)?

¢ the momentum dispersion (4p, )% = (2n +1)(4p)*
astate In, X, P,Ap} may be then considered as a state in phase

spacei.e. aphase space state if we define the quantum phase
spaceasthe set P = {(n, X.F, Ap) ).

From the relations (2.107 we may deduce the relations
lp) = Zw"{x P.AP) |n,X, P, Ap) (3.3)

WX, P Ap) = X P Aply) (3.4)
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From therel ations (2.15), we may also establish the relation

Iy = J In, X.P.op){n, X.P, aply) dXdP  (3.5)

According to the relations (3.3} and ( 3.3}, we can deduce
that the set {In, X, 2, Ap}} is a basis in the state space. This
basis can be used to define the phase space representation.
According to the relation (3.4}, a function
wh(¥, Pap) = (n X, P.owlyp) is a wave function
corresponding to a state |y} in this representation. The results
shown in the next paragraph give more justification to this
assumption.

According to the relations (3.3 and ( 3.31, the phase space
representation that we have defined has a particularity: the
expansion of a state Iy} in the basis {ln. X, P, 2p}} may be
obtained by making a summation over the index =
(relation(3.3]) or by making an integration on the coordinate-
momentum  plane {{X,P)} (relation( 3.3)).The  first
expansion needs the knowledge of the values of all the
functions W™ (X, P, ap) at a point (X P} for a given value of
Ap. The second one needs the knowledge of the expression of
one function W™ (X, F, &p) for given values of n and &p.

I11.2- Wave functionsin the phase space representation

A function WwWh(X. P apl ={nX P aply) may be
considered as a phase space wave function corresponding to a
state li}. In this section, we make more justification to  this
assumption. Let o™, F* and G* bethe functions

prx, P, ap) =L @36)
F'x, ap) = f_a“{X,P, Ap) dP (3.7)
G"(P. ap) = f_a“{X,P,ap]dk' (3.8)

Using the relations {2.127. {2.137 and properties of the
functions ¢, and ¢j,,, we may prove the relations

Fr (X, Ap) = f |0, (e, X, 2, Ap) Pl () 17 dx

r!(xv:;}{]: x}”‘

\n’;ﬂ.x- IT_‘L‘K"
= [ —Eax W) %dx (3.9
jE“ﬂh‘E.’mx ¥ (39)

6" (P, Ap) = [ 6,03, P )G @) dp (310)

—z=

H (.r—X)“ 2
n *\-"Eﬂ}’_? -P

A5
= — Zae! |G ()| Tap (3.11
J‘ 2Mnlyindp e | P )

f_a“(X.P,adexczP = J FMX.Ap)dX = fl;e:iﬂ |2dx

- J G (P, Ap)dP = J i) ap =1 (3.12)

The anaysis of these relations suggest the following
interpretations
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. The
function F™ is a representation of the probability density
corresponding to the coordinate X for a given value of the
ground momentum dispersion {4p)*.

. The
function ™ is a representation of probability density
corresponding to the momentum F for a given value of the
ground momentum dispersion {Ag) .

. The
function 2" is a representation of the probability density on
the coordinate-impulsion plane {(¥. F)} for a given value of
the momentum ground dispersion (4z)°.

According to the relation (2.14], for a given values of X,P
and Ap, 1W*(X,P,Ap)|* may be aso interpreted as the
probability to find in a state |n. X, P.Ap} aparticlewhichisin
the state k). These interpretations give more justification on
the consideration of the functions W™ (X, P, Ap. as the wave
functions in phase space representation.

I11.3-Remarkable properties of phase space states and
phase space wave functions

Property 1: Scalar product of two phase space states

Let {ln. X, 7, apit and {ln", X", P, 4p)} two basis in the state
space. From the relation (3.3, we may deduce the expression
of the expansion of a state vector |n', P, X", Ap} in the basis
fln.x, P, aph}

In", X', P, Ap) = Zcp (XX PP, Ap)In, X, Ax, P)
e (XX, PP Ap) = X, P Apln". X", P Ap)  (313)

e (X, X', PP, Ap) isthe wave function corresponding to
the state [n", X', P', Ap} in phase space representation. Let us
look for the expression of this wave function

& (X X' PP .Ap) = (n, X.P.Apln'. X' P, Ap)
= J gn X P Aplgy (x, X', P', Ap) dx
= J @np. X P, Ap) G (p. X' .P'. Ap) cp (214)

To perform the calculation of thisintegral, we have to use the
following property of Hermite polynomials

J‘Hﬂ{u +a Holu+ ble~% du

min (mn'}

n! ﬂr. 7i'+i" =i ae o'
= E a)" " Tm
& it DA

Wefind

®M(X, X', PP, Ap)

. 2 20 v
x-x' - rEex’ ;
T-‘I + ho J -l -5 Jf;—;‘,'

—':'[I
=R%(2)e 1T F e A (3.15)
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inwhich
1¥-x PP

i )
242Ax *-.-"Eil.'p

and R™(Z) isthe complex polynomial
T

min (nn']
o _ -"—W( 1-i(zem-i (Z:]r' -f
Ry(Z) = ; Jnlnt2 10— )10 !

From the relation (3.13),we may deduce the relations
(n. X, P.Aplm. X', P', Ap) = (m. X', P', Ap|n. X, P. Ap)*

= &™N(X, X ,F P, Ap) = [&F (¥, X,P',P,Ap)]" (3.16)

The functions &7 (¥,X',P, P', Ap) may be used to perform a
basis change between {|n, X, P, ap)} and {ln". X', P', Ap)].

Property 2: Relations between two values at two points of
two phase space wave functions

Let I} be astate, according to the relation (2.3}, we can
expand |y} inthe basis {ln. X, 7, Ap}} or inthe basis

{In" x", P apil.

i) = E In. X, F. Ap) {n, X, P, Aplip)

1

—Zln XLF L Apyin', XL P, aply)

(n. X, P.Aply) = W™ (X, P, Ap)

(n', X, P, Aply) = 7 (7', P, Ap)

Then, taking into account the relation [3.13}, we may deduce
therelation

WX, P, Ap) = F &% (7, X' PP, Ap) W (¥, P, Ap)
i,!l'

V. DISPERSION OPERATORS

For given values of the coordinate mean X, the momentum

mean F and the momentum ground dispersion &g, The state

In, X, P.Ap), used for the definition of the phase space

representation is a state characterized by the knowledge of

e the coordinate dispersion (Ax,)* = (2n + 1){Ax)*

e the momentum dispersion (Ap,)* = (Zn + 1)(4p)*

It follows that a state In. ¥. P.Ap} may be considered as an

eigenstate of

¢ coordinate dispersion operator E,with eigenvalue equal to
(Bx,)* = (2n + 1)(4x)*

e momentum dispersion operator E with eigenvalue equal

to (8p,)* = (2n + 1)(Ap)°
E In X.P.Ap) = (2n + 1)(Ax) % |n. X, P, Ap) (+1)
Ypln X.P, 0p) = (2Zn + 1)(0p) |0 X, P, Ap) (+2)
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We may obtain the expresson of these operators in
coordinate representation by using properties of Harmonic
Gaussian functions. In fact, because of the relation (3.1}, in
this representation we may write

Lo, n X P.Ap) = (2n + 1)(Ax) g, (n. X.P. Ap) (4.3)
L0, (X, P Ap) = (2n + 1)(ApP e, (n, X, P, Ap) (4.4)

Using directly the expressions (2.1) of Harmonic Gaussian
functions, we can verify that in coordinate representation, the
exact expressons of the operators E, and £ which satisfy
exactly the relations (4.3) and (4.4) are

Y P - {Ax)* d )
Iy =7 [(x £ {.i-. E (- —F) ] [4.5)
(Ap) a z]
[m] Ge— X% + (- .h P) {(4.6)
{Ax)?and (Ap)* are respectively the ground coordinate

dispersion and ground momentum dispersion. They are
related by the relation (2.6). £, and E,,, arerelated:

[ "I.'V;I Rl a(Ap)d
TR T IR T M (+7)
The relations (4.5) and (4.6) suggest that if we denote
xandpthe operators associated respectively to the
coordinate and momentum in the current formulation of
quantum mechanics, we have in general (in any
representation) the relation:

@ [E=—X¢  @-P) -
y = 5 [{ﬂx:]: + ':ﬂj‘i?:]: (4.8)
@) [(x—%)* (- P)®
5= [{.ﬂx]: * mpj=] (%2)

To find a particular expression in a given representation, we
have to replace the operators x and p by their expression in
the considered representation. For instance, to have the
expressions in coordinate representation, we have to replace
intherelations (4.8} and (4.9) x and p by

X =x p=—ifi

i (4.10)

And to obtain the expressions in momentum representation,
we have to perform the replacement

d
=ih— = 411
x dp p=p (+11)
With the mean and dispersion operators, we may also define
mean quadratic operators xZand p2

=X +E, (412)
p*=P*+%, (4.13)
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And we have the eigenval ue equations

xn, X, P, Ap) = [X* 4 (2n + 1)(0x)*]In, X, P, Ap) (4.14)

pEln X P, ap) = [F* + (Zn + DQp)*lIn X, P, Ap) (4.15)

V. MULTIDIMENSIONAL GENERALIZATION

We can generalize the results obtain in the previous sections
to the cases of higher dimension than one. We study the case
of uncorrelated and correlated variables one after the others.
Calculation related to linear algebra are based on formulation
givenin[12].

V.1- Case of uncorrelated variables

Let us consider a quantum system which may be described

with a position vector : belonging to a & —dimensional
vector space Ey, 7 = x'3, (1= 12,.. N). {§}isabasisin
the space E,;. We introduce the momentum associated to x as
acovector on & that we denote 7, = g2’ inwhich iz} is
the cobasis of the basis {£;} i.e. {'} is the basis in the dual
Ey of Ey verifying &'(&) = 8! [12]. Let |5} and |5} be the
basis sates for the coordinaste and momentum
representations. Any state lw} of the system may be
expanded in the basis {1} and {|5)}

w= | If}{flw}d”x: [B6was G

Elyp) = y(@) = (p)e" B d¥p (5.2
Y = ylx {wnh} J‘?.LFE (5.2)
Ehy) = lp) = R h]v

¥ and 1 are respectively the wave functions in coordinate
and momentum representations. The variables are
uncorrelated if we have the relations.

prx
J#'i‘ila THavs (5.3

N
D= @ |+ = lxti@lx?) _@x") (54)
;‘;il
l5h = @lﬁ}—lm}@lp} Blpy ) (5.5)
=L h
@hﬂ}— hpty@hy?) .. @l ) (5.6)

N
w@ = [ [0 = ewi ) 6 57)
I=1

N
36 =] |90 =91009°6) 6 G8)
I=1

Pl = Gellpl) §lGn) = (mle) GO

|x%} is a one dimensional coordinate state and lz;! is one
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dimensiona  momentum state. ywlandy' are the wave
functions corresponding to the variablesx! and g
respectively in coordinate and momentum representations.

We may introduce the phase space state Inl ¥'. 2. Apm)
corresponding to the variable x! and phase space wave

functions ¥* such as

(x'In", X', B Apy) = pu(x". X' B Apy) {(5.10)

{ppln X R LA ) — G (e XL R Ap) {3.11)

Wl B A) = (plInd X8 Ay
=J‘@;i{xf,xi,g,apju:f{,rfjdxf
= f goilp XU B Ap ) i (i ddpy

{14 {x‘]—Z‘-I-”' (xR, Ap e (L XL P Ap)

7?1'.’1 J‘ v

We may define the state

P ap) e (xL X P, Ap )d X dF,

In, £, B.10p]) = ® Inl, X', PLAp) (5.12)

Fi@)=

We have for the wave functions

w
wr( 7,5, [ag]) = (yln £ 5. [ap]) = | [ w0 B ap)
I=1

N
= H J‘ Ip;E{xLJXLJEJﬂﬁ]tIE:L{xL:]de
=1
= f oV (22 B Iapl)w(DdV  (313)

N
w(@ = HZ W' (¢, B, Ap) @ 1 (xL XL B Apy)

=1 nt

= Z w7, B [ap]) ¥ (7 . F, [ap]) (5.14)

]

N
:Hﬁd g UL' P ;':'IH_J(P?,E i _.PL_,_.':I.]V_}I_JdX dﬁl]

=1

= h]vJ‘w"{x P.[ap]) o (2 2. E [ap])d" XdV P (5.15)
In these relations, n is the N-
uplet n = (nt,...n"} € HY . The summation in (5.14) is to
be peformed for al possible values of I-uplet n.
F=xg, P=ps. [apl is _the diagonal  matrix
[4p] = Diag(Ap,.....Apy). @Y is the function
oM 2. P [ap]) = (F|n. £ B.[2p])

n
oY (.2, P.[ap]) = H 0 GLELRL Ap)  (5.16)
w=1
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We may call ¢ an uncorrelated multidimensional harmonic
Gaussian functions. We may introduce the matrix
[Ax] = Diag(axt, ... ax™)
D: ( kR h il ]
T\ oAy, 24 20

Then with the notations

=§[.ﬂp]'1 {(5.17)

[nl =nt + 0%+ en? n! =n*! nl..n"!

the expression of @} takesthe form

"I +Lr'l
o2 % b)) = T or1)e (5.18)

_\JE'“'ﬂ! (V2m)Vdet [Ax]

From the properties (2.2), (2.3) and (2.4) of the one
dimensional harmonic function, we may deduce for the &

f o (Z X.P. 10p]) oR(2 X P (8p))dVs = 6 (5.19)
[xf lp?(2 2.5 [ap))| ¥ x = ¥ (5.20)

[ = x0xt -3y lo2 (22,5, 10w
= (2n' + 1)(axhH26Y (5.21"

From the relations (2.7), (2.8) and (2.9), we may establish
anal ogous properties for the functions

qr'l':'r{_fs % 13 [.'!l.p]} = -!ﬁ |'J‘L X 13 [.-!l.p]}
Then we cal X = X'&; the position mean vector and the
diagonal matrix
[Ax], = Diag[(@n* + 1Ax?, .., @n" + 1)AxY)]
the coordinate dispersion matrix corresponding to ¢Z. We

call the dispersion matrix [4x]g corresponding to ¢, i.e. for
n = (0,0, ...07, the ground position dispersion matrix.

We cal P = 58! the momentum mean covector and the
matrix

[Apl, = Diag[(2n* + 14p,, ... @n™ + Dapy,]
the momentum dispersion matrix corresponding to ¢;. We

call the momentum dispersion matrix [4z], corresponding to
@Y the ground momentum dispersion matrix.

From the result obtained for one dimensional case in the
section 4, we may deduce that for uncorrelated variables x!,
coordinates and momentum dispersion operators may be
associated to each doublet (x! 7. According to the relations
(4.8) and (4.9), if we denote x*and p; the operators associated
respectively to x{ and g in current formulation of quantum
mechanics, we may associate to them the dispersion operators

£l and £ such as

| SSN:2278-5299

N N H
. 5 x =X
det [Ax] = | |ax!  H(ZX.[8p]) = Hpt =)
I=1 I=1 Ve

N
X
G ,i-..;] i _Z{ Yo,

=1

I.

Bi— Exl—Pxly o+ B Y

(AxD)?[(x — X" ':FE_PE:]Z]
m_
I = 5 [ e + ap)? (2.22)
] 'f-ﬁ'-ﬁ]: 'i-'tl—}fl]z ':FE_*FE:]Z
P _ A
eF = 5 [ Py + TTSE {5.23)

The eigenstates of these operators are the states in the
relations (5.12), the eigenvalue equations are

“|ﬂ,X 3 [4p]) = Cn! + D(8xD?|n, %, 3 [ap])
EP|n P, [Ap]) = @n' + 10(p )% |0, 2P, [2p]))

we may a so define quadratic mean operators
{xt]z = {Xi:]z + E%E {524.:]
) = (R +£F (5.25)

V.2 Case of correlated variables

To study correlated variables, we introduce a more general
definition of multidimensional harmonic Gaussian functions
with correlated variables. To obtain correlated variables, we
consider a linear transformation in the space E,; which mix
the uncorrelated variables x*. Let & be alinear transformation
in the space E,; and let AJF- be its matrix elements in the basis
{&;1. We introduce a new position vector 7 = y'&, with its
mean ¥ =V¥'4. and the correspondent momentum
covector k = k; &' with itsmean K = K;&' by the relation

[

¥y = ﬂ_ii-.r-i' i = LEJIJ_.'E
¥i=alxs ¥ =yt
i . (5.26)
k=1 py B = Ak
K{ = 1’?’ .F; .FJ = I']_il'f‘fi

In the relation (3.26), we have introduced the inverse
V =A"tof Aand 1 arethe elements of the matrix V.
We have

=Kyl = ARV 29 =Pslxt = Pxl =BF (527)

N Lo Fo

¢
kT — X VIV
E{ 2 _Z{m ST

=1

L — P o A

Y&y = - Gy — KD (i —
r=1

yO(y/ - ¥i) (3.28)

K;) (5.29)
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Let us introduce the two order contravariant tensor
A= @eand a two order covariant tensor
B =B, @e suchas

N
4 AL £l
A AL

Al = C = AL axTex” 5.30
r=1 (285, )2 o ( )
% hzﬁrw o -
By = (2857 =WV apAp, 2.31)
=L :

There is a summation over the index r in the last term of
If we choose the linear transformation A such as
(deti)* = 1. We may establish from the relation (5.32)

detlAx] =+ detd det[Ap] = +detE (2.34"

Introducing the expressions of 4% and B; in the relations
(5.28) and (5.29), we may deduce

LT _X . By
Z{I —) =h—‘;{yl YOy —¥)  (5.39)

r=L

N 0
-R AV
Z&ﬂ—pj =S l-K)(-K) (36

As the tensors B and - are by definitions bilinear forms
respectively on E, and on Ej; [12], we may write the relations
(5.35) and (5.36) in more condensed forms

il =X 1 . R
DG =B -NG-7) (5.37)
r=L

S r _R’ 7 1 L T

;(;Tj* :Fd{k—f{}{k -K) (53.38)

If we define the functions #, (¥.¥.B) = H, (£, [ap]), we
can deduce from the expression (5.18) of 4 the definition of
the wave functions ¥ associated to the correlated variables
¥* in coordinate representation

VYV KB)=o) XX P [Ap])

7. (7, E,B}a-t—lzzf_f-?}(_f-?}w?'-

(5.39]

R
dat

I
ﬂ' 20 n! (V2 ¥ detoA
By analogy, we may define the wave function in momentum
representation #¥(#.¥.K.B) = ¢¥(5.%. B, [Ap]). Then
We may introduce the phase space state |n, ¥, &, B} such as

1¥FVEB) = (§ln7.K B) (5.40)
(T E.B) = {kln.7.5.B) (541)

The relation (5.40) and (5.41) may be used to describe basis
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these egualities. The inverses of the relations (5.30) and
(5.31) are

(Ax"P =VIVIAY  (Ap)? = ALABy, {(3.32)

We may also establish the relations

R
deteA = —— (5.33)

: R
ATB, ;= —§!
"] j 4det3

4

change from the basisil¥)} and {ki}to the basis
t|n.¥, K, B)). This basis change corresponds to the change

from coordinate and momentum representations to the phase
space representation and then defines this latest one.

Using the relations (5.26), we may find the expressions of
dispersion operators for the case of correlated variables !

=z sE=ywrl Ga

Using the relations (5.17), (5.30) and (5.31), we may
establish

£V = 2 (-G — v

¥o2- -

2

+.ﬁ:

AT ANk, — Kk, —K,) (5.43)

-1
ok = 5y - K)(k; - K;)
2

+.ﬁ:

By Bigy" — ¥ )y? —¥9) (5.44)

We have the eigenvalues equations
nN

I/ nV.EE = [Z{Af.ﬂf.} (2n" + 11](ax" |0 V. K. B)
r=1

N
sEn 788 = ) ilen + DGy l|n 7.k B)
p=1

the states |n, ¥, If, T} are eigenstates of the operators E;*’ and
EE respectively with the eigenval ues.

N
A=Y @ DUAGDT G
r=1
o
B = ) (207 + D] (B (5:46)
r=1

For the case n =(0,0...0}, by taking into account the
relation (5.38) and (5.39), we may obtained

N
Al = Z AL (ax™P = Al (3.47)

r=1
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Bﬂ-—vmﬂ"{apr] =By (5.43)

1j
= 1

VI. EXAMPLE OF APPLICATION IN NON
RELATIVISTIC QUANTUM MECHANICS

In nonrelativistic mechanics, the classical expression of the

energy of a“free particle” with mass m may be written as

B @) (@) + @)
E= m 2m 6.1)

2

in which # = g 2" is the momentum covector. If we denote
% =x'2 (I = 1,2.3) the position vector of the particle in the
three dimensional Euclidian space and t the time, the
elementary eguation of motion of the particleis

1) = %r £ x'(0) (6.2)

If we consider quantum mechanics, the wave function of the
free particle, of momentum and energy E = (3)%/s,
respectively in coordinate and momentum representation are
considered as the functions.

1 pa
Y () :We“ R (6.3a)
v =69F - 5) (6.3b)

But these functions don‘t fulfill the normalization relation
JI:,H.ETJI’@‘;-JI:,L(,:’]I dip' —1 (6.4)

We remark that this difficulty is a consequence of the fact
that the limit Ap;, — 0 isintrinsically assumed. This difficulty
may be resolved by introducing our approach in which this
limit is not assumed even for a “free particle”.

For the application of our approach, we suppose that the
variables are uncorrelated and we assume the following
hypothesis

Hypothesis 1

The means values X' and F associated to each variables x!
and g are identified to the “classical values” of these
quantities. So we have a “mean trajectory” of the particle
defined by the equation

. I :
X=X = t+X(0) (6.5)

Hypothesis 2
To the square of the momentum is associated the quadratic

mean operator Fﬁ .

PL=(p)7+ (p2) + (aF (6.6)

in which the expression of a quadratic mean operator {p;}*
may be deduced from the general expression (5.33)

Po? = (F)? 1 ED (6.7)
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The expression of the momentum dispersion operator EH may
be deduced from the general expression (5.29)

I G S i ok
B2 (axt)2 * ap)?
the operators x' and p; is the operator associated to the

quantities x’ and g; in ordinary quantum mechanics. We have
for instance in coordinate representation

(6.8)

.7’1Ia 6.9
o= lﬂx‘ (6.9)

Hypothesis3

There is an Hamiltonian operator H which admit as
eigenvalues the values of the energy F. The expression of the
Hamiltonian H may be deduced from the classical expression
of the energy by replacing £ by the quadratic mean operator
;_ﬁ According to this hypothesis, we have for the free particle
the expression of the Hamiltonian operator

(6.10)

I
|"l:i1]
1
"[VJ"
‘:::
b
-
b2
—

From the relation (6. 10) we may deduce that the eigenstates
Iy of the Hamiltonian are the eigenstates of the momentum
dispersion operators.

®)*

H|n % B [As]) = (5 +—]|n,x B.1ap])

2 V. - D e
=Sm + (in +1J?|‘J’LX,P, [Ap]}

the corresponding eigenvalues which are identified to the
possible values of the energy are

E, =Zﬂ+{ 2n +1Jﬁ (6.11)

I=1

nisthetriplet n = (n,n% n?),. Ay are the elements of the
diagonal matrix [Ap], = Diag[Ap, . Ap;. Ap;] Which isthe
ground momentum dispersion matrix.

According to these results, the eigenstates of the Hamiltonian
operators are the phase space states |y, ) = |n. &, 3 [Ap]
The corresponding wave functions, s, and i, respectively
in coordinate and momentum representations are

(@) = ) = (An 2. P.16p) = 3
= H@.J (xLXVP.Ap) (6.12)
I=1

@1 isaone dimensional harmonic Gaussian function.

Vn®) = Gly,) = (Fln. 2 B.1apl) = p3(5.5. 5, [ap])



International Journal of Latest Research in Science and Technology.

01

G (XL R, Ap) (6.13)

I=1

inwhich

. 1 o .
51 (o XL R, =— txL XL B, .
@t (o XL P Ap) w_mf(pﬂ L XL P Ap ) dx

Unlike the functions in the relations (6.3} and (6.35), the
functions in (612} and (6.13) fulfill the normalization
relation (6.4).

The wave functions in phase space representation are

v (7 2P B ap]) = n" B P L)

According to the hypothesis 1, the particle has a “mean
tragjectory”. The equation of this trajectory is given by the
relation (6.5). The first term in the expression of the energy
which is equa to the classical kinetic energy may be
associated with the “mean motion” corresponding to the
“mean trajectory”. And the second term may be associated to
the “quantum effect” which results from the dispersion of the
values of momentum and coordinates around their mean
values.

These results obtained for the case of a “free particle” may be
generalized: a general system may have a “mean trajectory”
which is a classica trajectory in phase space and quantum
effect appear in the dispersion of the values of coordinates
and momentum around this “mean trajectory”: In our method,
these facts are described by the introduction of the dispersion
operators.

The study about the relation between uncorrelated and
correlated variables that we have considered give a
possibility to include in the anaysis the study of linear
change in the coordinate, for instance a rotation of the
coordinates axis.

VIl. EXAMPLE OF APPLICATION INRELATIVISTIC
QUANTUM THEORY

It is possible to utilize our approach in the case of relativistic

theories. As an example, we show in this section an
application in the establishment of field equation in
relativistic field theory. We consider the case of scalar field.

VI1.1 Recall about the Klein-Gordon equation

We consider the Minkowski space with signature
o =

{(+.—— ). Let [x ] and [z, #]the position four-vector
E

and momentum four-covector. Let x* [1=1,23) and g be
respectively the components of the vector x' and the covector
#. In the theory of special relativity, the relation between the
components of the four-momentum is

pp* =mic? © 3" pp, —mict =0 (7.1}

If we make the replacement », — ihd, inthisrelation we can
deduce the operatorial relation

m: I:':

= =0 (7.2)
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= (n' X", P [4p]|n. X5, [ap])
= Hq::{i{x’i,xf,?i,?f,aﬁ}
i=1

The expression of a function ¢:L can be deduced easily from
therelation (3.15}.

The relation (6.11) shows that the energy of the free particle
is equal to the sum of aclassica kinetic term and a“quantum
term” which is a linear function of the square of the
momentum ground di spersions{ g 1%

From this relation we can deduce the Klein-Gordon equation

(68,8, +—=)p =0 @.3)

In relativistic field theory, the function ¢ wich fulfill this
equation is a scalar field. Now, we expect to obtain a new
equation for scdar field by using our approach. We have to
introduce quadridimensiona harmonic Gaussian functions.

VI1.2 Quadridimensional harmonic Gaussian functions

If we suppose that the components x* {x = 0,1.2,3) of the
four vector position are uncorrelated, we may define,
according to the results in the section V, the uncorrelated
quadridimensional harmonic Gaussian function

PG X TPy Blopl) =| [ @us e X4 B Bp,)

u=0

These functions are eigenfunctions of the dispersion
operators

s 2 [ (Axu)2 + (Ap,)? 7.4

(ihd, - B,)°
(8p,)?

gr _(n) [{x-‘*—x‘*f
i 2 (Axi)?

] (7.5)

Respectively with the eigenvalues (2n* + 13 (Ax%*)* and
(2n* £+ 131 (4w, ). We may introduce correlated variables y#
as components of a new position quadrivector |-, | which
may berelated to |*. | by alinear transformation .4 inthe
Minkowski space, asintherelation 5.2€]

{0 4 e A - (7.6)

¥ is the inverse of 4 : ¥V = A~%. If we choose A such as
(detAr® = 1, then A isaLorentz transformation.
We may define for correlated variables the dispersion-

codispersiontensors .4 = 4*"g, @ &. andE = B,.e* @ &"
such as

NoaZalaw
o il ﬂﬂ Mg
£, (2p, )

= ALAYAxPAx? (7.7
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B,y =

v = m = 1’_:1'5 1’:-:::' App Ap, (7.8
p=L

Then we may define the correlated quadrimensional
harmonic Gaussian functions ¥2 such as

T#l:.'}’n-".r:-' 1’r-'-R-'IB,:I = qg#{xn_,f_,,"{_,_?_, [-I':'l‘.“.?],:' (7.0

These functions are el genfuctions of the dispersion operators

.1
I = bt -G - )

guadratic mean operators which correspond to the
components of the four-momentum covector.

'ﬂcu-]2 =Errfu + lf-jl[,r.l-]: (7,12}

VII.3 Equation for scalar field

Let us consider the relation between the components of the
four-momentum covector

(kp)® = (k)= (k) (k) ? — it e? (v.13)

If we make the replacement (k.. * = (k. )% inthisrelation,
we obtain the operatorial relation

a9 M=lih— K, |lih— K|
+—=B. B (v® —FIy¥ —¥¥ 1 4+ M2 =mie? (7.14)

In which we have introduce a mass quadratic mean operator
m? and the mass mean value M defined by the relation

y" KK, — M (7.107

From the operatorial relation (7147, we may deduce, as in
the case of Klein-Gordon eguation, an equation for scalar
field in the framework of our approach. This equation is

fa*i-lih—-K. llih——K.|
+ =B Bualy® V¥ =¥ — (m? — MH)c* 1 =10

This results show that our approach may be used in
formulation of relativistic field theory. More depth studies on
the physical meaning of the results that we have obtained for
the case of scalar field and extension to the case of spinoria
and vectorial fields may lead to more interesting results.

VIIl. CONCLUSION

The results obtained in section II, Il and IV show that
properties of harmonic Gaussian functions may be used to
introduce phase space representation in quantum mechanics
for the case of one dimensiona motion. According to the
relation (4.1) and (4.2), the basis states introduced for this
representation can be considered as eigenstates of dispersion
operators.
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2 a
+F‘_,.f[.un',;_.-f[,'9{:'h Pl “]{maF_KSJ (7.10)

1 8 o a
I = E{:h P ) (:ﬁ E - f{]
2

+.ﬁ:

B Byg(y® — YOI(3F — ¥F) (7.11)
We may introduce quadratic means operators with the
dispersion operators. We may particularly define the

It was shown in the section V that the results obtained for the
case of one dimension may be generalized to
multidimensional cases.

The examples of application described in the sections VI and
VIl show that our approach may be applied both in
formulation of nonrelativstic and relativistic theory.

Results thus obtained show that our approach may be
considered as a possible method to establish a framework for
formulation of quantum theory in phase space.
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