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Abstract �A study on a method  for the  establishment of a phase space representation of quantum theory is presented. The approach 
utilizes the properties of Gaussian distribution, the properties of Hermite polynomials, Fourier analysis and the current formulation of 
quantum mechanics which is based on the use of Hilbert space and linear operators theory.  Phase space representation of quantum states 
and wave functions in phase space are introduced using properties of a set of functions called harmonic Gaussian functions. Then, new 
operators called dispersion operators are defined and identified as the operators which admit as eigenstates the basis states of the phase 
space representation. Generalization of the approach for multidimensional cases is shown. Examples of applications are given. 
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I. INTRODUCTION 
According to the uncertainty relation, it is well known that in 
general the exact values of coordinate and momentum of a 
particle cannot be measured and known simultaneously. Let 
us consider a particle which move along a one dimensional 
axis: let  be his coordinate and  his momentum. Let  be 
the quantum vector state of the particle and let   and  be 
its wave functions respectively in coordinate and momentum 
representations [1]. We have 
 

 

 

 
 

Let  and be the mean values of  and  
 

 

 
 

The standard deviations  and  respectively of  
and  are  
 

 

 
 
 

 
 
Using properties of Fourier transform and Cauchy-Schwarz 
inequality, it may be shown that we have the inequality  
 

 
 

The inequality (1.8) is the uncertainty relation. Because of 
this uncertainty relation, it seems not easy to talk about phase 
space in quantum mechanics. However, some authors has 
already study the possibility of formulating quantum theory 
in phase space. A well known approach is based on the use of 
Wigner function [2],[3],[4],[5] instead of the wave function. 
This approach permits to obtain interesting results [6],[7],[8] 
but the physical interpretation of the Wigner function is not 
easy because it  is not a positive definite distribution [9] ,[10]. 
 

In this work, we adopt another approach to tackle the 
problem of formulation of quantum theory in phase space.  
We utilize properties of a set of functions called harmonic 
Gaussian functions. Phase space states are introduced to build 
a basis in state space which permits to define the phase space 
representation. And wave functions in phase space are 
defined as wave functions corresponding to this 
representation. Then, it is shown that positive definite 
probability density function may be defined using these phase 
space wave functions. Important insights in our approach are 
the introduction of new operators called dispersion operators. 
Our approach may be applied to nonrelativstic or relativistic 
cases. 
 

Statistic-probability theory and linear algebra are both used. 
So to avoid confusion with the use of the same words 
�variance� and �covariance� in statistical meaning and in 

linear algebra meaning (covariance of a tensor), we will use 
the word �dispersion� and �codispersion� to designate 
statistical variance and covariance.  
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II. HARMONIC GAUSSIAN FUNCTIONS 

For positive integers , let us consider the set of 
orthonormalized functions defined by the relations 
 

 

 
 

is Hermite polynomial of degree . We may establish 
 

 

 
 
According to the relations (2.3) and (2.4),  is the coordinate 
mean value and  the coordinate 
dispersion corresponding to  . For further utilization, we 
call the coordinate dispersion  corresponding 
to  the �ground coordinate dispersion� . As in our 
work [11], we call   a harmonic Gaussian function. 
 

According to the relation (2.2), a function   may be 
considered as a wave function in coordinate representation, 
the corresponding wave function  in momentum 
representation is  
 

 

 
in which 

 
 

As for the case of the functions , we have the following 
properties for  
 

 

 

 
 

According to the relation (2.8) and (2.9),  is the momentum 
mean value and  the momentum 
dispersion corresponding to the function .For further 
utilization, we designate the momentum dispersion 

 corresponding to  the �ground momentum 

dispersion�.  
Because of the relation , it is sufficient to use only one 
of the parameters   or . So from now on we will use  
in all expressions. For instance, we will utilize the notation 

 instead of  for the functions 
.   

The set of functions  and  are orthonormal basis in 
the vector space  of Lebesgue square integrable functions. 
Let  and  two wave functions, corresponding to a state 

, respectively in coordinate and momentum 
representations. The functions  are elements of . We 
have the expansions respectively  in the basis  and : 
 

 

 

 

 
 
From the relations (2.10), (2.11) and the orhonormality of the 
basis  and , we may deduce the relations 
 

 
 

We may show, that between the functions  and , we 
have also the relations 
 

 

 

III.  PHASE SPACE REPRESENTATION 
III.1- Phase space states and phase space representation  

According to the results obtained in the section II, the 
functions   and  may be 
considered as wave functions respectively in coordinate and 
momentum representations. If we denote  the 
state which corresponds to these wave functions, we have 
 

 
 

 

According to the relations , the state 
 is a state characterized by  

 the coordinate mean value  

 the momentum mean value  

 the coordinate dispersion  

 the momentum dispersion  
a state  may be then considered as a state in phase 
space i.e. a phase space state if we define the quantum phase 
space as the set . 
 

From the relations   we may deduce the relations 
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From the relations  we may also establish the relation 
 

 
According to the relations  and , we can deduce 
that the set  is a basis in the state space. This 
basis can be used to define the phase space representation. 
According to the relation , a function  

 is a wave function 
corresponding to a state  in this representation. The results 
shown in the next paragraph give more justification to this 
assumption.  
According to the relations  and , the phase space 
representation that we have defined has a particularity: the 
expansion of a state  in the basis  may be 
obtained by making a summation over the index   
(relation ) or by making an integration on the coordinate-
momentum plane (relation ).The first 
expansion needs the knowledge of the values of all the 
functions  at a point  for a given value of 

. The second one needs the knowledge of the expression of 
one function  for given values of and .    
 

III.2- Wave functions in the phase space representation 

A function  may be 
considered as a phase space wave function corresponding to a 
state . In this section, we make more justification to  this 
assumption. Let  and  be the  functions 
 

 

 

 
 

Using the relations  and properties of the 
functions  and  , we may prove the relations 
  

 

 
 

 
 

 

 

 

The analysis of these relations suggest the following 
interpretations 
 

 The 
function  is a representation of the probability density 
corresponding to the coordinate  for a given value of the 
ground momentum dispersion . 
 

 The 
function  is a representation of probability density 
corresponding to the momentum  for a given value of the 
ground momentum dispersion . 

 The 
function  is a representation of the probability density on 
the coordinate-impulsion plane  for a given value of 

the momentum ground dispersion .   
 

According to the relation , for a given values of  
and ,  may be also interpreted as the 
probability to find in a state  a particle which is in 
the state . These interpretations give more justification on 
the consideration of the functions  as the wave 
functions in phase space representation. 
 
III.3-Remarkable properties of phase space states and 
phase space wave functions 
 

Property 1: Scalar product of two phase space states 
 

Let  and  two basis in the state 
space. From the relation ( , we may deduce the expression 
of the expansion of a state vector   in the basis 

 
 

 

 
 

is the wave function corresponding to 

the state  in phase space representation. Let us 
look for the expression of this wave function 
 

 

 

 
 

To perform the calculation of this integral, we have to use the 
following property of Hermite polynomials 
 

 

 

We find 
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in which 

 

 
and  is the complex polynomial 
 

 
From the relation we may deduce the relations  

 
 

 
 
The functions  may be used to perform a 
basis change between  and . 
 
Property 2: Relations between two values at two points of 
two phase space wave functions  
 

Let  be a state, according to the relation  we can 
expand  in the basis  or in the basis 

. 
 

 
 

 
 

 

 
 

Then, taking into account the relation  we may deduce 
the relation  
 

 

 

IV.  DISPERSION OPERATORS 

For given values of the coordinate mean , the  momentum  
mean  and the momentum ground dispersion ,  The state 

, used for the  definition of the phase space 
representation is a state characterized by the knowledge of  
 the coordinate dispersion  
 the momentum dispersion  
It follows that a state  may be considered as an 
eigenstate of  
 coordinate dispersion operator with eigenvalue equal to 

 

 momentum dispersion operator with eigenvalue equal 

to  
 

 

 
 

We may obtain the expression of these operators in 
coordinate representation by using properties of Harmonic 
Gaussian functions. In fact, because of the relation , in 
this representation we may write 
 

 

 

Using directly the expressions (2.1) of Harmonic Gaussian 
functions, we can verify that in coordinate representation, the 
exact expressions of the operators  and which satisfy 

exactly the relations (4.3) and (4.4) are  
 

 

 

and  are respectively the ground coordinate 
dispersion and ground momentum dispersion. They are 
related by the relation (2.6).  and , are related: 
 

 
 
The relations (4.5) and (4.6) suggest that if we denote 

and the operators associated respectively to the 
coordinate and momentum in the current formulation of 
quantum mechanics, we have in general (in any 
representation) the relation: 
 

 

 

To find a particular expression in a given representation, we 
have to replace the operators  and  by their expression in 
the considered representation. For instance, to have the 
expressions in coordinate representation, we have to replace 
in the relations  and   and  by 
 

 
 
And to obtain the expressions in momentum representation, 
we have to perform the replacement 
 

 
 

With the mean and dispersion operators, we may also define 
mean quadratic operators and  
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And we have the eigenvalue equations 
 
 

 

 

 

 

V. MULTIDIMENSIONAL GENERALIZATION 
We can generalize the results obtain in the previous sections 
to the cases of higher dimension than one. We study the case 
of uncorrelated and correlated variables one after the others. 
Calculation related to linear algebra are based on formulation 
given in [12]. 
 

V.1- Case of uncorrelated variables 

 Let us consider a quantum system which may be described 
with a position vector   belonging to a dimensional 
vector space ,  .  is a basis in 
the space . We introduce the momentum associated to  as 
a covector on  that we denote ,  in which  is 
the cobasis of the basis  i.e.  is the basis in the dual 

 of  verifying   [12]. Let  and  be the 
basis states for the coordinate and momentum 
representations. Any state  of the system may be 
expanded in the basis  and  
 

 

 

 
 

 and  are respectively the wave functions in coordinate 
and momentum representations. The variables are 
uncorrelated if we have the relations. 
 

 

 

 

 

 

 

 is a one dimensional coordinate state and  is one 

dimensional momentum state. and  are the wave 
functions corresponding to the variables  and  
respectively in coordinate and momentum representations. 
We may introduce the phase space state  
corresponding to the variable  and phase space wave 

functions  such as 
 

 

 

 

 

 

 

 
 
We may define the state 
 

 
 
 We have for the wave functions 
 

 

 

 

 

 

 

 
 
In these relations,  is the -
uplet .The summation in  is to 
be performed for all possible values of -uplet . 

.  is the diagonal matrix 
.  is the function  
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We may call  an uncorrelated multidimensional harmonic 
Gaussian functions. We  may introduce the matrix  
 

 

 

Then with the notations 
 

 

 
 

 

the expression of  takes the form 
 

 
 
From the properties (2.2), (2.3) and (2.4) of the one 
dimensional harmonic function, we may deduce for the  
 

 

 

 

 

 
From the relations (2.7), (2.8) and (2.9), we may establish 
analogous properties for the functions 
 

 
 

Then we call  the position mean vector and the 
diagonal matrix 
 

 
 
the coordinate dispersion matrix corresponding to . We 
call the dispersion matrix   corresponding to , i.e. for 

, the ground position dispersion matrix. 
 

We call  the momentum mean covector and the 
matrix 
 

 
 
the momentum dispersion matrix corresponding to . We 
call the momentum dispersion matrix   corresponding to 

 the ground momentum dispersion matrix. 
 

From the result obtained for one dimensional case in the 
section 4, we may deduce that for uncorrelated variables , 
coordinates and momentum dispersion operators may be 
associated to each doublet . According to the relations 
(4.8) and (4.9), if we denote and  the operators associated 
respectively to  and  in current formulation of quantum 
mechanics, we may associate to them the dispersion operators 

 and such as 

 

 

 

The eigenstates of these operators are the states in the 
relations (5.12), the eigenvalue equations are 
 

 

 
 
we may also define quadratic mean operators 
 

 

 

V.2 Case of correlated variables 

To study correlated variables, we introduce a more general 
definition of multidimensional harmonic Gaussian functions 
with correlated variables. To obtain correlated variables, we 
consider a linear transformation in the space   which mix 
the uncorrelated variables . Let  be a linear transformation 
in the space  and let be its matrix elements in the basis 

. We introduce a new position vector  with its 
mean . and the correspondent momentum 
covector  with its mean  by the relation   
 

 
 
In the relation ( ), we have introduced the inverse 

 of  and  are the elements of the matrix  . 
We have  
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Let us introduce the two order contravariant tensor 

and a two order covariant tensor 
 such as 

 

 

There is a summation over the index  in the last term of 

these equalities. The inverses of the relations (5.30) and 
(5.31) are  
 

 
 
We may also establish the relations 
 

 
 

If we choose the linear transformation  such as 
. We may establish from the relation (5.32) 

 

 
 
Introducing the expressions of  and  in the relations 
(5.28) and (5.29), we may deduce  
 

 

 
 
As the tensors  and  are by definitions bilinear forms 
respectively on  and on  [12], we may write the relations 
(5.35) and (5.36) in more condensed forms 
 

 

 
 

If we define the functions , we 
can deduce from the expression (5.18) of  the definition of 
the wave functions   associated to the correlated variables 

 in coordinate representation  
 

 
 

 
 
By analogy, we may define the wave function in momentum 
representation . Then 

We may introduce the phase space state  such as  
 

 

 
 
The relation (5.40) and (5.41) may be used to describe basis 

change from the basis  and to the basis 

. This basis change corresponds to the change 
from coordinate and momentum representations to the phase 
space representation and then defines this latest one. 
 

Using the relations (5.26), we may find the expressions of 
dispersion operators for the case of correlated variables .  
 

 
 

Using the relations (5.17), (5.30) and (5.31), we may 
establish 
 

 

 

 

 
 
We have the eigenvalues equations  
 

 

 

the states  are eigenstates of the operators   and 

 respectively with the eigenvalues. 
 

 

 

For the case , by taking into account the 
relation (5.38) and (5.39), we may obtained  
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VI.   EXAMPLE OF APPLICATION IN NON 
RELATIVISTIC QUANTUM  MECHANICS 

In nonrelativistic mechanics, the classical expression of the 
energy of a �free particle� with  mass  may be written as 
 

 
 
in which  is the momentum covector. If we denote 

 the position vector of the particle in the 
three dimensional Euclidian space and  the time, the 
elementary equation of motion of the particle is 
  

 
 

If we consider quantum mechanics, the wave function of the 
free particle, of momentum   and energy , 
respectively in coordinate and momentum representation are 
considered as the functions. 

 

 
 

But these functions don�t fulfill the normalization relation 
 

 
 
We remark that this difficulty is a consequence of the fact 
that the limit  is intrinsically assumed. This difficulty 
may be resolved by introducing our approach in which this 
limit is not assumed even for a �free particle�. 
 

For the application of our approach, we suppose that the 
variables are uncorrelated and we assume the following 
hypothesis 
 
Hypothesis 1 
The means values  and  associated to each variables  
and  are identified to the �classical values� of these 

quantities. So we have a �mean trajectory� of the particle 

defined by the equation 
 

 
Hypothesis 2 
To the square of the momentum is associated the quadratic 

mean operator  : 
 

 
 

in which the expression of a quadratic mean operator  
may be deduced from the general expression (5.33) 
 

  

The expression of the momentum dispersion operator may 
be deduced from the general expression (5.29)  

 
 

the operators  and  is the operator associated to the 
quantities  and  in ordinary quantum mechanics. We have 
for instance in coordinate representation  
 

 
 
Hypothesis 3 
There is an Hamiltonian operator  which admit as 
eigenvalues the values of the energy . The expression of the 
Hamiltonian  may be deduced from the classical expression 
of the energy by replacing  by the quadratic mean operator 

. According to this hypothesis, we have for the free particle 
the expression of the Hamiltonian operator 
 

 
From the relation (6.10), we may deduce that the eigenstates 

 of the Hamiltonian are the eigenstates of the momentum 
dispersion operators.  
 

 
 

 
 
the corresponding eigenvalues which are identified to the 
possible values of the energy are  
 

 
 

 is the triplet ,.  are the elements of the 
diagonal matrix  which is the 
ground momentum dispersion matrix.  
According to these results, the eigenstates of the Hamiltonian 
operators are the phase space states . 

The corresponding wave functions,  and   respectively 
in coordinate and momentum representations are 
 

 

 

 is a one dimensional harmonic Gaussian function. 
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in which  
 

 

Unlike the functions in the relations  and , the 
functions in  and  fulfill the normalization 
relation (6.4).  
The wave functions in phase space representation are 
 

 

 

 
 

The expression of a function  can be deduced easily from   

the relation . 
 
The relation (6.11) shows that the energy of the free particle 
is equal to the sum of a classical kinetic term and a �quantum 
term� which is a linear function of the square of the 
momentum ground dispersions   

According to the hypothesis 1, the particle has a �mean 

trajectory�. The equation of this trajectory is given by the 

relation (6.5). The first term in the expression of the energy 
which is equal to the classical kinetic energy may be 
associated with the �mean motion� corresponding to the 

�mean trajectory�. And the second term may be associated to 

the �quantum effect� which results from the dispersion of the 
values of momentum and coordinates around their mean 
values.  
These results obtained for the case of a �free particle� may be 

generalized: a general system may have a �mean trajectory� 

which is a classical trajectory in phase space and quantum 
effect appear in the dispersion of the values of coordinates 
and momentum around this �mean trajectory�: In our method, 

these facts are described by the introduction of  the dispersion 
operators.  
The study about the relation between uncorrelated and 
correlated variables that we have considered give a 
possibility to include in the analysis the study of linear 
change in the coordinate, for instance a rotation of the 
coordinates axis. 

VII.  EXAMPLE OF APPLICATION IN RELATIVISTIC   
QUANTUM THEORY 
 It is possible to utilize our approach in the case of relativistic 
theories. As an example, we show in this section an 
application in the establishment of field equation in 
relativistic field theory. We consider the case of scalar field. 
   
VII.1 Recall about the Klein-Gordon equation  

  We consider the Minkowski space with signature 

. Let  and   the position four-vector 

and momentum four-covector. Let  and  be 
respectively the components of the vector  and the covector 

. In the theory of special relativity, the relation between the 
components of the four-momentum is  
 

 
 

If we make the replacement  in this relation we can 
deduce the operatorial relation 
 

 
 

From this relation we can deduce the Klein-Gordon equation 
 

 
 

In relativistic field theory, the function  wich fulfill this 
equation is a scalar field.  Now, we expect to obtain a new 
equation for scalar field by using our approach. We have to 
introduce quadridimensional harmonic Gaussian functions. 
 
VII.2 Quadridimensional harmonic Gaussian functions  

If we suppose that the components  of the 
four vector position are uncorrelated, we may define, 
according to the results in the section V, the uncorrelated 
quadridimensional harmonic Gaussian function 

 
 
These functions are eigenfunctions of the dispersion 
operators 
 

 
 

 
  
Respectively with the eigenvalues   and 

. We may introduce correlated variables  
as components of a new position quadrivector  which 
may be related to     by a linear transformation   in the 
Minkowski space, as in the relation   

 
 

 is the inverse of  : . If we choose  such as 
, then  is a Lorentz transformation. 

 We may define for correlated variables the dispersion-
codispersion tensors  and  
such as 
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Then we may define the correlated quadrimensional 
harmonic Gaussian functions  such as  
 

 
 
These functions are eigenfuctions of the dispersion operators 
 

 

 

 

 
 
We may introduce quadratic means operators with the 
dispersion operators. We may particularly define the 

quadratic mean operators which correspond to the 
components of the four-momentum covector. 
 

 
 

VII.3 Equation for scalar field 

Let us consider the relation between the components of the 
four-momentum covector  
 

 
 
If we make the replacement  in this relation,   
we obtain the operatorial relation  
 

 

 

 
In which we have introduce a mass quadratic  mean  operator 

 and the mass mean value  defined by the relation  
 

 
 
From the operatorial  relation , we may deduce, as in 
the case of Klein-Gordon equation, an equation for scalar 
field in the framework of our approach. This equation is  
 

 

 
 
This results show that our approach may be used in  
formulation of relativistic field theory. More depth studies on 
the physical meaning of the results that we have obtained for 
the case of scalar field and extension to the case of spinorial 
and vectorial fields may lead to more interesting results.  
  

VIII. CONCLUSION 
 

The results obtained in section II, III and IV show that 
properties of harmonic Gaussian functions may be used to 
introduce phase space representation in quantum mechanics 
for the case of one dimensional motion. According to the 
relation (4.1) and (4.2), the basis states introduced for this 
representation can be considered as eigenstates of dispersion 
operators. 
 

It was shown in the section V that the results obtained for the 
case of one dimension may be generalized to 
multidimensional cases.        

The examples of application described in the sections VI and 
VII show that our approach may be applied both in 
formulation of nonrelativstic and relativistic theory. 
  

Results thus obtained show that our approach may be 
considered as a possible method to establish a framework for 
formulation of quantum theory in phase space. 
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