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Abstract- The primary goal of Multi-objective optimization is to optimize simultaneously conflicting objectives (such as time and the cost 
in construction projects) in order to find acceptable Pareto optimal solutions for the decision maker. This paper presents a procedure for 
solving continuous linear Time-Cost Trade-off problems based on the Bounded Objective Function Method in combination with the 
concept of linear membership function in the fuzzy programming. The applicability of the proposed procedure was demonstrated by an 
application example. A set of the best optimum Time-Cost Trade-off solutions for the problem was obtained. 
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I.  INTRODUCTION 

  Multi-objective optimization (MOP) is a rapidly growing 
area of research and application in modern day optimization. 
The primary goal of MOP is to optimize simultaneously 
several conflicting objectives in order to find acceptable 
Pareto optimal solutions for the decision maker [1]. The ɛ-
constraint method P() presented by [2], solves MOP by 
transforming one of the objectives into a constraint. A 
modification of the ɛ-constraint method is the Bounded 
Objective Function Method (BOFM) [3] which minimizes 
the single most important objective function, while, all other 
objective functions are used to form additional constraints. 
One of the MOP problems in construction project is the 
Time-Cost Trade-off problem (TCT). Crashing the projects 
schedule causes increasing in the project cost, so, in general, 
the conflict between time and cost is a fuzzy multi-objective 
problem. The fuzzy problem in finding the TCT solution can 
be solved using fuzzy linear programming method [4]. 
However, the resulted unique solution can be inappropriate. 
The concept of Membership Functions (MSF) in fuzzy 
programming method can be used in combination with the 
BOFM to get a set of solutions and consequently allow the 
decision maker to choose his appropriate one. 

II. PROBLEM 

     Figure (1) shows a simple representation of the continuous 
linear relationship between the duration of an activity and its 
direct costs. 
 

The continuous linear relationship shown in the Fig. 1 
between the two points implies that any intermediate duration 
could also be chosen [5]. It is possible that some intermediate 
point may represent the ideal or optimal trade-off between 
time and cost for this activity. The slope of the line  

 
 

connecting the normal point (lower point) and the crash point 
(upper point) is called the cost slope of the activity (cost 
slope = [crash cost-normal cost]/ [normal duration-crash 
duration]). 
 

 
Fig. 1 Continuous Linear Time/Cost Trade-off for an 

Activity (after Hendrickson [5]) 

III.  THE OPTIMUM TCT SOLUTION 
Along the possible crashed period, the optimum TCT 

solution may be encountered at minimum total cost as shown 
in Fig. 2. 

 

The optimum duration (D) represents the duration at which 
minimum total cost is calculated. The disadvantage of this 
consideration is that, project duration might be inappropriate. 
It might be better to use this rule to obtain more than one 
solution along the crashed period as explained in Section VI.  
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Fig. 2 Optimal duration is considered at the minimum 
total project cost (after Marco [6]) 

 

IV. THE BOUNDED OBJECTIVE FUNCTION  
METHOD 
 

  As explained previously, the ɛ-constraint method transforms 
one of the objectives into a constraint. The formulation of Bi-
objective problem (such as TCT) using the ɛ-constraint 
method is formulated as: 

 1( ) : min ( )P f x                             (1) 

Subject to:                                                                               

2 2( )f x                                       (2) 

x M . 
Here, ɛ2 is the upper bound for the second objective function 
f2(x); x is the vector of design variables and, M is the feasible 
domain. 
 

      BOFM adds additional constraint which is the lower 
bound for f2 (x) such that L2 ≤ f2 (x) ≤ ɛ2, where L2 and ɛ2 are 
the lower and upper bounds for f2 (x) respectively, and 
consequently, Inequality (2) becomes as: 

2 2 2( )L f x                                          (3) 

                                 x M  

IV.  FUZZY PROGRAMMING 
    Fuzzy multi-objective programming is based on the choice 
of appropriate MSFs for the objective functions [7]. In fuzzy 
linear programming, the Bi-objective optimization problem 
based on the MSF concept can be formulated as: 

1 2
( ) / 2Max                                 (4) 

Subject to: 
  1 1 1 1 1[ (max) ] / [ (max) (min)]f f f f               (5) 

 

2 2 2 2 2[ (max) ] / [ (max) (min)]f f f f                 (6) 

 
     0 1 [0,1]                                   (7) 

Where: ë1 and ë2 are the MSF for the first and second 
objective functions respectively. fj(max) and fj(min)  are The 
maximum and the minimum values for the jth objective 
function respectively(j = 1,2). 

 

V. SUGGESTED PROCEDURE 
 

     Let the project duration (Z1) and the project cost (Z2) be 
the first and the second objective functions, respectively and 

let the relationship between the time and the cost of each 
activity be continuous and linear. Following, are the 
suggested steps for solution procedure: 
 

Step1 
 

    The linear MSF (ë1) for the project duration objective (Z1) 
is constructed based on Equation (5): 

1 1 1 1 1[ (max) ] / [ (max) (min)]f f f f      Or 

1 1 1 1 1[max ] / [max min ]Z Z Z Z                                                  

- Calculate minZ1, where Tsci = 0, get Z1 = maxZ1 (no 
crashing).  
- Calculate minZ1, where 0 ≤ Tsci ≤ Tscmax, get Z1= minZ1. 
Where: Tsci is the number of crashed days for activity i; 
Tscmax is the maximum possible crashed days for activity i; i 
= {1...n}; n is the number of project activities. 
 

Step2  
 

    The interval ([0, 1]) of ë1 �values is divided to 10 
subintervals [Lk, Ԑk]: [0, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], 
[0.4, 0.5], [0.5, 0.6], [0.6, 0.7], [0.7, 0.8], [0.8, 0.9] and [0.9, 
1]. Where Lk is the lower bound of the kth subinterval and ɛk 
is the upper bound of the kth subinterval (k =1, 2� 10). 
Note: The choosing number of the subintervals may 
differentiate based on the possible crashed period (maxZ1 � 
minZ1). If this period extends, it is better to increase the 
subintervals number to get more solutions.    
 

Step3 
 

    BOFM is used to solve the problem which is formulated 
as: 

2Minimize Z                                        (8) 

Subjected to 

1k kL                                           (9) 

    Solving the problem at each ë1 �subinterval, 10 solutions 
(Z1, minZ2) can be obtained. 
Not1: the formulation of the problem in this step meets the 
rule explained in Section III, however, 10 solutions are 
obtained.  
Note2: the inequality Lk ≤ ë1 ≤ ɛk   (in BOFM) is exchanged 
with Lk < ë1≤ ɛk to prevent the possibility of resulting the 
same solution for two neighbour subintervals.    For example: 
the first and the second subintervals are [0, 0.1] and [0.1, 0.2] 
respectively. If the inequality Lk ≤ ë1≤ ɛk  is considered, then, 
minZ2 subjected to 0 ≤ ë1≤ 0.1 may be found at ë1 = 0.1  and 
minZ2 subjected to 0.1 ≤ ë1≤ 0.2  may also be found at ë1 = 
0.1 and consequently, the same solution is found at the two 
subintervals. 
Step4 
    At some subintervals, two or more equal minZ2 can be 
encountered for different Z1 values as shown in Fig. 3. To 
choose minZ2 and the corresponding less available Z1 value, 
an additional step must be conducted as: 

1MinimizeZ                                         (10) 

Subjected to 

2 2minZ Z                                        (11) 

Where minZ2 is the resulted minimum cost at each 
subinterval in the previous step using Equation (8).  The 
obtained 10 solutions represent the 10 best (minimum) values 
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of project Cost and the corresponding 10 values of project 
Duration along the whole crashed period. 
 

 
 

Fig. 3 minZ2 is obtained at Z1(1) and at Z1(2) 
 

VI.   APPLICATION EXAMPLE 
 

In this example, a data from a highway project is used. The 
project refers to the upgrading of an existing two-way 
highway subdivided to a four-lane. In this application, a 100 
m road section length is considered for simplicity. The 
project network is illustrated in Fig. 4 and the data for the 29 
activities is presented in Table 1. 
 

 
Fig. 4 Project Network 

 

TABLE I  ACTIVITIES DATA 
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Service road A  

1-Rock 
excavation  

5 4 2030 2300 - 0 

2- Embankment 
construction 

8 6 1020 1510 1(FS) -3 

3- Sub base and 
base layers 

8 6 1700 2090 
1(FS) 
2(FS) 

0 
0 

4- Asphalt layer 4 3 590 730 3(FS) 0 

5- Temporary 
marking and 
signing 

2 - 90 - 4(SS) +1 

Service road B  

6-Earth and 
semi-rock 
excavation 

4 3 910 1100 1(FS) 0 

7-Embankment 
construction 

2 - 250 - 
2(FS) 
6(FS) 

0 
-1 

8-Subbase and 
base layers 

7 5 1490 1830 
3(FS) 
7(FS) 

0 
0 

9-Asphalt layer 4 3 520 750 
4(FS) 
8(FS) 

0 
0 

10-Temporary 
marking and 
signing 

2 - 90 - 
5(FS) 
9(FF) 

0 
+1 

Main road     

11-Traffic 
diversion 

1 - 50 - 
5(FS) 
10(FF

) 

0 
0 

12-Rock 
excavation 

8 6 3260 3710 
11(FS

) 
0 

13-Earth and 
semi-rock 
excavation�
existing 
pavement 
removal 

5 3 1140 1720 
12(SS

) 
+2 

14- Sub grade  
stabilization, 
retaining 
wall/culvert 
construction 

4 3 300 450 
13(SS

) 
+2 

15-Embankment 
construction 

8 5 1020 1430 

12(FS
) 

14(FS
) 

-4 
-2 

16-Drainage 
pipe 
construction 

9 6 790 1180 
15(FS

) 
-6 

17-Drainage 
layer 

13 11 3340 4060 
15(SS

) 
+4 

18-Planting at 
roadway verges 

9 7 470 830 
15(FS

) 
+4 

19- El. 
installations at 
roadway verges 

6 4 460 810 
15(FS

) 
0 

20- Ditches 6 5 1280 1430 
17(SS

) 
+3 

21- Sub base 
layer 

14 10 1090 1560 
20(SS

) 
+2 

22- Base layer 14 9 900 1400 
21(SS

) 
+2 

23- Median 
island (New 
Jersey) 

14 11 2220 2690 
22(FS

) 
-9 

24- Elect. 
installation in 
median island 

3 - 230 - 
23(SS

) 
+6 

25- Asphalt 
layer #1 

6 4 1590 1990 
23(FS

) 
-4 

26- Asphalt 
layer #2 

10 8 2630 3240 
25(SS

) 
+4 
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27- Friction 
course overlay 

8 6 2060 2660 
26(FS

) 
0 

28 -Final 
marking and 
signing 

10 8 320 610 
27(FS

) 
-3 

29- Traffic 
restoration 

1 - 50 - 
28(FS

) 
0 

 

An external constraint is set for the completion time of the 
service roads. In particular, finish time of activity 11 is 23 
days after the beginning of the project. The indirect project 
cost is 150 units per day. Further, a penalty at a rate of 200 
units per day of delay applies after the 80th day while a 
bonus of 100 units per day is given for project completion 
before the 80th day. 7 working days per week is considered. 
The integer linear programming model presented by Adel et 
al. [8] is used. The two objective functions of the model are 
the project Duration: 

 
 1 0( )*fn sZ t t                          (10) 

 

The total project Cost: 
 

 2 ( * ) �Z Cni Csli Tsci indC PC BC          (11) 
 

Where; tfn: the finish time of the last activity (n), ts0: the start 
time of the first activity (0); á is the Real time factor, which 
is equal to the ratio between the number of days per week 
(7days) to the number of working days per week, Csli: cost 
slope for activity i, Tsci: number of crashed days for each 
activity i. 
 

��&QL�LV�WKH�VXP�RI�QRUPDO�FRVWV�RI�DOO�DFWLYLWLHV��LQG&�LV�WKH�

total indirect cost, PC is the penalty cost, and BC is the 
bonuses cost.  
 

The four steps of the suggested procedure are applied as 
follows: 
 

Step1 
 

The MSF of the project duration objective (Equation 5) is 
constructed as:  
 

- Model running at no crashing (Tsci = 0), so, maxZ1 = 85 
days.  
 

- Model running at crashing, so, minZ1 = 70 days. 
Consequently, the membership function can be written as: ë1 
= (85 � Z1)/ (85 � 70). 
 

Step2 
 

ë1-interval ([0, 1]) is divided to 10 subintervals as explained 
previously. 
 

Step 3 and Step 4 
 

The problem is solved by obtaining minZ2 subjected to Lk < 
ë1≤ ɛk  and then minZ1 subjected to Z2 = minZ2 for each 
subinterval as explained previously. 

 

The model solutions are plotted in Fig. 5 and presented in 
Table 2. Fig. 6 shows the resulted total costs against the exact 
resulted values of the membership function (ë1). 
 

 
 

Fig. 5 Time-Cost Trade-off solutions 
 

 
 

Fig. 6 ë1- Total Cost Trade-off solutions 
 

TABLE 2  TIME-COST TRADE-OFF SOLUTIONS 
 

ë1- 
subint. 

(Z1)   , 
days 

ë1 
Direct 
Cost   , 

unit 

IndC, 
unit 

BC , 
unit 

PC , 
unit 

minZ2  , 
unit 

ë1= 0 
85 

maxZ
1 

0 33610 12750 0 
100
0 

47360 

0 < ë1 ≤ 
0.1 

84 0.06 33710 12600 0 800 47110 

0.1 < ë1 
≤ 0.2 

82 0.2 33960 12300 0 400 46660 

0.2 < ë1 
≤ 0.3 

81 0.26 34055 12150 0 200 46405 

0.3 < ë1 
≤ 0.4 

79 0.4 34260 11850 100 0 46010 

0.4 < ë1 
≤ 0.5 

78 0.46 34417 11700 200 0 45917 

0.5 < ë 
1≤ 0.6 76 0.6 34707 11400 400 0 45707 

0.6 < ë1 
≤ 0.7 

75 0.66 35007 11250 500 0 45757 
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0.7 < ë1 
≤ 0.8 

74 0.73 35021 11100 600 0 45521 

0.8 < ë1 
≤ 0.9 73 0.86 35321 10950 700 0 45571 

0.9 < ë1 
≤ 1 

71 0.93 35931 10650 900 0 45681 

ë1= 1 
70 

minZ1 
1 36231 10500 

100
0 

0 45731 

 

For each subinterval, the obtained solution is a Parito 
optimum. According to whole set of solutions, it is noted 
that, solutions with Z1 ≥ 75 days are dominated by the 
solution with Z1= 74 days. This means that solution at Z1 = 
74 day is better than those with Z1 ≥ 75 days according to 
both Z1 and Z2. In practice, the project team might not be able 
to execute the crashing process based on a certain solution, 
therefore, the presence of other solutions is very important 
and any solution must not be excluded. Among these 
solutions, the decision maker can search for his appropriate 
one. 

VII. CONCLUSIONS 
 

In this paper, a procedure for getting a set of solutions for 
continuous linear TCT problem in construction projects is 
suggested. The procedure uses the BOFM which is an 
extension of the popular ɛ-constraint method in combination 
with fuzzy linear MSF concept. Using this procedure, a set of 
optimum TCT solutions along the whole possible crashed 
period can be obtained as was demonstrated through the 
presented application. 
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