

EFFICIENT GENETIC OPERATORS BASED ON PERMUTATION ENCODING UNDER OSPSP

¹Rajiv Kumar, ²Dr.Pardeep Goel

¹Research Scholar, Department of Computer Science & Information Technology. Singhania UniversityJhunjhunu,Rajasthan, India ²Associate Professor,M.M. (P.G.) College,Fatehabad

Abstract – Present study in the paper is concerned with the development of new genetic operators to optimize the performance of the system. To improve the production facilities, a set of jobs are executed on the set of machines. For better performance there are large numbers of constraints. Process scheduling theory has been developed to meet all side constraints. Process Schedule is done in such a way that the resulting solution minimizes the given objective function. Many variants of the basic scheduling problem can be formulated by differentiating between machine environments, side constraints and objective functions. Genetic algorithm have been applied to OSPSP. The study shows that proposed operators shows better results

Keywords- Genetic Algorithm, OSPSP, Operators, Scheduling.

1. INTRODUCTION

Process scheduling in an operating system can be stated as, "Selection of Process for Execution and allocation of the CPU to the selected process". Scheduling is considered as the fundamental function of OS. Efficient scheduling always increases the performance of the operating system. Scheduling is important because it influences user service and efficiency of processor. Therefore, the throughput and efficiency of the OS increases by use of efficient process scheduling.

2. SCHEDULING PROBLEMS

In OS the problem is to allocate available resources to the given process within desirable time period to perform a set of works. Realistic scheduling problem is very difficult to solve in OS. This is because it has many constraints. Some of the constraints cannot be defined mathematically.

In general scheduling problems can be production and computational fields. These are most important fields as related to scheduling. Different tasks individually compete for resources like manpower, money, processors (machines), energy and tools. These resources very differently in nature. Moreover, a organize set of tasks, reflecting relations among them can be defined in several ways. In addition, various criteria which measure the quality of the performance of a set of tasks can be taken into account.

[1] They characterized scheduling problems by three sets:

- (i) set $\mathcal{J} = \{J1, J2, J3..., Jn\}$ of n jobs,
- (ii) set $\mathcal{P} = \{P1, P2, \dots, Pm\}$ of *m* processors *{machines*) and
- (iii) set $\mathcal{R} = \{R1, R2..., Rs\}$ of s types of additional resources \mathcal{R} ,

Process Scheduling means to assign Processors (P) and Resources(\mathcal{R}) to Tasks (\mathcal{T}) in order to complete all tasks under the imposed constraints.

3. TYPES OF OPERATING SYSTEM SCHEDULERS

Operating systems generally have three types of distinct scheduler, "Long Term Scheduler", "Medium Term Scheduler" and "Short Term Scheduler". These are based on the relative frequency with which these functions are performed. In OS the Scheduler module is responsible for selecting the next jobs to be admitted into the system and the next process to run.

3.1 Long Term Scheduler:

[2] The long term or admission scheduler decides which jobs or processes are to be admitted to the ready queue in the Main Memory It means that, when an attempt is made to execute a program, its admission to the set of currently executing processes is either authorized or delayed by the long term scheduler. Thus, this scheduler dictates what processes are to run on a system, In current operating systems, this is used to make sure that real time system CPU have more time to finish the particular task. So there is requirement for efficient real time scheduling for the modern system with GUI interface. Basically the queue is resided in the hard disk or in the virtual memory. Long term scheduling is also important in large scale systems like batch processing systems, computer clusters, and supercomputers and renders farms. In these regard dedicated job scheduler is required for this function

3.2 Medium Term Scheduler:

[2], The medium term scheduler removes processes from main memory. It places them on secondary memory like disk drive or other source of secondary memory or vice versa. In this process swapping of processes is takes place. The

Publication History

Manuscript Received	:	5 June 2012
Manuscript Accepted	:	25 June 2012
Revision Received	:	28 June 2012
Manuscript Published	:	30 June 2012

medium term scheduler decides to swap out a process which has not been active for some time, or a process which has a low priority or a process which is taking up a huge amount of conventional memory in order to free up main memory, so that it can used for other processes.

3.3 Short Term Scheduler:

[2], *CPU scheduler* is the short term scheduler, It decides which of the ready processes are to be executed next following a clock interrupt, an I/O interrupt, an operating system call or another form of signal. The short term scheduler takes scheduling decision very quickly as compared to the long term scheduler. This scheduler can be preemptive. It implies that it is capable to remove processes forcibly from a CPU when it decides to allocate that CPU to another process, or non preemptive i.e when scheduler are not able to take off the control of CPU from the currently executed process.

3.4 IMPORTANCE OF SCHEDULING

Scheduling is a decision making practice. It is used in different types of operating system. Its aim is to optimize one or more objectives with the allocation of resources to tasks over given time periods. The resources and tasks in an organization can take a lot of different forms. The resources may be machines in a workshop, crews at a construction site, processing units in a computing environment, and runways at an airport and so on. The tasks may be operations in a production process, take offs and landings at an airport, executions of computer programs, stages in a construction project. Each task can have a definite priority level, an earliest likely starting time and a due date. The objectives can also take many different forms and one objective may be the minimization of the completion time of the last job and another may be the minimization of the number of jobs completed after their respective due dates. Scheduling plays an important role in most manufacturing and service systems as well as in most information processing environments.

Scheduling derives its importance from the two different considerations:

(i) Ineffective scheduling results in deprived utilization of available resources. A noticeable

symptom is the idleness of facilities, human resources and apparatus waiting for orders to be

processed. As a result of this cost of production increases.

(ii) Poor scheduling in the OS will always result in the increases of Average waiting time,

Turnaround Time and poor service response time. With ineffective scheduling the

Performance of the OS always reduced.

4. GENETIC ALGORITHM

Genetic Algorithms (GAs) are adaptive methods which may be used to solve search and optimization problems. They are based on the genetic processes of biological organisms. Over many generations, natural populations evolve according to the principles of natural selection and survival of the Fittest", First clearly stated by Charles Darwin in The Origin of Species. By mimicking this process, genetic algorithms are able to evolve" solutions to real world problems, if they have been suitably encoded. For example, GAs can be used to design bridge structures, for maximum strength/weight ratio, or to determine the least wasteful layout for cutting shapes from cloth. They can also be used for online process control, such as in a chemical plant, or load balancing on a multiprocessor computer system. The basic principles of GAs were first laid down rigorously by Holland [3], and are well described in many texts (e.g. [4], [5],[6]). GAs simulates those processes in natural populations which are essential to evolution. Exactly which biological processes are essential for evolution, and which processes have little or no role to play is still a matter for research.

Due to the adaptability of the GA it can be used to solve complex problem. Scheduling problem is considered as the NP- Hard problem. GA is suitable to apply on scheduling problem for find out optimal solution.

5. METHODOLOGY FOR OSPSP

In the present work GA have been proposed as a Long Term Scheduler (LTS).GA is a robust search technique. It has the capability to cope with problem on which it is applied. So GA can enhance the performance of the OS. Survey of literature shows that GA has been applied to scheduling problem of different domains. They have applied GA to the scheduling problem with prevailing data mining of parameter setting. The present data mining is used to the optimal parameter setting of GA under the given scheduling problem. Thus, it is proposed to use parameter setting of GA under the permutation encoding. The best parameter setting under OSPSP with permutation encoding has given better results.

During the research work, it was found that permutation encoding to represent the candidate solution gives optimal parameter setting for OSPSP. Thus, there was a need to analyze the parameter setting of GA based on permutation encoding under the scheduling problems. To develop new algorithm, it became essential to analyze the parameter setting for permutation encoding.

From the survey of literature, it was observed that permutation encoded genetic operators are very limited. There is a need to design new genetic operator. The new genetic operator should be based on permutation encoding. Research was carried out to find new genetic operators. The purposed genetic operators have enhanced the performance of the process scheduling. The proposed BQPSGA is shown in fig.1.

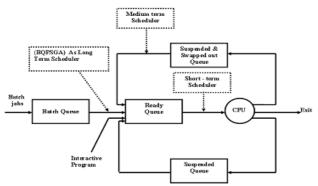


Fig.1.Proposed BQPSGA for OSPSP

5.1 Selection Operator

The performance of the GA is greatly depends upon the Selection operator. Selection operator chooses the fittest individual solution for reproduction. In the present work, "Modified Random Selection (MRS)" operator is proposed.

5.2 Crossover Operator

Rajiv et.al. [7] has been proposed ten new crossover operators. These operators are based on permutation encoding. The list of the proposed crossover operators are:

- 1. Modified Maximal Preservative Right Side Placement Crossover (**MMPX**) Operator
- 2. Sorted Partially Matched With Same Position Crossover(**SPMX-1**) Operator
- 3. Sorted Partially Matched Right Side Placement Crossover (SPMX-2) Operator
- 4. Random Order with Random Sequence Placement Crossover (**RORPX**) Operator
- 5. Random Select with Left shift Placement Crossover (**RLSX**) Operator
- 6. Random Select with Right Shift Placement Crossover (**RRSX**) Operator
- 7. Sub Schedule Match Crossover (SSMX-1) Operator
- 8. Sub Schedule Match Crossover with Reverse Placement (SSMX-2) Operator
- 9. Sub Schedule Match Inverted Crossover (SSMIX-1) Operator
- 10. Sub Schedule Match Inverted Crossover (SSMIX-2) Operator

5.3 Mutation Operator

Rajiv et.al.[7] has proposed "Selective Swap Mutation (SSM)". The main assumption used here is that sometime due to after much generation, the best genes in the chromosome reach at the extreme position in the chromosome. The extreme positions are the first and last. When the extreme positions of genes are exchanged, then there is tendency to backtrack or to find out the optimal solution.

6 Experimental Setup

To solve the scheduling problem various new operators have been developed by the author. GAPS simulator have been developed [7].GAPSS provide the environment in which different types of operators have been studied. This simulator is designed in C Language.

7.Simulation Result and conclusion

The simulation results show that the proposed genetic operators to solve the OSPSP are efficient. The results are shown in Table No.1.,Table No.2 and Fig. 2,3,4,5 They shows better result as compared to the existing operators. BQPSGA is a new algorithm which can be used as long term scheduler in the operating system.GA cannot be used as short term scheduler because it takes lot of time to produce the result. In case of batch system GA will be applicable.

- Blazewicz,J.,Ecker,K.,Pesch,E.,Schmidt,G.andWeg larz,J.(2001) scheduling Computer and Manufacturing Processes, Springer Verlag, Berlin, 2001 (2nd edition).
- [2] Stallings, W. (2004). Operating Systems Internals and Design Principles (fourth edition). Prentice Hall. ISBN 0-13-031999-6.
- [3] Holland, J.H. (1975). Adaptation in Neural and Artificial System, MIT Press, 1975
- [4] Goldberg, D. E. (1987). Simple genetic algorithms and the minimal, deceptive problem.
- [5] Goldberg, D. E., Korb, B., & Deb, K. (1989). Messy genetic algorithms: Motivation, analysis, and first results. Complex Systems, 3 (5), 493–530.
- [6] Davis,L.(1985).Job shop scheduling with genetic algorithms. In J. J. Grcfcnstcttc, editor, Proceedings of the International Conference on Genetic Algorithms and their Applications, pages 136 140. San Mateo: Morgan Kaufmann, 1985
- [7] Rajiv Kumar, Sanjeev gill, Ashwani Kaushik, "An Impact of crossover operators on the performance of genetic Algorithm under operating system process scheduling problem", International Conference on Communication System and Network Technology (IEEE Conference), Organized by SMVDU Jamu(J&K) on 03-05 June, 2011, pp704-708, DOI 10.1109/CSNT.2011.150

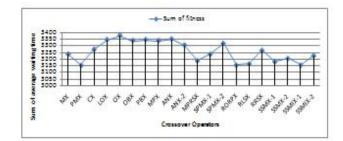
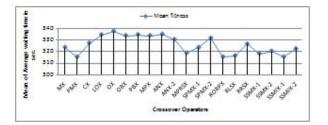
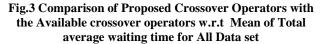




Fig. 2 Comparison of Proposed Crossover Operators with the Available crossover operators w.r.t Total average waiting time for All Data set

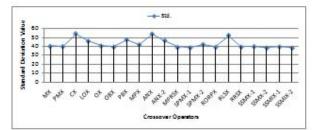


Fig.4 Comparison of Proposed Crossover Operators with the Available crossover operators with average waiting time as fitness function w.r.t Standard deviation for All Data sets

Data				Availab	le Cross	Available Crossover Operators	oerators						u	ropose	d Cross	Proposed Crossover Operators	perators			
Set No.	MX	PMX	сх	гох	хо	овх	РВХ	MPX	ANX-1	ANX-2	MPRS X	SPMX- 1	SPMX- 2	RORP X	RLSX	RRSX	SSMX-	SSMX- 2	SSMIX-SSMIX 1 2	SSMIX- 2
-	293. 733	279. 933	264. 066	295. б	282. 066	279. 333	286. 533	289. 266	286. 733	289. 333	284. 933	297. 533	287. 066	278. 8	282. 6	349. 133	281. 2	284. 333	279. 533	282. 333
2	289. 933	282. 133	313. 4	286. 666	291. 133	292. 666	291. 266	288. 266	293. 266	291. 866	284. 466	348. 733	285. 066	284. 066	229. 866	286. 533	282. 4	290. 4	282	286. 4
e	261. 8	253. 333	342. 133	264. 866	300. 533	299. 333	294. 533	290. 466	263	258. 4	256	291. 4	300. 666	256. 066	287. 733	255. 666	257. 733	260	253. 866	259. 733
4	347. 333	343. 266	312. 466	347. 866	354. 6	368. 866	364. 866	345. 066	348. 733	356. 866	345. 066	329	349. 933	344. 266	325. 533	352. 8	343. 133	345. 6	343. 266	347. 933
2	301	301. 133	361. 8	321. 4	316. 266	308. 4	303. 266	306. 866	316. 733	303. 8	298. 133	375. 333	302. 066	298. 666	318. 2	301. 2	299. 666	303. 266	305. 333	306. 266
9	344. 8	341. 2	394. 4	386. 666	382. 8	350. 8	345	388	386. 2	384. 066	341. 466	368. 2	379. 6	345. 133	38 8.8	348. 733	340. 2	347. 6	342. 4	345. 866
7	300	290. 133	429. 6	323. 6	321. 533	323. 866	296. 933	325. 533	295	310. 533	307. 2	281. 266	307. 2	290. 4	260. 466	298. 066	303. 266	302. 533	289. 133	325. 733
œ	340. 4	324. 533	290. 6	336. 2	357. 2	341. 866	349. 033	331. 666	337. 933	338	327. 866	285. 533	327. б	323. 4	325. 466	328. 666	325. 333	326. 133	323. 466	327. 466
6	377. 2	370. 8	293. 733	379	394. 333	393. 533	402. 666	375. 6	414	390. 333	371	290. 8	398. 666	366. 666	367. 866	369. 866	372. 933	369. 4	368. 866	369. 733
10	382. 266	368. 133	272. 533	405. 2	378	381. 866	412. 6	399. 133	410. 266	383. 066	372. 4	369. 8	380. 266	367. 733	378. 8	376	376. 266	375. 8	367. 866	374. 8
Sum	323 8.46	315 4.6	327 4.73	334 7.06	337 8.46	334 0.53	334 7.6	333 9.86	335 1.86	330 6.26	318 8.53	323 7.6	331 8.13	315 5.2	316 5.33	326 6.66	318 2.13	320 5.06	315 5.73	322 6.26
Mean	323. 846	315. 46	327. 473	334. 706	337. 846	334. 053	334. 76	333. 986	335. 186	330. 626	318. 853	323. 76	331. 813	315. 52	316. 533	326. 666	318. 213	320. 506	315. 573	322. 626
S.D.	40.1 684	40.0 476	54.0 188	45.7 307	40.6 840	39.5 136	47.3 406	41.9 158	53.6 587	46.5 010	39.0 369	38.7 210	42.2 887	39.2 924	52.2 108	39.5 767	39.9 963	38.4 989	39.6 671	38.4 618

Table 1 Comparison of Proposed Crossover Operators with Available crossover Operators with average waiting Time as a fitness function

Г

.

Data				Availabl	e Cross	able Crossover Operators	berators						Ľ	ropose	Proposed Crossover Operators	over Op	erators			
Set No.	XW	PMX	č	КОХ	xo	OBX	PBX	MPX	ANX-1 ANX-2	ANX-2	MPRS X	MPRS SPMX- SPMX- RORP X 1 2 X	SPMX- 2	RORP X	RLSX	RRSX	SSMX-	SSMX- SSMX- SSMIX-SSMIX- 1 2 1 2	SSMIX-	SSMIX- 2
-	347.3	333.5	343.	349.2	335.66 67	335.66 332.93 340.13 342.86 340.33 67 33 33 67 33	340.13 33	342.86 67		342.93 33	338.5	355.6	340.6	332.4	336.9	336.6	334.8	337.9	333.1	335.9
7	341.33 33	341.33 333.53 371.53 338. 33 33 33 67	371.53 33	338.06 67		342.53 344.06 33 67	342.66 67	339.66 67	344.66 67	343.26 67	335.86	448.4	336.46 67	335.46 67	274.4	337.93 3	333.8	341.8	333.4	337.8
e	341.53 33	341.53 333.06 33 67	441.8	344.6	380.26 67	380.26 379.06 374.26 67 67 67	374.26 67	370.2	342.73 33	342.73 338.13 33 33	335.73 357.06 33 67	357.06 67	380.4	335.8	367.46 67	335.4	337.46	339.73 33	333.6	339.46
4	417.33 33	417.33 413.26 378.13 417.86 33 67 33 67	378.13 33	417.86 67	424.6	438.86 67	434.86 67	415.06 67	418.73 33	418.73 426.86 33 67	415.06 67	404.6	419.93 33	414.26 67	392.13 33	422.8	413.13	415.6	413.26 67	417.93
2	359.13 33	359.13 359.26 33 67	437.4	437.4 379.53 33	374.4	366.53 33	361.4	365	374.86 361.93 67 33	361.93 33	356.26 462.73 67 33	462.73 33	360.2	356.8	376.33 33	359.33 33	357.8	361.4	363.46 67	364.4
9	444.46 67	444.46 440.86 67 67	481.8	481.8 486.33 482.46 33 67	482.46 67	450.46 67	444.66 67	487.66 67	485.86 483.73 67 33	483.73 33	441.13 33	463.73 479.26 33 67	479.26 67	444.8	525.73 33	448.4	439.87	447.26 67	442.06 67	445.5
2	365.66 67		525.13 34	355.8 525.13 389.26 34 67	387.2	389.53 33	362.6	391.2	360.66 67	376.2	372.86 67	372.86 334.86 372.86 356.06 67 67 67 67	372.86 67	356.06 67	322.66 363.73 67 33		368.93	368.2	354.8	391.4
8	416	400.13 33	344.2	411.8	432.8	417.46 67	425.53 407.26 413.53 33 67 33	407.26 67	413.53 33	413.6	403.46 67	336.93 33	403.2	399	401.06 404.26 67 67		400.93	401.73 33	399.06 403.06 67 67	403.06 67
6	464.6	459.06 345.13 67 33	345.13 33	466.4	481.73 33	480.93 33	490.06 67	463	501.4	477.73 33	458.4	370.53 33	486.06 67	370.53 486.06 454.06 33 67 67	455.26 457.26 67 67		460.33	456.8	456.26 67	457.13 33
10	477.8	463.66 352.26 500. 6 6 3	352.26 6		73 473.53 3	477.4	508.13 494.66 3 6	494.66 6	505.8	478.6	467.93 465.33 3 3	465.33 3	475.8	463.26 67	463.26 474.33 471.53 67 33 33	471.53 33	471.8	471.33 33	463.4	470.33 33
Sum		3975.2 3892.2 4021.2 4083	4021.2	4083.8	4115.2	4077.2 67	4084.3 33	4076.6 4088.6	4088.6	4043	3925.2 67	3999.8 4054.8 67 67	4054.8 67	3891.9 3	3926.3 3	3937.3 3	3918.6 7	3941.8	3892.4 67	3963
Mean		397.52 389.22 402.12 408.	402.12	408.38	411.52	407.72 6	408.43 3	407.66	408.86	404.3	392.52 6	399.98 6	405.48 6	389.19 3	392.52 399.98 405.48 389.19 392.63 393.73 6 6 6 3 3 3 393.73		391.87	394.18	389.24 67	396.3
S.D.		52.895 52.867 65.234 59.428 55.669 53.334 60.899 57.158 67.229 0 6 6 2 5 1 2 7 2	65.234 6	59.428 2	55.669 5	53.334 1	60.899 2	57.158 7	67.229 2	59.881 2	51.713 1	55.303 5	57.546 3	52.304 6	59.881 51.713 55.303 57.546 52.304 75.469 53.634 2 1 5 3 6 4 5	53.634 5	52.90	51.455 75	52.354 51.052 61 65	51.052 65

Table 2. Comparison of Proposed Crossover Operators with Available crossover Operators with Mean Turnaround time as a fitness function