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Abstract:  In this paper, a frame model for a simple dental bridge will be presented, which will be calculate by TMM, in order to facilitate 

orthodontic interventions in situ, especially in delicate situations. Applications of mathematical algorithms in bioengineering and especially 

in orthodontics are in full expansion. In this study, it will be done a similarity between a simple dental bridge and a frame, which is an 

original idea, as is the application of the Transfer-Matrix Method (TMM) to the analytical calculus of a dental bridge as a frame. The model 

of frame has two vertical poles, embedded at inferior ends and with an uniformly distributed load of horizontal part of the frame. A simple 

dental bridge has two pole teeth. They can be assimilated with the two vertical parts of frame and the aggregation elements, together with 

the bridge body, can be assimilated with the horizontal part of frame. After applying the TMM, we can determine the displacements for 

aggregation elements. This original idea to assimilate a simple dental bridge as a frame, is an approach that can be applied for different 

frames and, so, for differently dental bridges, applied for different partial or total edentulous situations. Mathematical algorithm for frame 

calculus can be very easy to program and this allows the results to be obtained very quickly with immediate application in practice, in 

orthodontics, which allows the results to be used in situ, especially in special and delicate situations. In the future, we want to be able to 

present the validation of the theoretical results with experimental results and with those obtained by modeling with Finite Elements Method 

(FEM). 
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I. INTRODUCTION 
 

The applications of mathematical algorithms in 

bioengineering and especially in orthodontics are in full 

expansion. A frame is a bent beam that can be studied by 

various methods, including the Transfer-Matrix Method 

(TMM). In my study, it will be done a similarity between a 

simple dental bridge and a frame, which is an original idea, as 

is the application of TMM to the calculus of a dental bridge as 

a frame. The study of frames is a very important problem with 

many practical applications in the fields of life and now in the 

field of health too, for orthodontic problems, especially in 

dentistry. Some research on frames and their applications will 

be mentioned. 

In [1] is presented a study for ten-year survival of bridges 

placed in the General Dental Services in England and Wales. 

About bending fracture of Co-Cr dental bridges, produced by 

additive technologies it is in [2] and [3] gives us an 

experimental approach about bending fracture of Co-Cr dental 

bridges, produced by additive technologies. In [4] shows an 

integrated construction and simulation of tool paths for milling 

dental crowns and bridges. Applications of Transfer-Matrix 

Method are given in [5]. In [6] a study was made about a 

comparison of survival and complication rates of tooth-

supported fixed dental prostheses (FDPs) and implant-

supported FDPs and single crowns. A study about the design 

implications due to the fatigue of zirconium and dental bridge 

geometry is presented in [7]. [8] gives us a strength analysis of 

tree-unit dental bridge framework with the Finite Elements 

Method. In [9] we have a study of fatigue of zirconium under 

cyclic loading in water and its implications for the design of 

dental bridges. [10] gives us a comparison of using different 

bridge prosthetic designs for partial defect restoration through 

mathematical modelling. Calculus of strength of materials is 

presented in [11]. In [12] we have an application of the 

Transfer-Matrix Method to frame-shear wall systems Research 

about the buckling calculus of straight bars on elastic 

environment by TMM for dental implants is shown in [13]. A 

study of similarity for a dental bridge as a frame with a 

concentrated vertical load in the middle of horizontal part of 

frame by TMM is presented in [14]. An analytical calculus of 

dental bridge with distal extension and single pole tooth 

assimilated as a beam by TMM is given in [15]. Contributions 

on the analytical calculus of simple dental bridge assimilated 

with a beam embedded at both ends by TMM can be seen in 

[16]. A synthesis of formulas for stress and strain is given in 

[17] and in [18] is given the Transfer-Matrix Method for frame 

shear wall structures. 

In this study, a frame model for a simple dental bridge will 

be presented, which will be calculate by TMM, to facilitate 

orthodontic interventions in situ, especially in delicate 

situations. 
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II. FRAME MODEL FOR A SIMPLE DENTAL BRIDGE  

A dental bridge is a fixed prosthesis. In orthodontics, it is 

very often used, to compensate for missing one or more teeth. 

A simple dental bridge is a dental bridge with one missing 

tooth. Edentulous can be for a single tooth or for several teeth, 

singular or consecutive. With the help of dental bridges it can 

be done a morphological restoration of the missing teeth-

partial edentulous, or it can be done a protection and re-

modelling teeth that have suffered major damages. With dental 

bridges, it is possible to improve and compensate for the 

negative influences of partial or total edentulous on the 

functions of the masticatory apparatus (chewing function, 

aesthetic function, and phonetic function) of the missing teeth 

and to prevent complications that may occur because of tooth 

loss. Dental bridges have the role of compensating for 

mastication, aesthetic and phonetic functions of absent teeth 

and to prevent complications that may occur as a result of tooth 

loss. Dental bridge have: the aggregation elements, the bridge 

body, which replaces the missing teeth and the poles teeth, 

pole tooth can be an existing natural tooth or a dental implant. 

The aggregation elements are dental crowns which the bridge 

rests on the pole teeth, as in Fig. 1. 

 
Fig. 1  A simple dental bridge with two poles and a bridge body with 

uniform load at the superior part 

 

For the analytical calculus of a double embedded frame 

with TMM, some working hypotheses were introduced.  

The frame model for a simple dental bridge was built like 

this: the two vertical parts of the frame can be assimilated with 

the two pole teeth and the bridge body together with the 

aggregation elements can be assimilated with the horizontal 

part of frame, as in Fig. 2.  

 
 

Fig. 2  Frame model for a simple dental bridge with uniform load at 

horizontal part of frame and embedded at two inferior ends of vertical parts. 
 

The frame was embedded at both inferior ends of the two 

vertical parts, the embedding being assimilated to the poles 

embedded into the bone (the pole can be a natural tooth or a 

dental implant), as in Fig. 2.  

The two vertical parts of the frame are considered to be 

along the symmetry axes of the two poles, having a length 

equal to the distance between the symmetry axes of three 

consecutive teeth, l (as in Fig 1 and Fig. 2). 

The horizontal part is equal in length to the distance between 

three axes of symmetry for three consecutive teeth, i.e., l. 

An uniformly distributed force is considered to act on the 

horizontal part of the frame, between the two axes of the poles. 

III. TRANSFER-MATRIX METHOD APPLIED TO CALCULUS FOR 

A DOUBLE EMBEDDED FRAME WITH UNIFORM LOAD ON 

THE HORIZONTAL PART  

An analytical calculus of a double embedded frame loaded 

with an uniformly distributed load on the horizontal part 

through TMM will be presented. Calculus of a frame by TMM 

is based of theory of Dirac’s and Heaviside’s functions and 

operators, [5].   

For an uniformly distributed load, the charge density with 

Heaviside’s functions, is (1): 

 

( ) ( ) ( ) lxYxYpxp −−−=                          (1) 

 

where Y(x) and Y(x-l) are the Heaviside’s functions. 

The following notations are introduced: 

- with A and C, we note the vertical parts of frame (the poles); 

- with B we note the horizontal part; 

- the embedded supports are noted with 0 and 3; 

- the left section of the horizontal part of the frame is marked 

with 1; 

- the right section is noted with 2, (Fig. 2.); 

- E is the modulus of longitudinal elasticity (Young modulus); 

- A is the area of frame transversal section; 

- I is the moment of inertia; 

- {D0}, {D1}, {D2} and {D3} are the vectors of the displacements 

in points 0, 1, 2 and 3, in the following form (2), (3), (4) and 

(5):   
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The displacements of node 1 and node 2 of the frame must 

be calculated. For each of the three parts of the frame, after the 

general approach presented in [5], the following matrices and 

vectors can be written: 

for: 

 p(x)=0                                          (6) 

 

On the part A and on the part C, we have: 
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and the vectors for the part A and the part C:   
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for la part horizontal B, for: 

 p(x)= - p                                          (14) 

we have: 
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- and the vectors for la part B:  
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For the embedded points 0 and 3, the displacements are 0, 

it is known that: 

{D0}={D3}=0                                 (21) 

or:  
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The displacements of points 1 and 2 must be calculated, is 

the form of vectors of displacement. For this, balance 

equations must be written in the two points 1 and 2, as (23): 
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with following observations (24):  
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and (25):  
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Supports 0 and 3 are embedded, the displacements within them 

are known as (22). The matrix equations (23) can be written as 

(26):  
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(27) gives a linear system of six equations with six 

unknowns.  

The unknowns are the six displacements, three for node 1 

and three for node 2. The linear system is (28): 
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that can be written in the general form (29):  

 
















=+++++

=+++++

=+++++

=+++++

=+++++

=+++++

6266265264163162161

5256255254153152151

4246245244143142141

3236235234133132131

2226225224123122121

1216215214113112111

amymxmmymxm

amymxmmymxm

amymxmmymxm

amymxmmymxm

amymxmmymxm

amymxmmymxm













(29) 

 

The determinant is (30):  
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or (31):  
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The vector of free terms is (32):  
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Solving the linear system (28) or (29) allows finding all 

displacements in nodes 1 and 2. TMM is very easy to program. 

This will allow to obtain results quickly and apply them in 

practice, in orthodontics, even in situ, in special situations, to 

obtain dental bridge of maximum resistance. 

IV. CONCLUSIONS 

In this work we present an original and interesting 

analytical calculus for a model of a frame for a simple dental 

bridge. The simple dental bridge has two poles assimilated 

with the two vertical parts of the frame, embedded at inferior 

ends and with an horizontal part assimilated with the two 

aggregation elements between which the body of the dental 

bridge is located. The horizontal part is loaded with a load 

uniformly distributed along its entire length using the TMM.  

This original idea to assimilate a simple dental bridge as a 

frame, is an approach that can be applied for different frames 

and, so, for differently dental bridges, applied for different 

partial or total edentulous situations. 

The mathematical algorithm for frame calculus can be very 

easy to program and this allows the results to be obtained very 

quickly with immediate application in practice, in 

orthodontics, which allows the results to be used in situ, 

especially in special and delicate situations. In the future, we 

want to be able to present the validation of the theoretical 

results with experimental results and with those obtained by 

modeling with Finite Elements Method (FEM).  

REFERENCES 

[1] F. J. T. Burke and P. S. K. Lucarotti, “Ten year survival of bridges 
placed in the General Dental Services in England and Wales”, Journal 

of Dentistry, vol. 40, Issue 11,  

https://doi.org/10.1016/j.jdent.2012.07.002, 2012. 
[2] T. Dikova and T. Vasilev, “Bending fracture of Co-Cr dental bridges, 

produced by additive technologies: Simulation analysis and test”, 

Engineering Fracture Mechanics, 218/2019, 
https://doi.org/10.1016/j.engfracmech.2019.106583, 2019. 

[3] T. Dikova, “Bending fracture of Co-Cr dental bridges, produced by 

additive technologies: experimental investigation”, Procedia Structural 
Integrity 13 (2018), 461-468, Elsevier B.V. Peer-review under 

responsibility of the ECF22 organizers, 10.1016/j.prostr.2018.12.077, 

2018. 
[4] P. M. Gaspar and F. Weichert, “Integrated construction and simulation 

of tool paths for milling dental crowns and bridges”, Computer-Aided 

Design, 45/2013, 1170–1181, 2013. 
[5] P.-M. Gery and J.-A. Calgaro, “Les Matrices-Transfert dans le calcul 

des structures”, Editions Eyrolles, Paris, 1987. 

[6] B. E. Pjetursson, U. Bragger, N. P. Lang and M. Zwahlen, “Comparison 
of survival and complication rates of tooth-supported fixed dental 

prostheses (FDPs) and implant-supported FDPs and single crowns”, 

(SCs) Clin Oral Implants Res., 2007;18 (Suppl 3):97–113. 
https://doi.org/10.1111/j.1600-0501.2007.01439.x, 2007. 

[7] G. D. Quinna, A. R. C.  Studart, C. Herbert, J. R. Ver Hoef and D. 

Arola, “Fatigue of zirconia and dental bridge geometry: Design 
implications”, Dental Materials, 26, 11331136, 

doi:10.1016/j.dental.2010.07.014., 2010. 

[8] L. Reimann, J. Zmudzki and L. A. Dobrzanski, “Strenght analysis of 
tree-unit dental bridge framework with the Finite Elements Method”, 

Acta of bioengineering and biomechanics, Wroclaw University of 

Technology, 17(1):51-9, DOI: 10.5277/ABB-00091-2014-02, May 
2015. 

[9] A. R. Studart, F. Filser, P. Kocher and L. J. Gauckler, “Fatigue of 

zirconia under cyclic loading in water and its implications for the 
design of dental bridges”, Dental Materials, 23/2007,106–114, doi: 

10.1016/j.dental.2005.12.008 , 2007. 

[10] O. Styranivska, N. Kliuchkovska and N. Mykyyevych, “Comparison of 
using different bridge prosthetic designs for partial defect restoration 

through mathematical modeling”, Eur J Dent., 11(3): 345–351, 2017. 

[11] M. Suciu and M.-S. Tripa, “Strength of Materials”, Ed. UT Press, Cluj-

Napoca, 2021. 

[12] S. Syngellaikis and I. Younes, “The transfer matrix method applied to 

frame-shear wall systems”, Computers & Structures, Volume 41, Issue 
2, Elsevier, pp. 197-206, https://doi.org/10.1016/0045-7949(91)90423-

J, 1991. 

[13] M. Tripa et allii, “About buckling calculus of straight bars on elastic 
environment by Transfer-Matrix Method (TMM) for dental implants”, 

MATEC Web of Conferences, 178, 04007 (2018), 

https://doi.org/10.1051/matecconf/201817804007, IManE&E, 2018. 
[14] M. Tripa et allii, ”About the study of frames by Transfer-Matrix Method 

(TMM)-similarity of dental bridges with frames”, Acta Technica 

Napocensis, Cluj-Napoca, Vol. 62, no. 4. pp. 569-572, 2019.  
[15] M. Tripa et allii, “About the Analytical Calculus of Dental Bridge with 

Distal Extension and Single Pole Tooth Assimilated as a Beam by 

Transfer-Matrix Method (TMM)”, International Journal of Latest 
Research in Science and Technology, ISSN (Online):2278-5299, Vol 

9, Issue 6, pp. 19-22, 

https://www.mnkjournals.com/journal/ijlrst/pdf/Volume_9_6_2020/11

011.pdf, https://www.mnkjournals.com/journal/ijlrst/index.php , 2020.  

[16] M. Tripa ei allii, “Contributions on the analytical calculus of simple 

dental bridge assimilated with a beam embedded at both ends by 
Transfer-Matrix Method (TMM)”, Acta Technica Napocensis, Vol. 62, 

no. 4. pp. 573-576, 2019.  
[17] C. Y. WARREN, “ROARC’S-Formulas for Stress & Strain”, 6-ème 

Edition McGraw-Hill Book Company, 1989. 

[18] S. Y. Zhang and M. H. Dong, “A Transfer Matrix Method for Frame 
Shear Wall Structures”, Applied Mechanics and Materials, 482:207-

212, DOI: 10.4028/www.scientific.net/AMM.482.207, 2013. 

 

https://doi.org/10.1016/j.jdent.2012.07.002
https://doi.org/10.1016/j.engfracmech.2019.106583
https://doi.org/10.1111/j.1600-0501.2007.01439.x
https://www.researchgate.net/journal/Acta-of-bioengineering-and-biomechanics-Wroclaw-University-of-Technology-1509-409X
https://www.researchgate.net/journal/Acta-of-bioengineering-and-biomechanics-Wroclaw-University-of-Technology-1509-409X
http://dx.doi.org/10.5277/ABB-00091-2014-02
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5594964/
https://www.sciencedirect.com/journal/computers-and-structures
https://www.sciencedirect.com/journal/computers-and-structures/vol/41/issue/2
https://www.sciencedirect.com/journal/computers-and-structures/vol/41/issue/2
https://doi.org/10.1016/0045-7949%2891%2990423-J
https://doi.org/10.1016/0045-7949%2891%2990423-J
https://doi.org/10.1051/matecconf/201817804007
https://www.mnkjournals.com/journal/ijlrst/pdf/Volume_9_6_2020/11011.pdf
https://www.mnkjournals.com/journal/ijlrst/pdf/Volume_9_6_2020/11011.pdf
https://www.mnkjournals.com/journal/ijlrst/index.php
https://www.researchgate.net/scientific-contributions/Shuo-Ying-Zhang-2060074733?_sg%5B0%5D=bZ3frm34RZ5meo7g9DEf7k87DcSo59D1VBxd17mRVUMaoJXaKpuT9SBv1FVUQPrLqTO51WU.vFbPPdUVXl21-QbOx_K5SwIEQcvfAibvJDLlbJUnVX3KP12--suowJVSEicb_qiwK7sZgVJaIxVw7mcrqLA5sw&_sg%5B1%5D=AEn7IMHnzx3bmKTiOEUEfFcTxhvZ762dy-AE_CbfHOjGsH7ADl-DjnLs16KDu10DJ3fyqkQ.MTO-0vrdfqRYnS0aIa_nOpn5p1X2Y8vbbmKjHsVosX0a8zufghpN3AmqdKVX1BXIGiwfshZ0_ftFeuZNNL4QQA
https://www.researchgate.net/scientific-contributions/Ming-Hai-Dong-2060253419?_sg%5B0%5D=bZ3frm34RZ5meo7g9DEf7k87DcSo59D1VBxd17mRVUMaoJXaKpuT9SBv1FVUQPrLqTO51WU.vFbPPdUVXl21-QbOx_K5SwIEQcvfAibvJDLlbJUnVX3KP12--suowJVSEicb_qiwK7sZgVJaIxVw7mcrqLA5sw&_sg%5B1%5D=AEn7IMHnzx3bmKTiOEUEfFcTxhvZ762dy-AE_CbfHOjGsH7ADl-DjnLs16KDu10DJ3fyqkQ.MTO-0vrdfqRYnS0aIa_nOpn5p1X2Y8vbbmKjHsVosX0a8zufghpN3AmqdKVX1BXIGiwfshZ0_ftFeuZNNL4QQA
https://www.researchgate.net/journal/Applied-Mechanics-and-Materials-1662-7482
http://dx.doi.org/10.4028/www.scientific.net/AMM.482.207

