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Abstract: Wave matter duality has now moved into the realm of settled science with slit experiments at the core of the debate. The 

suggestion is that if matter (atoms, molecules) can exhibit wave-like diffraction patterns then surely matter must possess wave properties 

with the de Broglie equation providing its wavelength. This paper offers a different view of the diffraction patterns observed in slit 

experiments and demonstrates that wave theory may not be the correct interpretation thus calling into question the very essence of wave 

matter duality. New concepts and formalisms are introduced all in the context of explaining the physics of slit experiments however these 

novel methods hold bright promise for further investigation into atomic structures leading to a better understanding of the quantized nature 

of matter. 
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I. INTRODUCTION 

TO understand why diffraction patterns are observed in slit 

experiments, one must be aware of the physical phenomena 

taking place at the diffraction grating. Previously it was 

assumed that the slits and grating material were passive 

bystanders in the process of pattern creation and that matter 

particles exhibiting wave like properties were the source of 

the interference patterns. It will be shown that the grating 

material and the slits themselves are the active components in 

pattern creation and that matter particles simply behave as 

ordinary massive test particles following the deterministic 

laws of physics. There is no need to appeal to wave theory to 

explain these diffraction patterns. 
 

The work is presented in the following order: 
II. QEM fields and their origination 

III. The field equations 
IV. Solutions to the field equations 
V. Equations of motion 

VI. Particle diffraction 
VII. Probability amplitudes 

VIII. Gaussian distributions 
IX. Experimental verification 
X. Conclusions 

Sections III and IV present the field equations and their 

solution utilizing techniques from the literature. Section V 

presents the equation of motions for massive test particles in 

QEM fields. Sections VI, VII and VIII present some new 

methods that are generally applicable to particle diffraction. 

Probability amplitudes is borrowed from QFT. Six 

experiments from the literature were studied and results 

predicted by QEM field theory are compared in section IX 

Finally interesting conclusions are presented for follow-up. 
 

QEM FIELDS  

Energy levels in these experiments are low (65 – 180 mev) 
which negates high energy scattering and other such 
phenomena nevertheless it is important to look at a typical 

energy balance equation. 

 

  Ein = Eatom+ Emol + Eslit + εloss  ….. (1) 

 
Approximately 30% of the incident energy Ein passes through 
the slits Eslit with most of the remaining energy being 
absorbed by the grating material. There is insufficient energy 
to cause electrons to migrate to new orbitals and thus most of 
the absorbed energy ends up as increased molecular activity. 
It should be noted that incident energy is mainly comprised 
of kinetic energy but in some cases (C60 fullerenes) there is 
significant thermal energy present. 
Diffraction gratings are typically manufactured from silicon 
nitride wafers that have been precisely engineered with 
nanometer wide slits. Five of the six experiments used SiNx 
gratings and the sixth used a gold plated SiNx grating.  
If a thin slab of wafer material without any slits is placed in 
the path of an incident beam, then internally in the wafer 
there will be increased vibrational activity (neglecting 
rotational and translational modes) which can be thought of 
as an increase in phonon excitation. In the slitless slab 
phonons propagate freely throughout the wafer with little or 
no external effects being observed. 
When slits are introduced into the wafer, potential wells are 
created by the air gaps and many degrees of freedom are 
removed from phonon propagation with a resulting 
accumulation of energy around the slits. It is postulated that 
the higher energy levels around the slits leads to the emission 
of infrared radiation. Alternatively stated, the presence of 
diffraction slits in the wafer initiates a phonon to photon 
conversion process and infrared radiation is emitted. 
This radiation is quantized as original phonon activity was 
quantized and the wavelength of the infrared radiation will be 
the characteristic spectral emissivity wavelength ,λe, of the 
grating material.  
Henceforth this radiation will be referred to as QEM radiation 
or QEM fields. It has been shown [8] that the spectral 
emissivity wavelength for SiNx is 8.3 microns and for gold 
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[9] the emissivity wavelength is 20.5 microns. For single slit 
experiments weaker QEM fields are expected as phonon 
propagation is less restricted.  
Having established the source of the QEM fields and their 
wavelengths, field equations can now be formulated with the 
intention of demonstrating that weak QEM fields can 
introduce microscopic curvature in local spacetime. 

II. THE FIELD EQUATIONS 

 

 Einstein Field Equations (EFE) were developed in the 
context of cosmological distances and massive extraterrestrial 
objects but there is a growing realization that the field 
equations can also be applied microscopically to local 
spacetime yielding accurate predictions. QEM fields are 
therefore framed in this manner with the well known equation 
relating energy density to curvature. 
 

ababab T
c

G
RgR

4

8

2

1 
=−   ….. (2) 

 
Given a pseudo Riemannian manifold [M, g] with gab being a 
solution to the above equation, if discussions are limited to 
electrovac spacetimes in which the stress energy tensor, Tab, 
is derived from source-free, massless electromagnetic fields 
such as the QEM fields previously described, then it can be 
easily shown that in these cases Tab is traceless and the field 
equation reduces to: 

abab T
c

G
R

4

8
=    ….. (3) 

where Rab is the Ricci curvature tensor. [Rab] = m-2 
 
It should be noted that in this analysis all physical constants 
are retained and the following nomenclature [Kg], [m], [s] 
,[C] , [A] is used for dimensional units.  
 

Cylindrical coordinates are best suited to slit experiments 
with the z-axis being along the height of the slit. Exact 
solutions to the field equations exist [1] for a stationary,, 
cylindrically symmetric, electrovac spacetime with Killing 

vectors [ ,0 , ,0] (=∂,t; and =∂).. A general line metric 

with time independent components (stationary) in the Weyl-
Lewis-Papapetrou format [1] can be written with signature   
[-,+,+,+]  
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    ….. (4) 
where the coordinate system is [ct,r,θ,z] 
 
The metric tensor can then be written in component form as: 
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both f(r) and u(r) are functions of r only and in the general 

case ω is also a function of r. Symmetry considerations 
suggest the following properties for the electric and magnetic 
fields under study. 
 

(a) The electric field is purely radial – E , Ez are zero 
(b) The radial component Er is a function of r only 
(c) Bz is the only non-zero component of the magnetic field  
(d) Bz is a function of r only. 
The electromagnetic vector potential of such a field, Aa, can 
be written as  
               Aa = [At, 0, A, 0]  ….. (6) 

which shares the symmetry of the Killing vector [,0,,0] 
and At = P(r) ,  A  =  Q(r) are functions of r only. The 

electromagnetic field tensor Fab can be derived from the 

vector potential as: 

               Fab = ▽; a Ab - ▽; b Aa  ….. (7) 

Because of symmetries in the Christoffel connections, the 
covariant derivates in (7) reduce to partial derivates then: 
 

               Fab = ∂,,a Ab - ∂,,b Aa  ….. (8) 

 
               Fab = ∂,,aAb - ∂,,bAa  ….. (8) 

The non-zero components of Fab are 

    F01 = -P’(r) F12=  Q’(r) 

    F10=  P’(r) F21 = -Q’(r) 

where the prime ‘ denotes differentiation with respect to r. 
 
For the QEM fields under study, the anti-symmetric 
electromagnetic field tensor Fab can be written in general 
component form as: 

   Fab =   
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P’(r) is the radial component of the electric field intensity E/c 
with units [KgC-1s-1] and Q’(r) is the z-component of the 
magnetic flux density B with units [KgA-1s-2] or [Tesla] 
 
Using the Einstein-Hilbert Lagrangian approach, the Einstein 
Maxwell equations with vanishing electromagnetic sources 
[3] [6] can be written as: 









−=

c

bacab
ba

abab FFgFFcT
4

12
0  ….. (10) 

Solutions to eq (3) and (10) with the fields as described in eq 
(9) are known as electrovac solutions. If the fields satisfy 
FabFba≠ 0 everywhere in local spacetime then the spacetime is 
said to be a non-null electrovacuum [3]. It will be shown later 
that the fields are indeed non-null and that the Rainich 
algebraic conditions are met [3] [4] thereby ensuring that the 
chosen metric is truly an electrovac solution and that gab is 
necessarily a solution to eq (2) and fully describes the fields 
in local space time. 
Specific electrovac solutions relevant to the local spacetime 
of slit experiments are now examined. Expressions for the 
components of the general metric eq (5) namely f, u and ω 
are sought such that eq (3) and eq (10) are satisfied along 
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with the non-nullity conditions and the Rainich algebraic 
conditions. Expressions for P’(r) and Q’(r) in terms of the 
metric components are also required.   

III.SOLUTIONS TO THE FIELD EQUATIONS 

In 1983 Van den Bergh and Wils (VDB) provided exact 
solutions [2],[5],[7] for non-null electromagnetic fields in a 
stationary, cylindrically symmetric, electrovac spacetime. 
Their solutions were derived from the general electrovac 
metric eq (4).  
They found three families of solutions the first of which is 
applicable to this analysis. Using the notation from eq (4) and 
(5), the VDB solution is: 
 

))ln((sec)( 22 arkskrf =   ….. (11) 
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r
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f

r
ru −=   ….. (12) 

It should be noted that the VDB solution introduces three 
new arbitrary constants k, s, and a into the metric which need 
to be rationalized and brought into the microscopic 
framework of slit experiments. Additionally the metric 
component ω has to be discussed.  
By inspection of eq (4) it is clear that both u(r) and f(r) are 
dimensionless while ω has units of [m] and from eq (11) the 
constants ‘k’ and ‘s’ are dimensionless while ‘a’ has units of 
[m]-1 
There is some disagreement in the literature as to exactly 
what constitutes a static field.. The VDB position is that ω = 
constant ;ω’ = 0 defines a static field, other authors require ω 
= 0 for static fields. Our equations reflect the VDB position 
and the QEM fields are therefore considered to be static with 
constant ω. The exact value of ω will be determined later. 
The VDB solution also provides equations for the electric and 
magnetic fields: 
 

c

E
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To preserve dimensional accuracy, unit electric and magnetic 
fields were inserted into the VDB expressions yielding the 
above equations where E is the unit electric field intensity of 
magnitude 1 and units [KgC-1ms-2] similarly B is the unit 
magnetic flux density with magnitude 1 and units [KgA-1s-2] 
and c is the speed of light in a vacuum 
 
The differential equation (12) can be easily solved by direct 
substitution yielding: 

)ln()( 22 arskru −=    ….. (16)  

where ‘a’ is the  constant of integration. The term e2u in the 
metric then becomes: 
 

2222 2)ln(22 )( skarsku aree −− ==   ….. (17) 

 

With equations (11) through (17) in hand, the metric and its 
inverse can be written in terms of k, s, a and similarly Fab, Fba 
and Tab can be obtained in terms of k, s, a. The resulting 
expressions are long and complex and were obtained with the 
assistance of a Computer Algebra System (CAS) 
 
(IVa)  THE EXTENT OF LOCAL SPACETIME 
Local spacetime is defined in terms of its coordinates as: 
 
 qr<= r <= 10 mm 

   0<=  <=    ….. (18) 

  -500 mm <= z <= 500 mm 
 
Since local spacetime is defined as a source-free 
electrovacuum its r-coordinate cannot include the diffraction 
grating. Local spacetime is then defined to begin at a distance 
qr away from the grating. In this analysis qr is chosen as 10 
nanometers. Other small values could also have been chosen. 
 
Examination of eq (4) and (11) shows that coordinate 
singularities are possible at r-values where ksln(ar) is a 
multiple of π/2 and f(r) becomes indeterminate. Since there 
are no singularities in local spacetime the quantity ksln(ar) 
must be chosen to be less than π/2. 
‘a’ is one of the arbitrary constants of the VDB metric and 
theory suggests that it is the reciprocal of the characteristic 
spectral emissivity wavelength ,λe, of the grating material. 
Appropriate limits for λeare 1 micron to 100 microns. The 
limits for ‘ar’ and ‘ks’ can then be determined as:  
 
                                 10-4<= ar<= 10+4 
and neglecting negative values of ks: 
                                   0<ks< 0.17  ….. (19) 
Typically ks is in the range of 0.05 to 0.03 avoiding any 
coordinate singularities. 
 
(IVb)  NON-NULLITY 
After simplification, the following expression is obtained 

2222 )()('2 skba
ab arrPFF =   ….. (20) 

 
By definition k, s, a are non-zero and therefore eq (20) is 
non-zero wherever the electric field P’(r) exists and r>0 
which is precisely the definition of local spacetime. Therefore 
the non-nullity conditions in [3] are satisfied. 
 
 
(IVc)  RAINICH CONDITIONS 
Long ago Rainich developed [3],[4] three algebraic 
conditions to ensure that a chosen metric solution was indeed 
an electrovac solution to the EFE. His algebraic conditions 
apply to the stress energy tensor in the following manner: 
  1.  Trace of Tab = 0 
  2.  The energy density T00>= 0 
  3.  TauTu

b = (1/4)(TvwTwv)gab 

where u, v, w are dummy indices and gab is the metric under 
test. When these conditions are applied to the VDB metric the 
following results: 
 
(a) As expected, the CAS computes the trace of Tab as zero. 
 
(b) The expression for energy density T00 is computed as: 
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where ω=1 and E =1. All exponents in eq (21) are even 
numbers therefore T00 must be >=0 and Rainich No 2 is 
satisfied. 
 
(c) Each of the sixteen components of the tensor equation 
(condition No 3 above) was evaluated using the CAS. Both 
sides of the identity were evaluated and checked for equality. 
A typical evaluation for the (0,0) component is: 
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The RHS (1/4)(TvwTwv)gab(0,0) evaluates to exactly the same 
expression as eq (22). The CAS script checked all 
components and equality was found in each case. Therefore 
Rainich No 3 is satisfied.  
 
(IVd)  KRETSCHMANN  INVARIANT 
The Ricci curvature scalar R vanishes by definition in eq (3) 
so another invariant scalar needs to be evaluated as a test for 
curvature in local spacetime. The Kretschmann scalar which 
is also derived from the Riemann curvature tensor is used for 
this purpose. The CAS was used to evaluate Kr and after 
simplification yields: 
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Which is non-vanishing if r>0 establishing that weak QEM 
fields can introduce curvature in microscopic spacetime. 
 
(IVe) PHYSICAL INTERPRETATION OF THE METRIC 
CONSTANTS. 
The metric solution describing QEM fields and their 
behaviour – namely eq (4), eq(10) and eq(11) through (17) 
have been reduced to a system of equations involving four 
constants (k,s,a,ω). Physical interpretation of these constants 
will now be offered. Theory suggests and experimental 
verification confirms the following: 
 
k :  As discussed earlier, molecular vibrations in the grating 
material leads to quantized fields and each configuration of 
those fields is represented by a unique k-value thus k 
represents the field configuration and is also the order of 
diffraction holding values of (0, ±1,±2, ±3…±n). 
 
s :  A scale factor that tunes the metric solution to the 
microscopic world of slit experiments. The constant ‘s’ 
allows equations that were written for planets and stars and 
distances of light years to operate at the nanometer scale with 
masses of the order of 10-24 Kg. 
 
a :  The constant ‘a’ is the reciprocal of the characteristic 
spectral emissivity wavelength ,λe, of the grating material 
 
ω :  The constant ω can be thought of as the twist factor of 
the QEM fields. A constant ω implies that there is no twist 
and that the fields are static ;  ω= 1 is chosen so that the 
electric and magnetic fields have the same magnitude. 
 
ks:  The actual scale factor used in the equations is ‘ks’ – the 
product of ‘k’ and ‘s’. ‘ks’ plays a pivotal role in setting the 
environment for the equations of motion and the equations of 

particle diffraction. Jumping ahead slightly we now present 
an equation derived from particle deflection theory 

0
)(cos2

=− B
ks

Aks
   ….. (24) 

where A = ln(7qr / λe)  and   B = d ln(6) / qr.  
The transcendental equation can be readily solved 
numerically and yields solutions accurate to 0.4%. In eq (24) 
qr and λe are as previously defined and d is the period of the 
diffraction grating. It should be noted that ks is a function of 
(λe , d, qr) and is not dependent on particle parameters such as 
velocity or mass and neither is it dependent on slit width. ks 
essentially describes the environment of the slit experiment – 
the grating material, the periodicity of the slits and the start of 
local spacetime.  

IV.EQUATIONS OF MOTION 

 Equations of motion for massive, uncharged test particles in 
the QEM fields are now presented. Similar equations for 
charged particles and the massless photon are yet to be 
derived. Using the methods of Carroll [10] equations of 
motion for non-null fields can be developed purely from the 
metric and the symmetry of the Killing vectors. 

The timelike Killing vector )0,0,0,1()( == u
t

u  and its 

covariant form )0,,0,( ffg u
abu  −== are easily 

obtained from symmetry considerations. Along geodesics, 
energy is the conserved quantity of the timelike Killing 

vector and noting that E is energy per unit mass [m2s-2] and 

the signature is  [-+++] the following is obtained with τ being 
the affine parameter: 
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and with x0 = ct 
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r
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obtained. Along geodesics, angular momentum is the 
conserved quantity of the spacelike Killing vector and noting 
that L is the magnitude of the angular momentum vector per 
unit mass [m2s-1] then: 
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Substituting dt/dτ from eq (26) into (28) yields: 

2r

bf

d

d
=




   ….. (29) 

 

and         c)( E/−= Lb    [m2s-1]  ….. (30) 

An equation for dθ/dr is necessary for particle trajectory 
prediction. An expression for dr/dτ is first obtained from the 
geodesic equation and then combined with eq (29) to arrive at 
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dθ/dr. The well known geodesic equation for massive 
particles is: 

2. c
d
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dx
g

ba
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  ….. (31) 

Noting that motion occurs in the r-θ plane so that dz/dτ= 0 
the following is obtained: 
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The desired equation for dθ/dr can now be written: 
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To obtain the particle trajectory θ(r), eq (33) needs to be 
integrated with eq (32), (30) and (11) included in the 
integrand. To date a closed form analytical solution to eq (33) 
has not been found. However numerical integration of the full 
equation set is possible and accurate values of θ(r) can be 
obtained at desired r-values.. When eq (33) is rewritten as : 
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then K(r) is observed to be almost a constant, prompting the 
following: 

K
r

rK
r  +−

)(
)(   ….. (35) 

Numerical integration results suggest that such a model is 
accurate. The term -K(r)/r is the transient response in r-space. 
When the particle has traveled 100 nanometers from the 
grating θ(r) has achieved 90% of its final value and at 10 
microns it has achieved 99.9%. The transient response has 
little or no effect after r>100 nm and therefore the steady 
state response can be written exactly as: 
 

Kr  =)(   ….. (36) 

Numerical integration results confirm that θ(r) always 
reaches an asymptotic value and that no other variations 
occur after. The  sign originates from the square root in eq 
(33).  
 
Equation (36) represents a ray-like trajectory in the r-θ plane 
(polar cords) and θK is the angle of deflection. The transient 
response introduces a slight curvature at the start of the ray 
when r< 100nm. The equations of motion clearly show that 
QEM fields will introduce microscopic curvature and that 
curvature is manifested as ray-like deflections. 
 
(Va) IMPACT PARAMETER & THE  θK MODEL 
The quantity, b, in eq (30) is a general impact parameter 
which describes the initial conditions per unit mass of test 
particles entering a field of radiation. A specific impact 
parameter has to be developed for slit-type particle 
diffraction.  
After numerous simulations it became apparent that to 
achieve deflection angles similar to what is reported in the 

literature, the parameter ‘b’ had to be inversely proportional 
to the momentum of the particle. 

imv

D
b =   [m2s-1]  ….. (37) 

which meant that [D] should have units of [Kg m2 s-1 m s-1].. 
Planck’s constant and the speed of light provided the correct 
units. Noting that the particles position in the slit contributes 
to the angular momentum, the following could be written. 
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The impact parameter eq (38) yields excellent predictive 
results when combined with the other equations. Numerical 
integration solutions for θ(r) eq (33) using eq (38), (32) and 
(11) in the integrand yield expected values of deflection 
angles for many dozens of simulations tested. 
In eq (38) ks, d and c are as previously defined with h being 
Planck’s constant, m the mass of the particle, vi being the 
velocity of the particle (assumed constant) and qs is a new 
quantity representing the particles position in the slit. qs is 
measured from the center of a neighboring bar to the center 
of the particle. In this way the central path trajectory is 
defined to always be d/2 regardless of grating geometry. The 
edges of the slits are then given by: 

22

ud
qs =  where u = slit width ….. (39) 

With eq (38) in hand, a model equation for θK was formulated 
using inputs from eq (38) and eq (11). 
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Although there is no closed form solution to eq (33) we now 
have an exact steady state response eq (36) and an accurate 
model equation (40) for θK. The model equation has been 
tested over a wide range of simulations with varying values 
of ks, d, qs, m, vi and λe. In all cases θMODEL was in good 
agreement with θNUMI. The average error was 0.75%. Model 
(40) computations have been used in experimental 
verification. 
It is interesting to note that when a particle takes the central 
path through the slit, the deflection angle is the same as the 
de Broglie deflection. The de Broglie deflection angle is 
really the central path deflection where ln(3d/qs) reduces to 
ln(6). Deflection angles will vary with particle path position 
and those path dependent deflection angles can be predicted 
by eq (33) , (40) allowing random distributions to be 
introduced. 
 

V. PARTICLE DIFFRACTION 

Particle diffraction is quite different from wave diffraction in 

that particles travel in straight lines (ray-like trajectories) and 

other than collisions there is no interference between particles 

during flight time For ease of notation we can consider a 

typical experiment in Cartesian coordinates where the 

particles travel in the y-direction, the height of the slits is in 

the z-direction and the width of the grating is in the x-

direction. 

QEM fields of radiation are associated with each slit and 

those fields introduce curvature in the microscopic spacetime 

near the slit. That curvature manifests itself as particle 

deflection and at any time, t, the QEM fields can be in any 
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one of the finite number of configuration states (k-value 

states). There is nothing in the theory to suggest that 

neighboring slits will be in the same configuration state, to 

the contrary, the configuration state of individual slits is a 

purely random event dependent on molecular vibrations. 

What is not random, however, is the angle of deflection θK 

associated with the kth field configuration which is given 

deterministically by eq (33) and (40). We can envisage 

particles arriving at the detector in a seemingly random 

manner but actually they are following the dictates of 

molecular vibrations and eq (33), (40). 

In the case of a double slit experiment if, by chance, both slits 

are in the same configuration state then deflected particles 

will arrive at the detector on parallel paths that are d 

nanometers apart, where d is the distance between slit centers 

(typically100 nm). In most experiments the active detector 

area (the area where counting takes place) has a width of 

approximately 10 mm. Clearly on the detector width scale a 

100 nm spacing will appear to be coincident – the two ‘hits’ 

will appear to be one. 

Generally, in particle diffraction, parallel paths are 

coincident, under allowable limits. The allowable limits are 

that the spacing between the paths must be much smaller than 

the active detector width.   

In the case of multi-slits, the incident beam from the 

collimator will illuminate N slits (N≈100), then the spacing 

between parallel paths emerging from slits at either end of the 

illumination will be O(10-5) which is 1000 times smaller than 

the active width and parallel paths will also appear to be  

coincident in multi-slit cases. In other words multi-slit 

gratings do not add any new maxima to the diffraction 

pattern; they add intensity to the pattern. If a double slit 

experiment had an intensity of I on some intensity scale then 

a multi-slit grating with N illuminated slits will have an 

intensity of: 









=

2

N
II dblmulti   ….. (41) 

VI. PROBABILITY AMPLITUDES 

In slit experiments, the intensity at a given angle of deflection 

is measured as the number of particles impacting the detector 

per unit time at that deflection angle.. Therefore the intensity 

of the kth maxima is the number of particles arriving at the 

detector with deflection angle = θK It has been shown that the 

kth angle of deflection θK is directly related to the kth 

configuration state eq (33), (40). It follows then that the 

intensity I(k) of the kth maximum is directly proportional to 

the probability P(k) of finding the fields in the kth 

configuration state. 

)()( kIyPkI =   ….. (42) 

where Iy is a constant to be determined. 

The probability of finding the fields in the kth configuration 

state is known to be the square of the modulus of the 

complex-valued probability amplitude a(k) and for real-

valued a(k): 

)()( 2 kakP =   ….. (43) 

As will be shown, the probability amplitudes can be derived 

from the wave function in configuration space.  

For the electromagnetic fields as described by eq (9), (14) 

and (15) the wave function ψ( rn) in rn space is the 

convolution of two descriptors f(rn) and g(rn)  where rn is the 

dimensionless, normalized r-coordinate 

r

n
q

r
r =   ….. (44) 

and        0)( Brf n =    for  − nr  ….. (45) 

                         0=    otherwise. 

)( nrf is a rectangular pulse of width 2β which implies that 

the wave function is partly a standing wave of amplitude B0. 

 

and              
22

1
)(

+
=

n

n
r

rg   ….. (46)   

)( nrg is related to the energy density of the configurations. 

 

 

then               )(*)()( nnn rgrfr =  ….. (47)                   

where * is the convolution operator. 

 

Theory suggests that the probability amplitudes a(k) are 

given by the Fourier transform of ψ(rn) to k-space, then, 

                           a(k) = F (ψ(rn))  ….. (48) 

 

By the convolution theorem, 

                       F(ψ(rn)) = F(f(rn)) F (g(rn))….. (49)  

Each Fourier transform will be evaluated separately so that 

the amplitudes a(k) can be determined. 

  F (f(rn)) = 
+

−

−
ndreB nikr

0 = 
+

−

−




ndreB nikr
0 ... (50) 
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which by Euler’s identity is 

  F (f(rn)) = 





k

kSin
B

)(
2 0   ….. (51) 

  F (g(rn)) = 
+

−

−

+
n

n

dre
r

nikr

)(

1
22


 = 

||k
e
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 −
 .. (52) 

 

From eq (48), (49) the probability amplitudes can now be 

written as: 

||)(2
)( 0 k

e
k

kSinB
ka









 −
=     ….. (53) 

And from eq (43) the probability of finding the fields in the 

kth configuration is given by:  

||2
22

2

2

22

0
2

)(4
)(

k
e

k

kSinB
kP









 −
=  ….. (54) 

The constant B0 is chosen so that 1)(
1

=
=

n

k

kP  

From eq (41) and (42), it follows that 

||2
22

2

2

22

0
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
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But 1
)(

22

2

0
=
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
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therefore             
2

22

0
22

)0(


 BNI
I

y
=  ….. (56) 

which allows the above group of constants to be determined 

from the experimentally measured value of the zeroth order 

peak intensity. The higher order peak intensities can be 

computed relative to I(0) as: 

||2
22

2 )(

)0(

)( k
e

k

kSin

I

kI 



 −
=  ….. (57) 

This methodology and eq (57) has been used in experimental 

verification. 

The function 




k

kSin )(
is also known as Sinc(kβ) and it can 

be considered as a sampling function that provides peak 

intensities. In other applications (bandwidth filter design) the 

Sinc function is sampled in units of time to obtain filter 

response here the Sinc function is sampled in units of ‘k’ to 

obtain peak intensities.  

The angular frequency, β, of the sampling function is the 

most important factor in determining the appearance of the 

diffraction pattern – which peaks are high or low. The other 

factor in determining peak intensities is the damping 

exponent, α. It should be noted that the derivation of F (g(rn)) 

requires that α be positive (α>0). The damping factor e-2α|k| 

ensures that higher order peaks have lower intensities and |k| 

ensures pattern symmetry.  

 

(VIIa)  THE ANGULAR FREQUENCY β 

When the fields are evaluated at rq)1( + which is the 

center of the standing wave pulse eq (45), the following 

expression has been found to be invariant across the six 

experiments: 

 

1

)))1(ln((

))(6ln())((

2

2 22

=

+ 




e

r

e

r

r

q
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q

q

d
ks sk

 ….. (58) 

An expression for β can be obtained from eq (58) as follows: 
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



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
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where 
222))(6ln())(( sk

e

r

r

q

q

d
ksF


=  ….. (60) 

 
The claim of invariance across experiments in eq (58) is 
somewhat misleading, in that, for accurate β-values it is 

necessary to replace ln(6) in eq (58) with ln(6) /εb where εb 
is a correction factor shown in Table I. 

These experiments are 
conducted at the nanometer 
scale with microrad 
deflection angles hence it is 
necessary to know the 
correction factors to O(10-7).  
The need for a correction 
factor may result from.  
(a) the use of approximate 
model (40) equation in the 
derivation of eq (58). Small 
inaccuracies in the factor, F, 

eq (60) will be greatly magnified and lead to significant 
errors in β as F occurs as an exponent in eq (59). 
(b) Equation (58) could be correct as written and there could 
be experimental setup misalignments leading to the 

correction factors. In any event the correction factor εb has 
been used to compute β-values for experimental verification. 

 

(VIIb)  THE DAMPING EXPONENT α 
The field descriptor )( nrg is a dimensionless quantity related 

to the energy density of the field configurations and from eq 
(46) : 

0
21

1

T

Tx=
+ 

  ….. (61) 

 
The energy densities Tx and T0 are the (0,0) component of the 
stress energy tensor, Tab, given by eq (21). 

)(00 rx xqTT = x>1  ….. (62) 

)(000 rqTT =                  ….. (63) 

 
Equation (61) can be rewritten as: 

10 −=
xT

T
   ….. (64) 

 
Using eq (21) the ratioT0 /Tx can be simplified to: 
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It has been determined that 

222
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sk

rq

u
x 
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


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



=  ….. (66) 

is a reasonable fit for α where 
u is the nominal slit width. 
However a correction factor 

εa has to be applied as shown 
in Table II. The correction 

factor εax has been used to 

compute α-values for 
experimental verification.  
 
 
 
 

TABLE I 

Experiment 

Number 
εb 

1 0.99417618 

2 1.00368993 

3 1.01241537 

4 1.01509721 

5 1.00417037 

6 1.02496715 

TABLE II 

Experiment 

Number 
εa 

1 1.00059356 

2 1.00197248 

3 1.00320750 

4 1.00106068 

5 1.01112845 

6 1.02242765 
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In summary, the relative peak intensities 
 

),,,,,(
)0(

)(
udqkskf

I

kI
er =  

 
are a function of the metric constants k,s,a,qr and the grating 
geometry (slit width ‘u’ and grating period ‘d’). 
 

VII.GAUSSIAN DISTRIBUTIONS 

Typically the slit width, u, is much larger O’(70-400) than the 
particle diameter, v, leading to the particle position within the 
slit, the variable qs, being a random variable with a standard, 
normal Gaussian distribution. In this analysis the single word 
‘Gaussian’ is used instead of the much longer phrase 
‘standard, normal Gaussian distribution’.  
At each peak location given by θK a Gaussian is constructed 
with the mean being the detector position corresponding to 
angle θK. All Gaussians regardless of diffraction order, k, will 
have the same standard deviation, σ, as particle position 
within the slit is independent of field configuration.  
From standard probability theory, the probability that a 
random variable, x, will take a value less than or equal to qs 
is given by: 

dxeqcdf

xqs

s

2

2

2

)(

2

1
),,( 






−−

−

=  ….. (67)   

where the mean is μ and σ is the standard deviation. These 
integrals can only be evaluated by using lookup tables in 

various math packages and cdf(qs,μ,σ) is the result of 

accessing the lookup table. The probability that a random 

variable will take a value qqs  is then 

 ),,(),,()(
2534.1




sqsqcdfqsqcdf
q

sqP −−+


=

 
     ….. (68)   

In this analysis q = 0.1 nanometer 

The factor (1.2534/q)  is necessary to normalize P(qs) to a 

maximum value of 1.0. In this way the Gaussian probabilities 
can be multiplied by the peak probabilities given by eq (57).  
 
From standard Gaussian probability theory the half maximum 
probability density occurs at xw where: 

2ln8=wx    [nm] ….. (69) 

It has been determined that the half maximum probability of 
the Gaussians described in eq (68) occur at: 

d

u
xw S=            [nm] ….. (70)   

where          ))
4

(ln(2

22
130

1

u

d
uvSec

sk
=S   [nm]   .. (71) 

and d,u,v are expressed in nanometers not meters. Then 

2ln8d

uS
=     [nm] ….. (72)   

The standard deviation, σ, in terms of (ks,d,u,v) has been 
used in computing Gaussian probabilities for experimental 
verification.. 
 
 

(VIIIb)  QEM  THEORY – GRAPHICAL REPRESENTATION 
 
Before proceeding to experimental verification the full QEM 
diffraction theory is presented in graphical form as depicted  
below 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

i. The location of the peaks are predicted by eq (33) 
and (40) and are shown on the x-axis as (k = 0 , k = 
±1 ,  k =  ±2 , k =  ±3 ….) 

ii. The peak intensity of the zeroth order I(0) is a 
measured value from the experiment 

iii. The other peak intensities I(±1)  I(±2) )  I(±3) ….      
are given by eq (57) where β is computed from eq 

(59) , (60) , εb and α is computed from eq (64) , (65) 

, (66) and εa 
iv. The Gaussian distributions (shaded area) are 

computed from eq (68) where σ is given by eq (72) 
v. The hatched areas between the Gaussians are 

referred to as deadband regions where presently 
there is no theoretical probability of finding 
particles. 

 
Presently the theory assumes that particles either pass 
through the slit and experience a QEM deflection or that the 
particles impact the grating material giving up their energy to 
the molecular structure.  
However, in the real world some particles will graze the slit 
edge and arrive at the detector with a deflection angle a little 
different from the theoretical value. Slit edge grazing is the 
main source of deadband activity. Another source of 
deadband activity, albeit with much lower probabilities, is 
particle collision whereby particles collide during flight time 
and arrive at the detector with odd deflection angles. 
These deadband activities are not quantified nor are any 
equations / expressions offered for their flight paths or the 
probability of their occurrence. Without any formal proof, 
deadband activity is simulated, in the theoretical plots, by 
inserting appropriate connecting quadratic segments between 
the Gaussians. 
 
(VIIIc)  VELOCITY  SPREAD 
Experiments 5 and 6 report significant spread in particle 
velocity. The theoretical plots for velocity spread consists of 
a composite plot of the QEM diffraction patterns for the 
upper and lower velocities. Experimental points are then 
expected to fall within the area formed by the high and low 
envelopes. These composite plots are shown in Fig 5b and 
Fig 6b. 



 

International Journal of Latest Research in Science and Technology. 

 

ISSN:2278-5299                                                                                                                                                                                50 

 

 
IX. EXPERIMENTAL VERIFICATION 

 

Six experiments from the literature [11],[12],[13] were studied and some important parameters from those experiments are 

summarized below in Table III. It should be noted that in experiments 1,2,3,4 [11] it was possible to rotate the grating about the z-

axis leading to various angles of inclination. This was not possible in experiment 5 [13]  or experiment 6 [12]. 

 
Following are plots of theoretical predictions (solid line) and experimental results (solid circles) for each of the experiments listed 

in Table III. For each experiment the values (ks,,,) are shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE III 

Experiment Number 1 2 3 4 5 6 

Year of Experiment 2000 2000 2000 2000 1988 2003 

Type of Particle 
Helium 

Atom  

Helium 

Atom 

Helium 

Atom 

Helium 

Atom 

Sodium 

Atom 

C60 

Fullerene 

Incident Kinetic Energy       [milli eV] 65 65 65 65 119 51 

Most Probable Velocity       [m/sec] 1780 1780 1780 1780 1000 120 

Velocity Spread  % - FWHM 2.1 2.1 2.1 2.1 12.0 17.0 

Particle Mass                        [Kg] x 10-27 6.646 6.646 6.646 6.646 38.17 1200 

Particle Diameter                 [nanometers] 0.28 0.28 0.28 0.28 0.454 1.10 

Grating Material SiNx SiNx SiNx SiNx Gold on 

SiNx 
SiNx 

Emissivity Wavelength      [microns] 8.3 8.3 8.3 8.3 20.5 8.3 

Angle of Inclination            [degrees] 0 21 27 29 0 0 

Grating Period                     [nanometers] 100 93.3 89.1 87.46 200 100 

Slit Width                            [nanometers] 50 46.68 44.55 43.73 100 55 

Distance from Grating to Detector    [m] 0.52 0.52 0.52 0.52 1.5 1.2 
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The previous plots clearly show that experimental results 
extracted from the literature are accurately predicted by the 
new QEM infrared radiation theory. In the case of the helium 
experiments, the locations, the peak intensities and the 
Gaussians are all in excellent agreement with experimental 
results. There are low intensity regions (100 hits per sec or 
less) where there is divergence between theory and results. 
This is to be expected as deadband activity is not presently 
formulated.  
 
In the case of sodium atoms and C60 molecules when 
velocity spread is factored in, more than 80% of the 
experimental points fall within the velocity envelope. All 
told, the QEM theory seems to be aligned with physical 
measurements. 
Characteristic patterns, previously reported in the literature 
[11] are obtained when normalized intensities, eq (57), are 
plotted in k-space. We present similar results below to 
demonstrate that the new theory produces comparable 
probabilities (intensities) as reported previously. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The plot is linear x-axis, logarithmic y-axis. Each experiment 
has a different β-value and therefore a different Sinc function. 
The Sinc function is sampled in units of k to obtain the 
probability that the fields are in configuration k. A multi-peak 
pattern such as Helium 00 will lead to peak intensities that 
alternate (high to low) with increasing k. While an inverted-v 
pattern like C60 will lead to peak intensities that decrease 

almost linearly with k. In the C60 pattern α is predominant 

while in the other patterns β  governs the pattern appearance. 

 

 

 

X. CONCLUSIONS 

Experimental confirmation of the theorized infrared QEM 

radiation around diffraction gratings is needed. The author is 

confident that such radiation will be found. 

For years, diffraction patterns in slit experiments have been 

held up as proof of the wave nature of matter. If this new 

explanation is correct then one has to reconsider whether 

matter really has a wave nature and if so, under what 

conditions are these wave properties exhibited. 

Another feature of this analysis is the application of the EFE 

to microscopic local spacetimes, in this case, the application 

of source free electrovac solutions to slit experiments. If this 

theory is proven correct then one must consider writing and 

solving the field equations within the spacetime of the atom. 

One can easily theorize that electromagnetic fields generated 

by the nucleus will introduce significant curvature in atomic 

spacetime which when coupled with Coulomb attraction can 

lead to quantized orbits, shells, orbitals. A fresh look at the 

space within the atom is needed. 
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