

FIXED POINT THEOREM FOR SEQUENCE OF SELF MAPPING IN COMPLETER METRIC SPACE

N. M. Kavathekar
Mudhoji College, Phaltan (M.S.), India,
Email : kavathekarnirmala@gmail.com

Abstract

In 1978 Kishorimohan Ghosh and S. K. Chatterjea [1] have investigated fixed point theorem in metric space for two self mapping. In the present paper a fixed point theorem for sequence of self mapping in the complete metric space has been proved.

Keywords: Complete metric space, contraction, fixed point, self mapping.

I. INTRODUCTION

In 1974 M. Sen Gupta [2] has proved that in a complete metric space (M, d) if there exists two operators T_{1} and T_{2} mapping M into itself and satisfying the relation.
$d\left(T_{1} x, T_{2} x\right) \leq \boldsymbol{X} d\left(x, T_{1} x\right)+\beta d\left(y, T_{2} y\right)+\gamma d(x, y)$
\qquad (1.1)

Or
$d\left(T_{1} x, T_{2} y\right) \leq \alpha d\left(y, T_{1} x\right)+\beta d\left(x, T_{2} y\right)+\gamma d(x, y)$ (1.2)

For x , y in M , where α, β, γ are non-negative real numbers and $\alpha+\beta+\gamma<1$, then T_{1} and T_{2} have a unique common fixed point.
In 1978 Kinshorimohan Ghosh and S. K. Chatterjea [1] have investigated the following theorem.
Theorem : Let (x, d) be metric space. T_{1} and T_{2} be two self mapping for which there exists non-negative real numbers $\propto_{\mathrm{i}}(\mathrm{i}=1.2 \ldots . .5)$ and $\sum_{i=1}^{5} \alpha_{\mathrm{i}}<1$ such that
$d\left(T_{1} x, T_{2} y\right) \leq \alpha_{1} d(x, y)+\alpha_{2} d\left(x, T_{1} x\right)+\alpha_{3} d\left(y, T_{2} y\right)+\alpha_{4}$ $\mathrm{d}\left(\mathrm{x}, \mathrm{T}_{2} \mathrm{y}\right)+$
$\alpha_{5} d\left(y, T_{1} x\right)$
For all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.
For any $\mathrm{x}_{0} \in \mathrm{X}$, the sequence
$\mathrm{X}_{1}=\mathrm{T}_{2} \mathrm{X}_{0}, \mathrm{X}_{2}=\mathrm{T}_{2} \mathrm{X}_{1}$
$\mathrm{X}_{2} \mathrm{n}=\mathrm{T}_{2}\left(\mathrm{X}_{2 \mathrm{n}-1}\right), \mathrm{X}_{2 \mathrm{n}+1}=\mathrm{T}_{1}\left(\mathrm{X}_{2 \mathrm{n}}\right) \ldots \ldots \ldots$.
has a subsequence converging to $u \in x$ then T_{1} and T_{2} have a unique common fixed point u. \qquad (1.3)

In the present paper we have extended the above fixed point theorem for sequence of mapping in complete metric space.
Theorem : Let (x, d) be complete metric space, T_{i} and T_{j} be two sequences of self mapping for which there exists non-negative real numbers. $\propto_{i}(I=1,2 \ldots . .5)$
with $0 \leq \alpha_{i}<1$ and $\sum_{i=1}^{5} \alpha_{I}<1$ such that
$d\left(T_{i} x, T_{j} y\right) \leq \alpha_{1} d(x, y)+\alpha_{2} d\left(x, T_{i} x\right)+\alpha_{3} d\left(y, T_{j} y\right)+$ $\alpha_{4} d\left(x, T_{j} y\right)+$
$\alpha_{5} d\left(y, T_{i} x\right)$
For all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$
For any $\mathrm{x}_{0} \in \mathrm{x}$ the sequence $\mathrm{X}_{1}=\mathrm{T}_{\mathrm{i}} \mathrm{X}_{0}, \mathrm{X}_{2}=\mathrm{T}_{2} \mathrm{X}_{1}$ $\ldots \ldots \ldots \ldots . X_{2 n}=T_{2}\left(X_{2 n-1}\right)$
$\mathrm{X}_{2 \mathrm{n}+1}=\mathrm{T}_{1}\left(\mathrm{X}_{2 \mathrm{n}}\right) \ldots$. has a
Subsequence converging to unique common fixed point u. (1.4)

Proof of (1.4) :
We will prove the above theorem by considering the following three steps.
i) First we will show that $\left\{X_{n}\right\}$ is a Cauchy sequence.
ii) Existence of fixed point.
iii) Uniqueness of fixed point.
(i) Let X_{0} be any point of X and consider the sequence
$\mathrm{X}_{1}=\mathrm{T}_{1} \mathrm{X}_{0}, \mathrm{X}_{2}=\mathrm{T}_{2} \mathrm{X}_{1}, \mathrm{X}_{3}=\mathrm{T}_{1} \mathrm{X}_{2}$
$\mathrm{X}_{2} \mathrm{n}=\mathrm{T}_{2} \quad \mathrm{X}_{2 \mathrm{n}-1}, \mathrm{X}_{2 \mathrm{n}+1}=\mathrm{T}_{1} \mathrm{X}_{2 \mathrm{n}}$
We have for $\mathrm{x}, \mathrm{y} \in \mathrm{X}$
$d\left(T_{i} x, T_{j} y\right) \leq \alpha_{1} d(x, y)+\alpha_{2} d\left(x, T_{i} x\right)+\alpha_{3} d\left(y, T_{j} y\right)+$ $\alpha_{4} d\left(x, T_{j} y\right)+$
$\alpha_{5} d\left(y, T_{i} x\right)$ \qquad (A)

By interchanging x with y and T_{i} with T_{j} we get
$d\left(T_{j} y, T_{i} x\right) \leq \alpha_{1} d(y, x)+\alpha_{2} d\left(y, T_{j} y\right)+\alpha_{3} d\left(x, T_{i} x\right)+$ $\boldsymbol{\alpha}_{4} \mathrm{~d}\left(\mathrm{y}, \mathrm{T}_{\mathrm{i}} \mathrm{x}\right)+$
$\alpha_{5} \mathrm{~d}\left(\mathrm{x}, \mathrm{T}_{\mathrm{j}} \mathrm{y}\right)$ \qquad
Now adding (A) and (B) we have
$d\left(T_{i} x, T_{j} y\right)+d\left(T_{j} y, T_{i} x\right) \leq \alpha_{1} d(x, y)+\alpha_{1} d(y, x)+\alpha_{2} d$ $\left(x, T_{i} x\right)+\alpha_{2} d\left(y, T_{j} y\right)$
$+\alpha_{3} d\left(y, T_{j} y\right)+\alpha_{3} d\left(x, T_{i} x\right)+\alpha_{4} d\left(x, T_{j} y\right)+\alpha_{4} d\left(y, T_{i}\right.$
x) +
$+\mathrm{c}_{5} \mathrm{~d}\left(\mathrm{y}, \mathrm{T}_{\mathrm{i}} \mathrm{x}\right)+\mathrm{x}_{5} \mathrm{~d}\left(\mathrm{x}, \mathrm{T}_{\mathrm{j}} \mathrm{y}\right)$
Now by symmetric property we have
$d(x, y)=d(y, x)$
$\therefore 2 \mathrm{~d}\left(\mathrm{~T}_{\mathrm{i}} \mathrm{x}, \mathrm{T}_{\mathrm{j}} \mathrm{y}\right) \leq 2 \alpha_{1} \mathrm{~d}(\mathrm{x}, \mathrm{y})+\left(\boldsymbol{\alpha}_{2}+\alpha_{3}\right) \mathrm{d}\left(\mathrm{x}, \mathrm{T}_{\mathrm{i}} \mathrm{x}\right)+\left(\mathrm{K}_{3}+\right.$ $\left.\alpha_{2}\right) d\left(y, T_{j} y\right)+$
$\left(\propto_{4}+\propto_{3}\right) d\left(x, T_{j} y\right)+\left(\propto_{5}+\propto_{4}\right) d\left(y, T_{i} x\right)$
$2 d\left(T_{i} x, T_{j} y\right) \leq 2 \alpha_{1} d(x, y)+\left(\alpha_{2}+\alpha_{3}\right)\left\{d\left(x, T_{i} x\right)+d\left(y, T_{j}\right.\right.$
y) $\}+\left(\boldsymbol{\alpha}_{4}+\boldsymbol{\alpha}_{5}\right)$
$\left\{\mathrm{d}\left(\mathrm{x}, \mathrm{T}_{\mathrm{j}} \mathrm{y}\right)+\mathrm{d}\left(\mathrm{y}, \mathrm{T}_{\mathrm{i}} \mathrm{x}\right)\right\}$
$\therefore \mathrm{d}\left(\mathrm{T}_{\mathrm{i}} \mathrm{x}, \mathrm{T}_{\mathrm{j}} \mathrm{y}\right) \leq \alpha_{1} \mathrm{~d}(\mathrm{x}, \mathrm{y})+\left(\frac{\alpha_{2}+\Phi_{8}}{2}\right)\left\{\mathrm{d}\left(\mathrm{x}, \mathrm{T}_{\mathrm{i}} \mathrm{x}\right)+\mathrm{d}\left(\mathrm{y}, \mathrm{T}_{\mathrm{j}}\right.\right.$,
$y)\}+\left(\frac{\alpha_{4}+\alpha_{5}}{2}\right)$
$\left\{d\left(x, T_{j} y\right)+d\left(y, T_{i} x\right)\right\}$
Put $x=x_{0}$ and $y=x_{1}$ we have
$\mathrm{d}\left(\mathrm{T}_{\mathrm{i}} \mathrm{x}_{0}, \mathrm{~T}_{\mathrm{j}} \mathrm{x}_{1}\right) \leq \boldsymbol{\alpha}_{1} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)+\left(\frac{\alpha_{\mathrm{R}}+\alpha_{\mathrm{E}}}{2}\right)\left\{\mathrm{d}\left(\mathrm{x}_{0}, \mathrm{~T}_{\mathrm{i}} \mathrm{x}_{0}\right)+\mathrm{d}\left(\mathrm{x}_{1}\right.\right.$,
$\left.\left.\mathrm{T}_{\mathrm{j}} \mathrm{x}_{1}\right)\right\}+\left(\frac{\alpha_{4}+\alpha_{5}}{2}\right)$
$\mathrm{d}\left\{\mathrm{x}_{0}, \mathrm{~T}_{\mathrm{j}} \mathrm{x}_{1}\right\}+\mathrm{d}\left\{\mathrm{x}_{1}, \mathrm{~T}_{\mathrm{i}} \mathrm{x}_{0}\right\}$
Now since $T_{i} x_{0}=x_{1}$ and $T_{j} x_{1}=x_{2}$ we have
$\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \leq \boldsymbol{\alpha}_{1} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)+\left(\frac{\boldsymbol{\alpha}_{2}+\alpha_{2}}{2}\right)\left\{\mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)+\mathrm{d}\left(\mathrm{x}_{1} \mathrm{x}_{2}\right)\right\}$
$+\left(\frac{\alpha_{4}+\alpha_{5}}{2}\right)\left\{d\left(x_{0}, x_{2}\right)+d\left(x_{1}, x_{1}\right)\right\}$
Now since $d\left(x_{1}, x_{1}\right)=0$ and $d\left(x_{0}, x_{2}\right) \leq d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)$
We have
$\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \leq \boldsymbol{\alpha}_{1} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)+\left(\frac{\alpha_{2}+\alpha_{2}}{2}\right)\left\{\mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)+\mathrm{d}\left(\mathrm{x}_{1} \mathrm{x}_{2}\right)\right\}+$
$\left(\frac{\alpha_{4}+\alpha_{5}}{2}\right)$
$\left\{\mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}_{2}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right\}$
$2 \mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)-\left(\alpha_{2}+\alpha_{3}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)-\left(\alpha_{4}+\alpha_{5}\right) \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \leq$
$2 \alpha_{1} d\left(x_{0}, x_{1}\right)+\left(\alpha_{2}+\alpha_{3}\right) d\left(x_{0}, x_{1}\right)+\left(\alpha_{4}+\alpha_{5}\right) d\left(x_{0}, x_{1}\right)$
$\therefore 2-\left(\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}\right) d\left(x_{1}, x_{2}\right) \leq\left(2 \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\right.$ $\left.\alpha_{5}\right) \mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)$
$\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \leq \frac{2 \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}}{2-\left(\alpha_{2}+\alpha_{2}+\alpha_{4}+\alpha_{5}\right)} \mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)$
$\therefore \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \leq \mathrm{rd}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)$
Where $r=\frac{2 \alpha_{1}+\alpha_{2}+\alpha_{2}+\alpha_{4}+\alpha_{3}}{2-\left(\alpha_{2}+\alpha_{2}+\alpha_{4}+\alpha_{5}\right)}$
Similarly we can show that
$\mathrm{d}\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right) \leq \mathrm{rd}\left(\mathrm{x}_{2}, \mathrm{x}_{1}\right)$
$\leq r . r d\left(x_{0}, x_{1}\right)$
$\therefore \mathrm{d}\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right) \leq \mathrm{r}^{2} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)$
By induction we can prove that
$\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{r}^{\mathrm{n}} \mathrm{d}\left(\mathrm{x}_{0+} \mathrm{x}_{1}\right)$
Hence
$\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+\mathrm{p}}\right) \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+2}\right)+\ldots \ldots$.
$\ldots . .+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+\mathrm{p}-1}, \mathrm{x}_{\mathrm{n}+\mathrm{p}}\right)$
$\therefore \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+\mathrm{p}}\right) \leq\left(\mathrm{r}^{\mathrm{n}}+\mathrm{r}^{\mathrm{n}+1}+\ldots \ldots \ldots \ldots .+\mathrm{r}^{\mathrm{n}+\mathrm{p}-1}\right) \mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)$
$\therefore \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+\mathrm{p}}\right) \leq \frac{r^{n}\left(1-r^{n+p-1}\right)}{(1-r)} \mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)$
$\rightarrow 0 \quad$ as $n \rightarrow \infty \quad$ since $r<1$
and owning to the assumption $\Sigma \boldsymbol{\alpha}_{\mathrm{i}}<1$
$\therefore \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+\mathrm{p}}\right) \rightarrow 0 \quad$ as $\mathrm{n} \rightarrow \infty$
So we have $\left\{x_{n}\right\}$ is a Cauchy sequence since subsequence
$\left\{X_{k}\right\}$ of this sequence $\left\{X_{n}\right\}$ converges to u
lim
$X_{n}=u \in x$
ii) Now we will prove that u is fixed point of T_{i} and T_{j} i.e. we will prove that
$\mathrm{T}_{\mathrm{i}} \mathrm{u}=\mathrm{u}, \quad \mathrm{T}_{\mathrm{j}} \mathrm{u}=\mathrm{u}$
Now first Consider
$d\left(T_{i} u, u\right) \leq d\left(T_{i} u, x_{2 n}\right)+d\left(x_{2 n} . u\right)$
$=d\left(T_{i} u, T_{j} x_{2 n-1}\right)+d\left(x_{2 n}, u\right)$
$d\left(T_{i} u, u\right) \leq \alpha_{1} d\left(u, x_{2 n-1}\right)+\alpha_{2} d\left(u, T_{i} u\right)+$
$\alpha_{3} d\left(X_{2 n-1}, X_{2 n}\right)+\alpha_{4} d\left(u, X_{2 n}\right)+$
$\alpha_{5} d\left(x_{2 n-1}, T_{i} u\right)+d\left(x_{2 n}, u\right)$
As $n \rightarrow \infty$ we have
$d\left(T_{i} u, u\right) \leq\left(\alpha_{2}+\alpha_{5}\right) d\left(u, T_{i} u\right)$
$\therefore \lim _{n \rightarrow \infty} \mathrm{X}_{\mathrm{n}}=\mathrm{u}$
$\Rightarrow \operatorname{lin}_{n \rightarrow \infty} \mathrm{X}_{2 \mathrm{n}-1}=\mathrm{u}$ and d $(\mathrm{u}, \mathrm{u})=0$
$\therefore \mathrm{d}\left(\mathrm{T}_{\mathrm{i}} \mathrm{u}, \mathrm{u}\right) \leq\left(\boldsymbol{\alpha}_{2}+\boldsymbol{\alpha}_{5}\right) \mathrm{d}\left(\mathrm{T}_{\mathrm{i}} \mathrm{u}, \mathrm{u}\right)$
$\therefore \mathrm{d}\left(\mathrm{T}_{\mathrm{i}} \mathrm{u}, \mathrm{u}\right)-\left(\boldsymbol{\alpha}_{2}+\boldsymbol{\alpha}_{5}\right) \mathrm{d}\left(\mathrm{T}_{\mathrm{i}} \mathrm{u}, \mathrm{u}\right) \leq 0$
$\left\{1-\left(\alpha_{2}+\alpha_{5}\right)\right\} d\left(\mathrm{~T}_{\mathrm{i}} \mathrm{u}, \mathrm{u}\right) \leq 0$
Which is possible if $d\left(T_{i} u, u\right)=0$
Since $1-\left(\boldsymbol{\alpha}_{2}+\boldsymbol{\alpha}_{5}\right) \neq 0$
Similarly we can prove that $\mathrm{T}_{\mathrm{j}} \mathrm{u}=\mathrm{u}$
$\Rightarrow T_{i}$ and T_{j} have common fixed point u
iii) Now consider the uniqueness of fixed point u. If possible let there be another
fixed point v of $T i$ and T_{j}
$\therefore \mathrm{T}_{\mathrm{i}} \mathrm{v}=\mathrm{v}$ and $\mathrm{T}_{\mathrm{j}} \mathrm{v}=\mathrm{v}$
Then $\mathrm{d}(\mathrm{u}, \mathrm{v})=\mathrm{d}\left(\mathrm{T}_{\mathrm{i}} \mathrm{u}, \mathrm{T}_{\mathrm{j}} \mathrm{v}\right)$
$\therefore d(u, v) \leq \alpha_{1} d(u, v)+\alpha_{2} d\left(u, T_{i} u\right)+\alpha_{3} d\left(v, T_{j} v\right)+\alpha_{4} d$
$\left(u, T_{j} v\right)+\alpha_{5} d\left(v, T_{i} u\right)$
$\therefore \mathrm{d}(\mathrm{u}, \mathrm{v}) \leq \boldsymbol{X}_{1} \mathrm{~d}(\mathrm{u}, \mathrm{v})+\boldsymbol{\alpha}_{2} \mathrm{~d}(\mathrm{u}, \mathrm{u})+\alpha_{3} \mathrm{~d}(\mathrm{v}, \mathrm{v})+\boldsymbol{\alpha}_{4} \mathrm{~d}(\mathrm{u}$,
v) $+\alpha_{5} \mathrm{~d}(\mathrm{u}, \mathrm{v})$
$\therefore \mathrm{d}(\mathrm{u}, \mathrm{v})-\alpha_{1} \mathrm{~d}(\mathrm{u}, \mathrm{v})-\alpha_{4} \mathrm{~d}(\mathrm{u}, \mathrm{v})-\alpha_{5} \mathrm{~d}(\mathrm{u}, \mathrm{v}) \leq 0$
$\therefore \mathrm{d}(\mathrm{u}, \mathrm{v})=0=\mathrm{d}(\mathrm{v}, \mathrm{v})$
and $d(u, v)=d(v, u)$
$\Rightarrow\left[1-\left(\alpha_{1}+\alpha_{4}+\alpha_{5}\right)\right] d(u, v) \leq 0$
Which is possible if $d(u, v)=0$
Since $\left\{1-\left(\boldsymbol{\alpha}_{1}+\alpha_{4}+\boldsymbol{\alpha}_{5}\right)\right\} \neq 0$
$\therefore \mathrm{d}(\mathrm{u}, \mathrm{v})=0$
$\Rightarrow \mathrm{v}=\mathrm{u}$
Hence T_{i} and T_{j} have unique common fixed point u.
Hence the theorem

REFERENCES

1. Ghosh Kishorimohan and Chatterjea S. K. (1978) : "Some fixed point theorems", Bull. Cal. Math. Sco., 71, 13-22.
2. Gupta M. Sen (1974) : "on common fixed points of operators", Bull. Cal. Math. Soc. 66, 149.
