

International Journal of Latest Research in Science and Technology ISSN (Online):2278-5299 Volume 4, Issue 6: Page No.35-36, November-December 2015 (special Issue Paper) http://www.mnkjournals.com/ijlrst.htm Special Issue on International conference on Methematics Sciences-2015(MSC-2015) Conference Held at Sadguru Gadage Maharaj College, Karad ,Maharastra,(India)

FIXED POINT THEOREM FOR SEQUENCE OF SELF MAPPING IN COMPLETER METRIC SPACE

N. M. Kavathekar

Mudhoji College, Phaltan (M.S.), India, Email : kavathekarnirmala@gmail.com

Abstract- In 1978 Kishorimohan Ghosh and S. K. Chatterjea [1] have investigated fixed point theorem in metric space for two self mapping. In the present paper a fixed point theorem for sequence of self mapping in the complete metric space has been proved. Keywords : Complete metric space, contraction, fixed point, self mapping.

I. INTRODUCTION

In 1974 M. Sen Gupta [2] has proved that in a complete metric space (M, d) if there exists two operators T_1 and T_2 mapping M into itself and satisfying the relation.

 $\begin{array}{c} d \ (T_1 x, \ T_2 x) \leq & \& d \ (x, \ T_1 \ x) \, + \, \beta \ d \ (y, \ T_2 \ y) \, + \, \gamma \ d \ (x, \ y) \\ \underline{\qquad (1.1)} \end{array}$

 $d (T_1x, T_2y) \leq \alpha d (y, T_1 x) + \beta d (x, T_2y) + \gamma d (x, y)$ (1.2)

For x, y in M, where α , β , γ are non-negative real numbers and $\alpha + \beta + \gamma < 1$, then T₁ and T₂ have a unique common fixed point.

In 1978 Kinshorimohan Ghosh and S. K. Chatterjea [1] have investigated the following theorem.

Theorem : Let (x, d) be metric space. T₁ and T₂ be two self mapping for which there exists non-negative 5

real numbers
$$\mathfrak{K}_i$$
 (i = 1.2...5) and $\sum_{i=1}^{J} \mathfrak{K}_i < 1$ such that

 $\begin{array}{l} d\left(T_{1}x,\,T_{2}y\right) \leq & \textbf{X}_{1}\,d\left(x,\,y\right) + & \textbf{X}_{2}\,d\left(x,\,T_{1}\,x\right) + & \textbf{X}_{3}\,d\left(y,\,T_{2}y\right) + & \textbf{X}_{4}\\ d\left(x,\,T_{2}\,y\right) + \end{array}$

 $\alpha_5 d(y, T_1 x)$

For all $x, y \in X$.

For any $x_0 \in X$, the sequence

 $X_1 = T_2 X_0, X_2 = T_2 X_1 \dots$

$$X_{2n} = T_2 (X_{2n-1}), X_{2n+1} = T_1 (X_{2n}) \dots$$

has a subsequence converging to $u \in x$ then T_1 and T_2 have a unique common fixed point u. _____ (1.3) In the present paper we have extended the above fixed point theorem for sequence of mapping in complete metric space. Theorem : Let (x, d) be complete metric space, T_i and T_j be two sequences of self mapping for which there exists non-negative real numbers. \mathfrak{K}_i (I = 1, 2 5)

with
$$0 \le \infty_i < 1$$
 and $\sum_{i=1}^{5} \infty_i < 1$ such that

 $d (T_i x, T_j y) \leq \alpha_1 d (x, y) + \alpha_2 d (x, T_i x) + \alpha_3 d (y, T_j y) + \alpha_4 d (x, T_i y) +$

 $\label{eq:started_st$

Proof of (1.4) :

We will prove the above theorem by considering the following three steps. i) First we will show that $\{X_n\}$ is a Cauchy sequence. ii) Existence of fixed point. iii) Uniqueness of fixed point. (i) Let X_0 be any point of X and consider the sequence $X_1 = T_1 X_0, X_2 = T_2 X_1, X_3 = T_1 X_2$ $X_2n = T_2 X_{2n-1}, X_{2n+1} = T_1 X_{2n}$ We have for $x, y \in X$ $d(T_i x, T_i y) \leq \alpha_1 d(x, y) + \alpha_2 d(x, T_i x) + \alpha_3 d(y, T_i y) +$ $\bigotimes_4 d(x, T_i y) +$ $\alpha_5 d(y, T_i x)$ (A) By interchanging x with y and T_i with T_i we get $d(T_i y, T_i x) \leq \alpha_1 d(y, x) + \alpha_2 d(y, T_i y) + \alpha_3 d(x, T_i x) + \alpha_3 d(x, T_i x$ $\bigotimes_4 d(y, T_i x) +$ $\propto_5 d(x, T_i y)$ _(B) Now adding (A) and (B) we have $d(T_i x, T_i y) + d(T_i y, T_i x) \leq \alpha_1 d(x, y) + \alpha_1 d(y, x) + \alpha_2 d$ $(\mathbf{x}, \mathbf{T}_{i} \mathbf{x}) + \mathbf{X}_{2} \mathbf{d} (\mathbf{y}, \mathbf{T}_{i} \mathbf{y})$ + $\alpha_3 d(y, T_i y)$ + $\alpha_3 d(x, T_i x)$ + $\alpha_4 d(x, T_j y)$ + $\alpha_4 d(y, T_i x)$ x) + + $\mathbf{x}_5 d(\mathbf{y}, \mathbf{T}_i \mathbf{x}) + \mathbf{x}_5 d(\mathbf{x}, \mathbf{T}_i \mathbf{y})$ Now by symmetric property we have d(x, y) = d(y, x)

 $\therefore 2d(T_i x, T_i y) \leq 20 (x, y) + (0 (x, y) + (0 (x, T_i x) + (0 (x, y))))$ $(x_2) d(y, T_i y) +$ $(\mathbf{\alpha}_4 + \mathbf{\alpha}_3) d(\mathbf{x}, \mathbf{T}_i \mathbf{y}) + (\mathbf{\alpha}_5 + \mathbf{\alpha}_4) d(\mathbf{y}, \mathbf{T}_i \mathbf{x})$ 2d $(T_i x, T_i y) \le 2 \propto_1 d(x, y) + (\propto_2 + \propto_3) \{ d(x, T_i x) + d(y, T_i) \}$ y) $+ (\mathbf{X}_4 + \mathbf{X}_5)$ $\{d(x, T_i y) + d(y, T_i x)\}$ $\therefore d(T_i x, T_j y) \leq \alpha_1 d(x, y) + \left(\frac{\alpha_2 + \alpha_3}{2}\right) \{d(x, T_i x) + d(y, T_j, y)\}$ $y)\} + \left(\frac{\alpha_4 + \alpha_5}{2}\right)$ $\{d(x, T_j y) + d(y, T_i x)\}$ Put $x = x_0$ and $y = x_1$ we have $d\left(T_{i}x_{0},\,T_{j}x_{1}\right) \leq \boldsymbol{\propto}_{1}\,d\left(x_{0},\,x_{1}\right) + \left(\frac{\boldsymbol{\alpha}_{2}+\boldsymbol{\alpha}_{3}}{2}\right)\left\{d\left(x_{0},\,T_{i}\,x_{0}\right) + d\left(x_{1},\,x_{1}\right)\right\}$ $T_j x_1$ + $\left(\frac{\alpha_4 + \alpha_5}{2}\right)$ $d\{x_0, T_j x_1\} + d\{x_1, T_i x_0\}$ $d(x_{0}, x_{1}, x_{1}) + d(x_{1}, x_{1}, x_{0})$ Now since $T_{i} x_{0} = x_{1}$ and $T_{j} x_{1} = x_{2}$ we have $d(x_{1}, x_{2}) \leq \mathbb{K}_{1} d(x_{0}, x_{1}) + \left(\frac{\mathbb{K}_{2} + \mathbb{K}_{3}}{2}\right) \{d(x_{0}, x_{1}) + d(x_{1} x_{2})\}$ $+\left(\frac{\alpha_{4}+\alpha_{5}}{2}\right)\left\{d\left(x_{0},x_{2}\right)+d\left(x_{1},x_{1}\right)\right\}$ Now since $d(x_1, x_1) = 0$ and $d(x_0, x_2) \le d(x_0, x_1) + d(x_1, x_2)$ We have $d(x_{1}, x_{2}) \leq \boldsymbol{\alpha}_{1} d(x_{0}, x_{1}) + \left(\frac{\boldsymbol{\alpha}_{2} + \boldsymbol{\alpha}_{3}}{2}\right) \{d(x_{0}, x_{1}) + d(x_{1} x_{2})\} +$ $\left(\frac{\alpha_4 + \alpha_5}{2}\right)$ $\{d(x_0, x_2) + d(x_1, x_2)\}$ $2d(x_1, x_2) - (\mathbf{X}_2 + \mathbf{X}_3) d(x_1, x_2) - (\mathbf{X}_4 + \mathbf{X}_5) d(x_1, x_2) \le 1$ $2 \mathbf{X}_1 d(x_0, x_1) + (\mathbf{X}_2 + \mathbf{X}_3) d(x_0, x_1) + (\mathbf{X}_4 + \mathbf{X}_5) d(x_0, x_1)$ $\therefore 2 - (\mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) d (\mathbf{x}_1, \mathbf{x}_2) \leq (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) d (\mathbf{x}_1, \mathbf{x}_2) \leq (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) d (\mathbf{x}_1, \mathbf{x}_2) \leq (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) d (\mathbf{x}_1, \mathbf{x}_2) \leq (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) d (\mathbf{x}_1, \mathbf{x}_2) \leq (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) d (\mathbf{x}_1, \mathbf{x}_2) \leq (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) d (\mathbf{x}_1, \mathbf{x}_2) \leq (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) d (\mathbf{x}_1, \mathbf{x}_2) \leq (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) d (\mathbf{x}_1, \mathbf{x}_2) \leq (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) d (\mathbf{x}_1, \mathbf{x}_2) \leq (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) d (\mathbf{x}_1, \mathbf{x}_2) \leq (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) d (\mathbf{x}_1, \mathbf{x}_2) \leq (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) d (\mathbf{x}_1, \mathbf{x}_2) \leq (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) d (\mathbf{x}_1, \mathbf{x}_2) \leq (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) d (\mathbf{x}_1, \mathbf{x}_2) \leq (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) d (\mathbf{x}_1, \mathbf{x}_2) \leq (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) d (\mathbf{x}_1, \mathbf{x}_2) \leq (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) d (\mathbf{x}_1, \mathbf{x}_2) \leq (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) d (\mathbf{x}_1, \mathbf{x}_2) \leq (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) d (\mathbf{x}_1, \mathbf{x}_2) \leq (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) d (\mathbf{x}_1, \mathbf{x}_2) \leq (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) d (\mathbf{x}_1, \mathbf{x}_2) \leq (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) d (\mathbf{x}_1, \mathbf{x}_2) \leq (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) d (\mathbf{x}_1, \mathbf{x}_2) \leq (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4) d (\mathbf{x}_1, \mathbf{x}_2) = (2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4) d (\mathbf{x}_1, \mathbf{x}_2) d ($ $(X_5) d(x_0, x_1)$

$$d(x_{1},x_{2}) \leq \frac{2\alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{4} + \alpha_{5}}{2 - (\alpha_{2} + \alpha_{3} + \alpha_{4} + \alpha_{5})} d(x_{0},x_{1})$$

 $\therefore d(x_1, x_2) \le r d(x_0, x_1)$ Where $r = \frac{2 \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5}{2 - (\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5)}$ Similarly we can show that $d(x_2, x_3) \le r d(x_2, x_1)$ $\le r \cdot r d(x_0, x_1)$ $\therefore d(x_2, x_3) \le r^2 d(x_0, x_1)$

By induction we can prove that $d(x_n, x_{n+1}) \leq r^n d(x_{0+}x_1)$ Hence $d(x_n, x_{n+p}) \leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots \dots$ $\dots + d(x_{n+p-1}, x_{n+p})$ $\therefore d(x_n, x_{n+p}) \leq (r^n + r^{n+1} + \dots + r^{n+p-1}) d(x_0, x_1)$ $\therefore d(x_n, x_{n+p}) \leq \frac{r^n (1-r^{n+p-1})}{(1-r)} d(x_0, x_1)$ $\rightarrow 0 \quad \text{as } n \rightarrow \infty \quad \text{since } r < 1$ and owning to the assumption $\Sigma \ C_i < 1$

 \therefore d (x_n, x_{n+p}) \rightarrow 0 as $n \rightarrow \infty$ So we have $\{x_n\}$ is a Cauchy sequence since subsequence $\{Xn_k\}$ of this sequence $\{X_n\}$ converges to u $\underbrace{n \xrightarrow{n} x}_{ii} X_n = u \in X$ ii) Now we will prove that u is fixed point of T_i and T_j i.e. we will prove that $T_i u = u, \quad T_i u = u$ Now first Consider $d(T_i u, u) \le d(T_i u, x_{2n}) + d(x_{2n}, u)$ $= d (T_i u, T_j x_{2n-1}) + d (x_{2n}, u)$ d $(T_i u, u) \leq \bigotimes_1 d(u, x_{2n-1}) + \bigotimes_2 d(u, T_i u) +$ $\alpha_{3d}(X_{2n-1}, X_{2n}) + \alpha_{4d}(u, X_{2n}) +$ $\propto_5 d(x_{2n-1}, T_i u) + d(x_{2n}, u)$ As $n \to \infty$ we have $d(T_i u, u) \leq (\bigotimes_2 + \bigotimes_5) d(u, T_i u)$ $\therefore \frac{lim}{n \to \infty} X_n = u$ $\Rightarrow \frac{lim}{n \to \infty} X_{2n-1} = u \text{ and } d(u, u) = 0$ \therefore d (T_i u, u) \leq ($\bigotimes_2 + \bigotimes_5$) d (T_i u, u) \therefore d (T_i u, u) - ($\bigotimes_2 + \bigotimes_5$) d (T_i u, u) ≤ 0 {1- $(\mathbf{Q}_2 + \mathbf{Q}_5)$ } d $(T_i u, u) \le 0$ Which is possible if $d(T_i u, u) = 0$ Since $1 - (\mathbf{X}_2 + \mathbf{X}_5) \neq 0$ Similarly we can prove that $T_i u = u$ \Rightarrow T_i and T_i have common fixed point u iii) Now consider the uniqueness of fixed point u. If possible let there be another fixed point v of Ti and T_i \therefore T_i v = v and T_i v = v Then d (u, v) = $d(T_i u, T_j v)$ \therefore d (u, v) $\leq \alpha_1 d(u, v) + \alpha_2 d(u, T_i u) + \alpha_3 d(v, T_i v) + \alpha_4 d$ $(\mathbf{u}, \mathbf{T}_{i} \mathbf{v}) + \mathbf{X}_{5} \mathbf{d} (\mathbf{v}, \mathbf{T}_{i} \mathbf{u})$ $\therefore d(u, v) \leq \mathbf{X}_1 d(u, v) + \mathbf{X}_2 d(u, u) + \mathbf{X}_3 d(v, v) + \mathbf{X}_4 d(u, v)$ $v) + \mathbf{x}_{5} d(u, v)$ \therefore d (u, v) – \bigotimes_1 d (u, v) - \bigotimes_4 d (u, v) - \bigotimes_5 d (u, v) ≤ 0 $\therefore d(u, v) = 0 = d(v, v)$ and d(u, v) = d(v, u) \Rightarrow [1-($\alpha_1 + \alpha_4 + \alpha_5$)] d (u, v) ≤ 0 Which is possible if d(u, v) = 0Since $\{1 - (\mathbf{X}_1 + \mathbf{X}_4 + \mathbf{X}_5)\} \neq 0$ \therefore d (u, v) = 0 \Rightarrow v = u Hence T_i and T_i have unique common fixed point u. Hence the theorem

REFERENCES

- Ghosh Kishorimohan and Chatterjea S. K. (1978) : "Some fixed point theorems", Bull. Cal. Math. Sco., 71, 13-22.
- Gupta M. Sen (1974) : "on common fixed points of operators", Bull. Cal. Math. Soc. 66, 149.