

International Journal of Latest Research in Science and Technology ISSN (Online):2278-5299
Volume 4, Issue 6: Page No.30-34, November-December 2015 (special Issue Paper)
http://www.mnkjournals.com/ijlrst.htm
Special Issue on International conference on Methematics Sciences-2015(MSC-2015)
Confernece Held at Sadguru Gadage Maharaj College, Karad ,Maharastra,(India)

ISSN:2278-5299 30

C-MINUS: FUZZY SCANNER
1Vaishali Bhosale, 2S.R.Chaudhari

1Assistant Director/ Assistant Professor YCSRD,Shivaji University, Kolhapurvaishali.p.bhosale@gmail. com
2Professor and Head Dept. Of Mathematics, North Maharashtra University, Jalgaon shrikant_chaudhari@yahoo.com

Abstract- in this paper we describe the design and implementation of scanner for C-MINUS programming language. This is extended to
fuzzy scanner implementation using the concepts like fuzzy regular expression, fuzzy non-deterministic automata, fuzzy deterministic
automata and it�s minimization. The aim of this paper is to allow fuzzy tokens due to insertion, deletion, substitution, typing and letter
sequencing errors.

Keywords - Fuzzy lexical analysis, Fuzzy finite automata, Fuzzy regular expression, Fuzzy tokens, Tiny compiler

I. INTRODUCTION
 This paper is in parallel with the paper [2], which describes
the design and implementation of fuzzy lexical analyzer for
Tiny language. Scanning is a phase of compiler where input
file is scanned character by character to separate the tokens
viz. keywords, identifier, operators etc.. Scanning is also
called as lexical analysis. In traditional scanning, a string is
either a token or a non-token, and hence there is no middle
possibility [3]. Whereas in fuzzy scanning a token may
belong to more than one token type with varying degree of
membership in [0, 1].
In �C� programming language, if you type �character� (due to

substitution) it does not mean that it is the keyword �char� to

the compiler, but it is treated as an identifier only. If you type
�charrrr� (an insertion error may be due to the key sticks),

again it will also not treated as �char�. If you type �whil� it

does not mean �while� to the compiler but as an identifier
only (deletion error). Also if you type �wlse� it does not

mean �else� to the compiler (a typing error). If you type

�lese� it does not mean �else� to the compiler (letter

sequencing error).

Would it be more friendly if the compiler will simply decide
for you �char� in first two cases, �while� in the third case and

will it ask you whether you meant �else� in last two cases?

The answer probably would be �no� with existing compilers.

Fuzzy scanning will make it possible.

PRELIMINARY

Regular languages are represented by regular expressions and
they are analyzed by scanning. The model of scanning is
shown in the following Figure 1. [11]

 The familiarity with the basic definitions of formal language
theory[] is assumed here. Definitions for fuzzy language are
given below:
Definition 2.1: [3] Let ∑ be a finite alphabet and f:

∑*→[0,1]. Then set Ã = { (w,f(w)) | w º ∑* } is called a

fuzzy language over ∑ and f the membership function of Ã.

Definition 2.2: [3] Let Ã be a fuzzy language over ∑ and f

Ã : ∑*→[0 , 1] the membership function of Ã. Language Ã

can be called a regular fuzzy language, if for each m ϵ M , S

Ã (m) is regular, where S Ã (m) = { w ϵ ∑* | f Ã (w)=m }.
Definition 2.3: [3] Let e be a regular expression over ∑ and

m ª [0, 1]. Then (e) / m is a fuzzy regular expression. If e1,

e2, . . . , en are fuzzy regular expressions over ∑ and m1,

m2,. . . , mn are their respective degrees, then one can write it
as
e1 / m1 + e2 / m2 + . . . + en / mn such form of writing of
regular expression is called normalized form of the fuzzy
regular expression.
Definition 2.4: [12] A nondeterministic finite automata
(NDFA) is a 5-tuple, (Q, Ó, ä, q0, F), where Q is finite

nonempty set of states; Ó is finite nonempty set of inputs; ä is

the transition function mapping from Q × Ó into 2Q , q0 Q
is initial state; and F is subset of Q is the set of final states.
Instead of F as subset of Q, if F is a fuzzy subset of Q, then
the nondeterministic finite automata is treated as a
nondeterministic automata with fuzzy final states (NFA-FS).
The fuzzy language accepted by Ã, is denoted by L(Ã), is

the set { (x, d Ã (x)) | x º ∑* }, where d Ã (x) = max { F

Ã (q) | (s, x, q) ä* }.
Definition 2.5: [12] A deterministic finite automata (DFA) is
represented by a 5-tuple, (Q, Ó, ä, q0, F), where Q is finite

nonempty set of states; Ó is finite nonempty set of inputs; ä is

the transition function mapping from Q × Ó into Q and is

usually called direct transition function. This is the function
which describes the changes of states during the transition.
The mapping ä is usually represented by a transition table or

a transition diagram. q0 Q is initial state; and F is subset of
Q is the set of final states.
If F is fuzzy subset of Q instead of crisp subset of Q, then the
DFA is called deterministic finite automata with fuzzy final
states (i.e. FS-DFA). The fuzzy language accepted by Ã

denoted by L(Ã), is the set { (x, d Ã (x)) | x º ∑* },

where

=

Theorem 2.1: [12] For every NDFA, there exists a DFA that
simulates the behavior of NDFA. The converse of the
theorem is trivial.

Scanner Source
Program

Crisp
Tokens

id16599099 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

http://www.mnkjournals.com/ijlrst.htm
mailto:Kolhapurvaishali.p.bhosale@gmail.
mailto:shrikant_chaudhari@yahoo.com

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 31

FUZZY LEXICAL ANALYSIS

 In designing scanner for C-MINUS language first regular
expressions are defined based on lexical conventions of it and
then NFA designed and converted into equivalent DFA and
minimized it further if possible. The implementation is
possible using Lex tool or using switch case statements in
�C� programming language. The diagram below gives DFA
for tokens in C-MINUS.
To allow flexibility in scanning fuzzy regular expressions are
defined for tokens in C-MINUS.
Construction of Fuzzy regular expressions:
Firstly fuzzy regular expressions will be constructed for
keywords that exists in C- Minus language [1] which allow
insertion, deletion, substitution, letter sequencing and typing
errors. Also this compiler allows synonyms for keywords
wherever possible. We now construct FREs for all the
keywords:

a) The FREs for reserved word �if�:

if / 1 + (ii+ff* + ii*ff+) / m

Only insertion error is considered for keyword �if�. For

the sake of convenience no deletion, substitution, letter
sequencing and typing errors will allowed for �if� the

keyword, as it has string length two.
b) The FREs for reserved word �else�:

else / 1 + (ee+ll*ss*ee* + ee*ll+ss*ee* + ee*ll*ss+ee*+

ee*ll*ss*ee+) / m1 + (ee*ll*ss*e* + ee*ll*s*ee* +

e*ll*ss*ee*) /m2 + (e+l+s+e)+/m3 + ((e+w+d+r)lse +

e(k+o+p+l)se +el(a+w+d+s)e+els (e+w+d+r))/m4

The fuzzy regular expressions can be simplified and put

together as :

else / 1+ (e+l+s)+/m1+((r+w+d+e)lse +e(k+o+p+l)se

+el(a+w+d+s)e+els (e+w+d+r)) /m2

Hence onwards we give only simplified fuzzy regular

expressions for the remaining keywords.

c) The FREs for reserved word �int�:

int / 1 + (i+n+t)+/m1 +
((i+u+k+o)nt+i(n+b+h+m)t+in(t+r+g+y))/m2 +
(integer)/0.6
d) The FREs for reserved word �return�:

return / 1 + (r+e+t+u+r+n)+ /m1 + ((r+e+t+f)eturn +

r(e+w+d+r)turn + re(t+r+g+y)urn + ret(u+y+j+i)rn +

retu(r+e+t+f)n+ retur(n+b+j+m))/m2

e) The FREs for reserved word �while�:

while/1+(w+h+i+l+e)+/m1+

((w+q+s+e)hile+w(g+y+j+n+h)ile+wh(i+u+k+o)le+whi(

k+o+p+l)e+whil(r+w+d+e))/m2

f) The FREs for reserved word �void�:

void/1 + (v+o+i+d)+ / m1 +

((v+c+g+b)oid+v(o+i+l+p)id+vo(i+u+k+o)d+voi(d+s+c

+f+e))/m2

Construction of fuzzy state NFA from above Fuzzy

regular expressions:

Fuzzy state NFA for �if�

Fuzzy state NFA for �else�

Conversion of fuzzy state NFA to fuzzy state DFA:

s\∑ i f

A B -

B C D

C C E

D - F

E - G

F - F

G - G

Table : fuzzy state DFA for �if�

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 32

Table : Fuzzy State DFA for �else�

Construction of minimized fuzzy state DFA:

Minimized fuzzy state DFA for �if�

Minimized fuzzy state DFA for �else�

 In the section below fuzzy regular expressions are given
for C-MINUS tokens , followed by representative FS-NFA
for keywords if and else, followed by transition table
representation of their fuzzy state state DFA and finally
minimized DFA for them are represented as diagram.
3. Implementation of fuzzy lexical analyzer:

 This section explains full implementation of fuzzy scanner
for C-MINUS language. In the previous section, fuzzy
regular expressions (FREs) for all keywords in C-MINUS are
defined. In the implementation phase fuzzy tokens
themselves are defined using enumerated types as below:

typedef enum
 /* book-keeping tokens */
{ENDFILE,ERROR,
 /* reserved words */ IF,ELSE,INT,RETURN,
VOID, WHILE,
 /* multicharacter tokens */ ID,NUM,
 /* special symbols */ ASSIGN, REQ, LT,
PLUS, MINUS, TIMES, OVER, LPAREN,
RPAREN, SEMI, LTEQ, GT, GTEQ, NTEQ,
COM,SQLPAREN, SQRPAREN, CRLPAREN,
CRRPAREN
 } TokenType;

 In the steps above first FS-NFA for each FRE have
designed. FS-NFA are then converted to FS-DFA . Then
minimized FS-DFA for each fuzzy keyword is constructed.
Fuzzy lexical analyzer implemented using switch-case
constructs of �C� programming language. The table
�KeyWords� stores keyword structures as given below:

static struct

 { char* str; TokenType tok; }

reservedWords[MAXRESERVED]

 ={{"if",IF},{"else",ELSE},{"int",INT},

{"return",RETURN}, {"void",VOID},

 {"while",WHILE} };

 In the implementation step sequence of alphabets is
accepted as identifier first. The procedure call performs a

s\∑ e l s w d r a z k o p

A B C E D D D - - - - -

B F G H - - - - - I I I

C J C H - - - - - - - -

D - K - - - - - - - - -

E E E E - - - - - - - -

F F C H - - - - - - - -

G J C L L L - L L - - -

H J E H - - - - - - - -

I - - M - - - - - - - -

J J E E - - - - - - - -

K - - M - - - - - - - -

L N E H O O O - - - - -

M O - - - - - - - - - -

N J E E - - - - - - - -

O - - - - - - - - - - -

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 33

lookup of crisp keywords, substitution keywords by string
comparison.

strcmp(input_string, KeyWords)
 return KeyWords;

If no match found, then the �reserved_lookup� calls

�check_fuzzy� function is used to check the token for fuzzy

keyword due to insertion, deletion, letter sequencing and
typing errors, if any.

 currentToken=checkfuzzy();
 return currentToken;

 Again if there also no match found, then current token type
retained as an identifier (i.e. ID) only. The experimental
results shows that the fuzzy keyword belongs to more than
one category with varying degree of membership. Default
membership of crisp keyword is 1, for substitution keyword it
is predefined as 0.6, for character sequencing error it is 1 and
computed runtime for insertion, deletion and typing errors.
All fuzzy keywords are identifiers. Therefore all fuzzy
keywords have membership value 1 for token type identifier.

Experimental Results: Consider input file contain
following strings

If iif else less while whil void coid int integer

Result of crisp lexical analysis:Result of fuzzy lexical
analysis:

Sr

.

N

o.

Inp

ut

µ(keyw

ord)

µ(identi

fier)

 Inp

ut

µ(keyw

ord)

µ(identi

fier)

 1 if 1 0 if 1 0

 2 iif 0 1 iif 0.87 1

3 else 1 0 else 1 0

4 less 0 1 less 1 1

5 whil

e

1 0 whil

e

1 0

6 whil 0 1 whil 0.80 1

7 void 1 0 void 1 0

8 coid 0 1 coid 0.75 1

9 int 1 0 int 1 0

1

0

inte

ger

0 1 inte

ger

0.6 1

CONCLUSION
 The paper described the possibility of fuzziness in
keywords due to insertion, deletion, substitution, typing and
letter

sequencing errors and their implementation in this paper. The
implementation is restricted to those mentioned errors. The
synonyms for programming language constructs from natural
language can be used to allow fuzzy tokens. The work can be
further extended to allow more flexibility in tokens such that
the program will look like psuedocode. In this paper the
implementation of fuzzy keywords is fully emphasized. The
approach is to use fuzzy automata concepts to allow
flexibility (or fuzziness) in token recognition process i.e.
lexical analysis. It is termed as fuzzy lexical analysis. As a
result of fuzzy lexical analysis a token may belong to more
than one category with different degree of membership. To
finalize the token category the need is to go further and
discuss fuzzy parsing. In future the work can be extended for
fuzzy parsing that will finalize the token category mainly
based on its position in the given sentence. Fuzzy context free
grammar will allow fuzziness in syntax analysis phase of
compiler in order to model grammatical errors. The work can
be extended using fuzzy translation rules for syntax directed
semantic analysis for fuzzy relations.

REFERENCES
1. Kenneth C. Louden, Compiler Construction Principles and

Practice, Cengage Learning, India Edition, 2008.
2. Vaishali Bhosale, S. R. Chaudhari, Fuzzy Lexical Analyzer:

Design and Implementation, 2015.

3. Mateescu A., Salomaa A., Salomaa K., Yu S., Lexical Analysis
with a Simple Finite Fuzzy Automaton Model, Journal of
Universal Computer Science, 1995, 292-311.

4. Bai M. Q., Sun F., Mo Z., Closure and Commutation of Fuzzy
Regular Languages, 2009 IEEE.

5. Bai M. Q., �On the Relation between Fuzzy Regular Expression

and Fuzzy Finite State Automata�, Pure and Applied

Mathematics, 16(2000)4, pp. 1-6.

6. Gupta M. M., Saridis G. N. and Gaines B. R., Fuzzy Automata
and Decision Processes, North-Holland, New York, 1977, pp149-
168

7. Kumbhojkar, H. V. and Chaudhari, S. R.(2002b), �Fuzzy

Recognizers and recognizable sets�, Int. J. of Fuzzy Sets and

Systems, Vol. 131, pp. 381-92.

8. Mordeson J. N., Malik D. S., Fuzzy Automata and Language:
Theory and Applications, Chapman & Hall, 1 edition, 2002.

9. Santos E. S. (1968a), �Maxmin automata�, Information and

control, Vol.21, pp. 27-47.

10. Wee W. G. and Fu, K. S. (1969), �A formulation of fuzzy

automaton and its application as a model of learning systems�,
IEEE Trans Syst. Sci. Cyber, Vol. 5, pp. 215-23.

11. Hopcroft, Motwani, Ullman,Introduction to Automata Theory,
Languages and Computation, Pearson Education.

12. Mishra K.L.P., Chandrasekaran N., Theory of Computer Science,
Prentice Hall of India, 1998.

13. Asveld P.R.J., Fuzzy Context Free Languages � Part 1,
Generalised fuzzy context free grammars, Theore. Comp. Sc.,
volume (2005).

14. Asveld P.R.J., Fuzzy Context Free Languages � Part 2,
Recognition and Parsing Algorithms, Theore. Comp. Sc.,
volume(2005), pp 191-213.

International Journal of Latest Research in Science and Technology.

ISSN:2278-5299 34

15. Hsuan Shih Lee, Minimizing Fuzzy finite Automaton, 2000
IEEE.

16. Kremer D., New Directions in Fuzzy Automaton, 2005 Science
Direct.

17. Lee E. T. and Zadeh L. A., �Note on Fuzzy Languages�,

Information Sciences, 1(1969) 421-434.

18. Xuli, Jinga, Diancheng, A Fuzzy Automaton Model and It�s

Applications, 1996 IEEE.

