

# SOME PROPERTIES OF CERTAIN SUBCLASS OF UNIVALENT FUNCTIONS USINGRUSCHEWEYGH DERIVATIVE. 

Dr.U.H.Naik, C.N. Math.<br>(mathcn101@rediffmail.com)<br>Asst.Professor, Athalye-Sapre-Pitre College, Devrukh<br>(naikpawan@yahoo.com)<br>Associate. Professor, Willingdon College Sangli.


#### Abstract

For analytic functions $f(z)$ normalized with $f(0)=0$ and $f^{\prime}(0)=1$ in the open unit disk $U$, a new class $\mathrm{D}_{\mathrm{k}}{ }^{*}\left(\beta_{1} \beta_{2}, \lambda\right)$ satisfying someconditions with some complex number $\beta_{1} \beta_{2}$ and some real number $\lambda$ isintroduced. In the present paper necessary and sufficient condition for $f(z)$ is in the class $\mathrm{D}_{\mathrm{k}}{ }^{*}\left(\beta_{1}, \beta_{2}, \lambda\right)$ is obtained. Also some properties of the same class are obtained. Keywords: Analytic and univalent functions; Ruscheweygh derivative; $\lambda$ convexfunctions; Coefficients bounds; etc.


## I. INTRODUCTION

Let A be the class of analytic functions defined on the open unit disk $\mathrm{D}:=\{\mathrm{zC}:|\mathrm{z}|<1\}$ and normalized by the conditions $\mathrm{f}(0)=0$ and $\mathrm{f}^{\prime}(0)=1$. A function $\mathrm{f} \in \mathrm{A}$ has Taylor's series expansion of the form
$\mathrm{f}(\mathrm{z})=\mathrm{z}+\sum_{\mathrm{n}=2}^{\mathrm{se}} \mathrm{a}_{\mathrm{n}} \mathrm{z}^{\mathrm{n}}(1.1)$
Let $\mathrm{R}(\alpha)$ denote the subclass of A consisting of functions f
(z) which satisfyRe $f^{\prime}(z)>a(z \in D)$ for some real $\alpha(0 \leq a<1)$ .A function $f(z) \in R(\alpha)$ is said to be close-to-convex of order $\alpha$ in U (cf.Goodman[1]).We know that $\mathrm{R}\left(\alpha_{1}\right) \subset \mathrm{R}\left(\alpha_{2}\right) 0 \leq \alpha_{1}$ $\leq \alpha_{2}<1$ and $\mathrm{R}(\mathrm{a}) \subset \mathrm{A}$
by Noshiro-Warshawskitheorem(cf.Duren[2]).
Given two functions $f, g \in A$, where $f(z)$ is given by (1.1) and $\mathrm{g}(\mathrm{z})$ is given by
$\mathrm{g}(\mathrm{z})=\mathrm{z}+\sum_{\mathrm{n}=2}^{\mathrm{s}} \mathrm{b}_{\mathrm{n}} \mathrm{z}^{\mathrm{r}}$
The Hadamard product f and g , denoted by $\mathrm{f} * \mathrm{~g}$ and is defined by
$\mathrm{f}^{*} \mathrm{~g}(\mathrm{z})=\mathrm{z}+\sum_{\mathrm{n}=2}^{\mathrm{xa}} \mathrm{a}_{\mathrm{n}} b_{\mathrm{n}} \mathrm{z}^{\mathrm{n}}$
The Ruscheweygh derivative of order $k$ is denoted by
$D^{k} f$ and is defined as follows: If
$f(z)=z+\sum_{n=2}^{z=} a_{n} z^{n}$, then
$D^{k} f(z)=\frac{z}{(1-z)^{k+1}} * f(z)$ where $*$ denotes the Hadamard product of two analytic functions .
We have,
$D^{k} f(z)=\frac{z}{[1-z)^{j+1}} * f(z)=z+\sum_{1=2}^{a} B_{n}(k) a_{n} z^{n}, k>-1, z \in D$
where
$B_{n}(k)=\frac{\left(k+12\left[k+2 m_{n}(k+n-1)\right.\right.}{(\mathrm{n}-1)!}$
$\therefore D^{k}(f)(z)=1+\sum_{n=2}^{m i n} n B_{n}(k) a_{n} z^{n-1}$
$\therefore D^{k}(f)(z)-1=\sum_{n=2}^{x} n B_{n}(k) a_{n} z^{n-1}$
Let $D_{k}{ }^{*}\left(\beta_{1} \beta_{2} \lambda\right)=\left[f \in A:\left|\frac{\left(D^{k} \rho_{f}(2)-1\right.}{\beta_{1}\left(D^{k}\right)(\Sigma)+\beta_{2}}\right| \leq \lambda\right\}(1.2)$
where $\beta_{1}$ and $\beta_{2}$ are complex numbers and $\nu^{\mathrm{k} f}$ representsRuscheweyh derivative of order k and some real number $\lambda$. For $k$

$$
\left.=0\left(\beta_{1}, \beta_{2}, \lambda\right)=L_{1} *\left(\beta_{1}, \beta_{2}, \lambda\right)=\left\{f \in A:\left|\frac{f(2)-1}{\beta_{1} f(\lambda)+\beta_{2}}\right| \leq\right\rangle\right\}
$$

$\mathrm{D}_{0}{ }^{*}$ was studied by Xiao-Fei Li and An-Ping Wang [3].
Let T denote the subclass of A consisting of functions of the form $f(z)=z-\sum_{n=2}^{z a} a_{n} z^{n} \quad\left(a_{n} \geq 0\right)$. (1.3)
Let $\mathrm{D}_{\mathrm{k}}^{* *}\left(\beta_{2} \beta_{2} \lambda\right)=\mathrm{D}_{\mathrm{k}}{ }^{*}\left(\beta_{2} \beta_{2}, \lambda \cap \mathrm{~T}\right.$
2. Properties of the class $D_{k}{ }^{*}\left(\beta_{1 ;} \beta_{2}, \lambda\right)$ :

Theorem 2.1: A function $\mathrm{f}(\mathrm{z})$ defined by (1.1) is in the class $D_{k}{ }^{4}\left(\beta_{1}, \beta_{2}, \lambda\right)$ if
$\sum_{n=2}^{\infty} n H_{n}\left(1+\lambda\left\|\beta_{1}\right\|\right)\left\|a_{n}\right\| \leq \lambda\left\|\beta_{2}+\beta_{2}\right\|(2.1)$
Proof:Since


Therefore, if $f(z)$ satisfies the inequality (2.1),
then $\Sigma_{n=2}^{x} n \mathbb{B}_{n}(k)(k)\left|a_{n}\right| \leq \frac{\left|\beta_{1}+\beta_{2}\right|}{\left(1+\lambda\left|\beta_{1}\right|\right.}$, using this we have

$$
=\frac{2\left|\beta_{1}+\beta_{2}\right|}{\left.\|\left|\beta_{1}+\beta_{2}\right|\right\rangle}=\lambda \Rightarrow f(z) \in D_{1}{ }^{*}\left(\beta_{1} \beta_{2} \lambda\right)
$$

Theorem 2.2: A function $\mathrm{f}(\mathrm{z})$ defined by (1.1) is in the class
$\mathrm{D}_{\mathrm{k}}{ }^{* *}\left(\beta_{1_{q}} \bar{\beta}_{2}, \lambda\right)$ if and only if
$\sum_{n=2}^{\infty} n B_{n}(k)\left(1+\lambda\left|\beta_{1}\right|\right)\left|a_{n} \| \leq \lambda\right| \beta_{1}+\beta_{2} \mid$ (2.1)
Proof :In view of theorem (2.1), we need only to prove that necessity.
If $\mathrm{f}(\mathrm{z}) \mathrm{D}_{\mathrm{k}}^{* *}\left(\beta_{\mathrm{f}_{8}} \beta_{2} \lambda\right.$ then,
$\left|\frac{\left(D^{k_{f}}\right)^{\prime}(z)-1}{\beta_{1}\left(D^{k_{f}}\right)(z)+\beta_{2}}\right|=\left|\frac{\sum_{n=2}^{n} n B_{n}(k) a_{n} z^{n-1}}{\left(\beta_{1}+\beta_{2}\right)-\sum_{n=2}^{m} n B_{n}(k) \rho_{1} a_{n} z^{n-1}}\right| \leq 2$
Since $|\operatorname{Re}\{z\}| \leq|z|$, we have
$\operatorname{Re}\left\{\frac{2_{n=2}^{z} n B_{n}(k) a_{r} z^{n-1}}{\left(\beta_{1}+\beta_{2}\right)-\sum_{n=2}^{m} n B_{n}(k) \beta_{1} a_{n} z^{n-1}}\right) \leq \lambda$
The above condition must hold for all values of $z ;|z|=r<1$. Upon choosing the value of $z$ to be real and let $z \rightarrow 1^{-}$, we get
$\sum_{n=2}^{m} n B_{n}\left(1+\lambda\left|\beta_{1}\right|\right)\left\|_{a_{n}}\right\| \leq \lambda\left|\beta_{1}+\beta_{2}\right|$
Corollary 2.1: If $\mathrm{f}(\mathrm{z}) \in \mathrm{D}_{\mathrm{k}}{ }^{*}\left(\beta_{1_{i}} \beta_{2_{i}} \lambda\right)$
then $\left\|a_{n}\right\| \leq \frac{2\left|\beta_{1}+\beta_{2}\right|}{\mathrm{n} E_{\mathrm{n}}\left(\mathrm{k}\left(1+2\left|\beta_{1}\right|\right] a_{n} \mathrm{n}\right.}(\mathrm{n}=2,3, \ldots)$.
Proof: By theorem (2.1), if $\mathrm{f}(\mathrm{z}) \in \mathrm{D}_{\mathrm{s}}{ }^{*}\left(\mathrm{\beta}_{1}, \beta_{2}, \lambda\right)$
then $\sum_{\mathrm{m}=2}^{\mathrm{s}} \mathrm{MB} \mathrm{B}_{\mathrm{n}}\left(1+\lambda\left|\beta_{1}\right|\right)\left|\mathrm{a}_{1}\right| \leq \lambda\left|\beta_{1}+\beta_{2}\right|$

Theorem:2.3Let $\mathrm{f}(\mathrm{z})$ defined by (1.1) and $\mathrm{g}(\mathrm{z})$ defined by (1.2) be in the class $D_{k}{ }^{*}\left(\beta_{\cdot z} \beta_{2} \lambda\right)$. Then the function $h(z)=\xi$ $\mathrm{f}(\mathrm{z})+(1-\bar{g}) \mathrm{g}(\mathrm{z})=\mathrm{z}+\sum_{\mathrm{m}-2}^{\mathrm{x}} \mathrm{c}_{\mathrm{n}} z^{\mathrm{n}}$, where $c_{\mathrm{n}}=\xi \mathrm{a}_{\mathrm{n}}+(1-\bar{g}) \mathrm{b}_{\mathrm{n}}$, ( $0 \leq 5 \leq 1$ ) belongs to the class $D_{2}{ }^{4}\left(\beta_{1} \beta_{2}, \lambda\right)$.
Proof: Since $f(z)$ and $g(z) \in D_{k}{ }^{*}\left(\rho_{1}, \rho_{2}, \mathcal{R}\right)$, we have
$\sum_{i=2}^{m} n B_{n}\left(1+\lambda\left|\beta_{-}\right|\right)| |_{n}|\leq \lambda| \beta_{1}+\rho_{2} \mid$
and $\sum_{\mathrm{n}=2}^{\infty} \mathrm{nB} \mathrm{B}_{\mathrm{n}}(\mathrm{k})\left(1+\lambda\left|\beta_{1}\right|\right)\left|\mathrm{b}_{\mathrm{n}}\right| \leq \lambda \mid \beta_{1}+\beta_{2}$
Clearly, $h(z)=\square f(z)+(1-\square) g(z)=z+\sum_{\square=2}^{s i n} c_{n} \mathrm{~m}^{n}$, wherec $\mathrm{c}_{\mathrm{n}}=\triangle \mathrm{a}_{\mathrm{n}}+\left(1-\leq \sum_{\mathrm{m}=2}^{\mathrm{a}} \mathrm{nB}_{\mathrm{n}}\left(1+\lambda\left|\beta_{1}\right|\right) \boldsymbol{a}_{\mathrm{n}}\| \| \|\right.$ $+\leq \lambda\left|\beta_{1}+\beta_{2}\right| \square+\lambda\left|\beta_{1}+\beta_{2}\right|(1-\square)=\lambda\left|\beta_{1}+\beta_{2}\right|$ Hence, $\Sigma_{\mathrm{m}=2}^{\mathrm{s}} \mathrm{nB}_{\mathrm{n}}(k)\left(1+\lambda\left|\beta_{1}\right|\right)\left|c_{\mathrm{n}}\right| \leq \lambda\left|\beta_{1}+\beta_{2}\right|$. $\therefore h(z) \in D_{2}{ }^{*}\left(\beta_{1} \beta_{2} \lambda\right)$

## References:

1. A.W. Goodman, Univalent Functions, vols. 1 and 2, Mariner, Tampa, FL, 1983.
2. P.L.Duren,Univalent Functions, Springer-Verlag, New York/Berlin/Heidelberg/Tokyo, 1983.
3. Xiao-Fei Li and An-Ping Wang, Some Properties of Some Subclasses of Univalent Functions, Applied Mathematical Sciences, Vol. 6, 2012, no. 54, 2687 - 2693.
4. H.Silverman, Univalent functions with negative coefficients, Proc.Amer.Math.Soc.,51(1975,109-116).
5. O.Altintas,S.Owa,On subclass of univalent functions with negative coefficients ,Pusan Kyongnam Math.J.4(1989),41-46
6. M.D.Hur,G.H.Oh,On certain class of analytic functions with negative coefficients,PusanKyongnam Math.J,5(1989),69-80.
7. M.K.Aouf,NakEunCho,On a certain subclass of analytic functions with negative coefficients, Tr.J.of Mathematics,22(1998),15-32.
