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. INTRODUCTION

In literature on linear algebra [1-5] we study concept of
vector space over afield of characteristic zero. Several results
about basis and its consegquences had been studied. In algebra
[6-8] we study groups, rings, fields and properties of product
of these algebraic structures. Also, in topological spaces we
study product of topologica spaces, product of modules etc.
Author defined the product of vector spaces and studied basis
of finite dimensional vector space of product of vector spaces
over afield[9].

Product of Vector Spaces:

Theorem 1: Let V(4 4 Jand W (4, 4 ) be vector
spaces over afieldF.

LetV x W = {(v,w)/ vel,weW}. For
(vy,wy), (v, w,)eV X Wand keF  define  vector
addition (+) and scalar multiplication (.)operation on
7 % W asfollows:

(v, wy) + (v, wy) = (v +pvy, wyty,w; Jand

k. (v,w) = (ke v, ko w).

Then 7 % W is the vector space with respect to defined
operations over thefield F.

(This vector spaceis called as product of two vector spaces.)
Proof: By using definition of operations and vector axioms

of vector spaces I and W over field F, the proof of theorem
isstraight forward.
In product vector space:

(04, Dy Jis the zero vector whenever 0y, is the zero

vector in vector space ¥V and Oy is the zero vector

in vector space W .

(—v, —w)is the negative vector of the vector

{(v,w)eV x Wwhenever -v,—w are the
negative vectors of v € V¥, w £ W respectively.

1. Basisand Dimension:
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Theorem 2: Let V (4, « Jand W (4, 4 ) be m and
11 dimensional vector spaces respectively over afield F then
" % W ism +n dimensional vector space over the field
Fie dim.(Vx W) =dim.V + dim. W.
Proof:LetB,, = {”1!1“2, ...,vm}and

By = {Wrwz, v wn} be basis for vector spaces V' and

W respectively. Let 0, 0, be zero vectors in V' and W
respectively. Define the set,

We prove that a set B is bads for the vector space V' x W

which containsm + 1 vectors.

Step I: B islinearly independent set inV = W,

For this

ay(vy,0y) + ay(vy, Oy ) + - + @, (9, 0) +
by (0y,wy) + -+ b, (0, w,) = (0y, 0y)

After simplifying and equating we get,

Ay Vg Fpls ¥y +y o tpa,, e v, = 0yand

by Wity by Wty by Wy, = Dy

Since, By and Byare basesfor vector spaces V' and W
respectively and linearly independent sets in vector spaces I
and W respectively.
Therefore,

j’-"_,.- =0,j=172, _..,n.
This proves E islinearly independent set in 17 = /.
Step 2: To show that B span ¥V x W

For this suppose (7, W}e ¥ X W isexpressed as
(v,w) = ay(vy,0y) +ay (v, ,0) + -+
Gy (Vs Oy ) + By (0, wy) + - + B, (0,,w7,)
(DAfter smplifying and equating we get,

Ay ¥y Tplg ¥y Ty @ U, = T
b1y Wyt boay Wo Ty o Tip by Wy, =W

a; = 0,i=1,2,...,mand
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(3)Since, By and Byyare bases for vector spaces V' and W
respectively and hence span vector spaces V' and W
respectively.

Therefore there exist a; eF,i=12,..,m and
b}- e F,j = 1,2, ..., nwhich satisfy (2), (3) and hence (1).
Thisproves E span vector space 17 W/,

From Step 1 and step 2, E is a basis for the vector
space V' W containing 711 + 71 vectors.

Therefore clirr. (V= W) — dirn. V 4+ dirn. W,

Thus theoremis proved.

Theorem 3: Let V{(+, & Jand W(+y, 4 | bem and
mn dimensional vector spaces over a field F. Let
By = {vy, vy, ., v Jand By = {wy,wy ., w,} be
bases for vector spaces V' and W respectively.Let Oy, T,
be zero vectors in V" and W respectively. Then for v e VV
and w £ W thefollowing sets,

By = (By x {0y ))u=

£, 00 ), (03, 0y ), e, (0, O ), (v ), (0, W), ey (2, W )}

And _

By = (By x {wh U ({0y} x By,) =

(v, w), (vy W), e, (U W), (O Wy ), (O, W), een s (O, W ) )
are bases for the vector space I X W,

Proof:For linear independence of & ,

ay(vy,0) + a,(v,,04) + -+, (v,,,04) + by (v,0,) + 4 b, (v, w,)
= (':'w Oyr)

Implies B
Ay oV FpOyp ¥y FyetpQpy Uy + (b + by + -+ b )y v =0,

And by Wy by Wo iy by Wy = Oy

Since, By, = {wl, Wy ...,wn} is linearly independent in

vector space W

= b; =0foreechj= 1,2,..,n

Substituting these val ues in above equation we get,

Ay ¥y Fyly g gyl Uy = 0y

Since, By = {1“1-1“:, ...,vm} is linearly independent in

vector space V'

= a; = 0foreachi= 1,2,...,m

Thus, a; , b}- = 0, for each iandj.

Therefore the set Iy is linearly independent in vector

space V' X W,

By using similar argument we prove the set B, is linearly

independent in vector space V7 X .

Moreover,
n(5,)
=n(f,)=m+n=dim.V +dimW =

dim. (V X W)
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Therefore, by sufficient condition for basis of finite
dimensional vector space, the sets B; and Eare bases for

the vector space V' X W.
1. Coordinate vectors:

Theorem 4. Let
B, = {wl, Wy ..

B, = {vl, 2% ...,vm}and
,wn]- be bases for

be bases for vector spaces V' and W respectively.Let
0,0, be zero vectors in ¥V and W respectively. Then
B = (B, x{0,}) U ({0,} % B,) is basis for product
vector space V=W, Moreover, if for
veV, (v); =(a,,a, , ag,..a, Jandfor we W,
(wg, = (b, ,b, ,bs,...b, )are coordinate vectors of
vell andwe W with respect to bases B, and
E yrespectively then coordinate vector of

(v,w) e VX Wwith respect to bass Bis
(v.w)g =(ay,a; .83, @y, by , by by, .. b,) =

[(1:‘]3., (w B.l)

Pr oof:

By theorem 2, Eis a basis for product vector
space VX W,
Now to
show

(v,w)g = (ay ,a, ,as, -y, by by by, .. by).
For this suppose

(v, Wj =¢,(vy,04) + ¢, (v,,0,,) +-+
Em (¥ Oyy) + (O, wy) +

dy (O wa) + oo+ d, (0 wry,)

2v=cw toyy+eetou,, w=dw, +
dywy T+ dywy,

@
Now,
(v)g, = (al Ay Gy, e
(“’1 by by, b )

a,) end (w)g =

=2v=av +av, ++a,v,, w=bw +
byw, + -+ b,w,
@

From (1) and (2),
each i and j.

(v, W:]_a (51 (O @y, ey, by by b, "'bn:] = [(”ja.r [:W:BQ:
Thus result is proved.
Theorem 5: Let

By = {wl, Wi

¢; = a; and d; = b;, for

B, = {vl, 2% ...,vm}and
' wn]- be bases for

be bases for vector spaces V' and W respectively.Let
0y, 0y be zero vectorsin V' and W respectively. Then for
uelV

B = (B, x{0,}) U ({u} x B,) is basis for product
vector space Vo= W, Moreover, if for
veV, (v)g =(ay ,a, ,..a,)andforwe W,
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(Wja,, = (by by , by, ...
vell andweW with respect to bases B. and
B, respectively then coordinate vector of

(v, w) € V x Wwith respect to basis B is

(v, w), =

[(1’ —(by + by +by+-+b,)uls, (WJBH)

b, Jare coordinate vectors of

Proof: By theorem 3, 'is a basis for product vector

space V X W,
Now to
show

(v,w); =

((1’ —(by + by +by+-+b,)u)g !(Wjaq)

For this suppose

(v, w) = cl(tﬂl, ﬁwj +c, (v.‘ ,ﬁwj 4+ -4

cm(vm’ ﬁ[-t’j + dl(urwlj + + dn |:'Lt., an

2 v =00 tovy ot o, v, T (dl +dy, +t dn)u,
and w=d,w, +d,w, + - +d,w,

Now,

[w:B (by ,by ,by,..b,) = w=bw, +

bw, + -+ b,w,

From this, d. = b}-for each |.

Substituting these values in expression for 17 we get,
v=qv tor ot v, (b b4+ b u
Lv— (bl-l- by + -+ bn]u =c vyt cgvy o+

Conlm

is a basis for vector space, there
€,,in field F satisfying above equation.

Since E,
EXISLEy, Cg, vees

(= (b + b+ -+ D }u‘]&_ = (€1 .65 4 Cpy)
(b +by 4+ b u)g, W)y )

(1’;"-’)2 = (51 1€ 1Cgyen Gy By By By B J ([v—
Thus result is proved.
Theorem 6: Let

B, = {Wl, Wy s

B, = {vl, Ty ...,vm}and
wn} be bases for
be bases for vector spaces V¥ and W respectively.Let
0y, 0y, be zero vectorsin V' and W respectively. Then for
uelW
B = (B, x{u)v({0,}xB)
vector space X W.
veV, (v)g =(ay,a;,..
(W)g, = (by ,by , by, .
vell andweW with respect to bases B. and
E., respectively then coordinate vector of
(v, w) € V x Wwith respect to basis B is
[v w)p = ()5, (w—(a, + a; +a5+

- ta :]u)sn)
Proof: Similar to the proof oh theorem 5.

is basis for product
Moreover, if for
a,,Jand for w e W,

b, Jare coordinate vectors of

2. Examples:
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Firstly we study uncommonexamples of vector spaces to
study basis and coordinate vectors in product vector spaces.
i) LeV={x€ER/x>= 0}. Define addition {+) and

scalar multiplication (. on V as follows: x + ¥ = xvand
x =x%; ¥x,v €V, k € R. ThenV isaone dimensional
real vector space.

Solution: Step I: To show that 1V isareal vector space.
Let x,v,z €EVandk,l € R, then
C1: Additive Closureaxiom: x + v = xy & V.

C2: Multiplicative Closureaxiom: k.x = x* € V.
A1l: Additive associative axiom:

(x1¥)lz=(xy) | z2= (xylz=xyz(1)
x+(yv+z)=x+(vz)= x(vz) =xyz (2

From (1) and (2) vector addition is associative operation on
V. A2: Additive commutative axiom:
r4+v=(xvi=(yrI=v+=x

A3: Existence of additive identity (zero) vector: Suppose for
x € V thereis D such that

x+0=x= x0=x = 0= 1 £ Vishezero
vector.

A4 Existence of negative vector: Suppose for x € ¥ thereis
avector ¥ such that

x |ly=1= xy=1 =>}r=icl’isthe negative
x

vector of x € V.

M1:

k(c+v)=k(zy)= (zv)*= x*v*=x"+
ye=k.x+ky

M2:
(k+Dox=x"T=xfx'=x"+x"=kx+1lx

M3 k. (Lx) =kxt = (x)* = 2™ = (kl).x

M4 1l.x=x1=x
Thus V' satisfy all axioms of vector space over the field E.
Therefore, ¥V isareal vector space.
Step II: Toshow dim. V' = 1.
For this consider B = {c}, ¢ EV — {1}.Thenfor k € R
we have,
kc=1=0=c*=1=c"=k=0.
This shows E is linearly independent set in T/,
©)
Again for x € V' suppose there isareal number k such that
kc=x = c*=x
= kloge = logx

logx

:}K—Tgc € Ris such that k.c = x, where x € V is

arbitrary.

~ L(B) = V=linear span of B.(4)

From (3) and (4) E is abasis for ¥ and it contain only one
vector.

dim.V =1,
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i) LetV ={xER/x=< 0} Define addition {+) and
scalar multiplication .7 on V as follows: ¥ + 3 = —{xy)
ad .x = —(—x)*;Vx,y €V, t ER. Then V" isaone
dimensional real vector space.

Solution: Step I: To show that I isareal vector space.

Let x,v.2 EVand k, I € R, then

C1: Addititivity Closureaxiom:x + v = —(xy) €V.
C2: Multiplicative Closure axiom: k.x = —(—x)* € V.
Al: Additive associative axiom:
(x+y)+z=[-(n]+z= - [-(¥)]=
xyz(1)
x+(y+z)=x+[-(y2)]= —x[-(yz)] = xyz
2

From (1) and (2) vector addition is associative operation on
I.A2: Additive commutative axiom:
x+y=—(xy)=—-(yx)=y+x

A3: Existence of additive identity (zero) vector: Suppose for
x € Vthereis 0 such that

x+0=x= —x0=x = 0= —1 € Vishe zero
vector.

A4: Existence of negative vector: Suppose for x € V' thereis
avector ¥ such that

r+yry=—1 = —xy=—1 =}}F=EFFiS the
x

negative vector of x € V.
M1:

k(x+y) =k (—xy)= —(—(—xy))* =
—(x9)* = = [(=0) (=y)[F = = ((—x)*(=y)") =
—(— (V.= (=)= —(kxkv)= kx+

k.y
M2:
(k +D.x = ~(-2)*" = ~[(=*(2)] =

(D0 (0= ((kx)ky))=k=x |
k.y
M3:

; 1k

k.(Lx) = k.[-(—x)"= —[_[_(__x]q] _
—(—x)* = (kD).x
M4: 1.x = —[—le = x

Thus V' satisfy all axioms of vector space over thefield K.
Therefore, ¥ isareal vector space.

Step II: To show dim.V = 1.For this consider
B = {c}, ¢ EV — {—1}.Thenfor k € R wehave,
ke=-1=0= —(~c)*=-1=2 (=)' =1=(-c)"=k=0.
This shows E islinearly independent set in

V. (3) Again for x € I suppose there is a real number
k such that

ke=x= —(-c)V=x=(—)=—x>0
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= klog(—c) = log(—x)

=k = ‘ﬂg_‘_x} £ Rissuch that k.¢ — x, wherex € V
legl—c
isarbitrary.

=~ L(B) = V=linear span of B(4)
From (3) and (4) B isabasisfor IV and it contain only one
vector.

dim.V =1,
i) Let
V— RIwRT—

{(x,y,2)/x,7ve R&z >0}
x= (x40, 21),y= (x2,72,22)eV  vector
addition (+) and scalar multiplication (.) are defined as
x+y=(x, + x3, + ¥,z122)and
k.x = (kxy,keyy,z, %), keR .
Show that a) 17 isareal vector space.

b) Show that the
B = {(1,0,1),(1,1,1),(0,0,5)} isabasisfor V.

¢) Find the coordinate vector {(—5, 10,6)5 .
Solution: &) We know that I = R isreal vector space with
usual addition of vectors and usua scalar multiplication
operations whose zero vector is (0,0). Theset W =R* is

For

also real vector space with operations zy + z3 = z32; and
k.z= z"for 21,22,z B* and k £ R.The zero vector of
R*is1.

- Vis a is a real vector space with respect to defined
operations.

b) Now B; = {(1,0),(1,1)}and B, = {(5)}are bases
for vector spaces R*andR™.

B =(By X {0y} U({Tly} X B,) =
f(1.0,1).(1,1,1).(0,0,5)}

isbasisfor V.

c) Now
(—5,10) = —15(1,0) + 10(1,1) = (—5,10);
(—15,10) i

For
GeW,6=c.5=26=5"=¢c=

(5)
'. (—5,106); = [(—540)3»('5)31) =

(—15,10, "’""’6]

logs
Let
V=PRxR ={x,v2)/x,ve B &z =
0}

fog® o (Ejaa =

L

18



International Journal of Latest Research in Science and Technology.

For x= (xy,y1,2),v= (x3,¥2,22)eV  vector
addition (+) and scalar multiplication (.) are defined as
x+y=1{x+ x2.01 + ¥2,—7177)and

kox = (kexybeyy, —(—2, %), keR .

Show that a) IV isareal vector space.

b) Show that the set

B = {(1,0,—1),(1,1,-1),(0,0,—5)}isabasisfor V.

¢) Find the coordinate vector (—5, 10,—6)5 .

Solution: @) We know that [ = R? isreal vector space with
usual addition of vectors and usual scalar multiplication
operations whose zero vector is (0,0). Theset W = R¥ is
also real vector space with operations z3 + z; = #3375 and
le.z = z¥for 2,22,z R¥ and k € F.The zero vector of
R™is—1.

~ Vis a is a real vector space with respect to defined
operations.

b) Now B; = {(1,0),(1,1)}and 3, = {(—5) Jare bases
for vector spaces R andR ™.

=~ B=(B; X {0y}) V({0,} X B;) =
{(1.0,-1),(11,-1).(0,0,-5)}

isbasisfor 1.

c)Now

(—5,10) = —15(1,0) + 10(1,1) = (—5,10)5 =
(—15,10)

For

—6eW,—-6=c.-5=6=—(—(-5)=c=

logt _ _ (!og'ﬁ)
logs = ( Ejﬁz logs

- (—5,10,—6)5 = ((—5,10)5,, (6)5 ) =
(—15,10,222)

logs !

iv) Let V=R*xR ={(x,y)/x =0,y<0}.
For x = (x1,%3),

v = (v, v2) € Vvector addition and scalar multiplication
operations are defined as
X +y= %% and k.x = (x,%,—(—x,)¥). Show that
B, = {(6,—1),(5,—-10)} and B, =

c o ™. —50"
o ((5-10),(1,-50)

are bases for real vector space V.

Solution: Here ETis a real vector space with operations
Xy + X, =x3%,,
k.x —x¥forxy, x2 = RY and k € R whose zero vector is
1.
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Similarly, R7is a red vector space with
operationsxy + Xy = —X-X37,

k.x = —(—x)¥orxy, x;e RY andk e R whose  zero
vectoris —1.

a) Methodl: Since any nonzero vector is basis vector

for both one dimensional vector spaces. Therefore,

f6land {—10] are basis for vector spaces R* and R~
respectively.

~ {6} x {—1} u{5: x {10} = {(6, —1),(5, —10)] =

By

and

{5} x {10} u{1}x{-50} = {(5,—10),(1, —50)} =
B,

are bases for product vector space V —R* = R~. (By

theorem 3)
Method 2: By using definition of basis we show that

By and B, are linearly independent and span vector space
8

For linear independence of B; , consider

alé,—1) +b(5, —10) = (1, —1) = zero vector in V.
~ (6257, [~ (-] [~(-10)]*) = (1, —1).

o 6258 =1, —(10%) = —1.

~bh=0a=20.
Therefore  Byis  linearly  independent in V.
1

For linear span consider
a(é,—1) +b(5,—10) = (x,y¥) = arbitrary vector in V.

« (8952, — [ (1) [—(=10)]?) = (x, 7).
o 6258 = ¢ —{10") = v.

— M:rinRﬂj risnegative
log10 ~ = ! ¢ |
(5@
Then 6E=x5—b :,a:m%;—zﬁx}ER.

From this any vector in V' is expressed as linear combination
of basis vectors.
=~ L(By) =V.(2
From (1) and (2) Byisbasisfor V.
Similarly, Bsisbasisfor V.
V) LetV =R¥®xBR*xR™.
For x = (xy, X3, %3,%0,%s5) , ¥ = (O, V2,v3, Ve, ¥s) €V
andkei,
x +y = (g + 1, %2+ ¥2,%3 + Y3, XY, ¥s¥s)and
X — (kxl,.'cxz, kxz,xff,—(—xE}kj . Then show that V' is

a real vector space.
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B=
{(1111,-1),(1104,-1), (1001, -1)), (00,05, 1), (0001, -7)}
7. Also, Find
—5)) relative to the basis B.

isbasis for the coordinator vector of
v= {1234
Solution: Here, Risareal vector space w.r.t. operations
(xp,xz,x3) + Oy ys) — (o + yoxp +yg, 03+
¥3)
and
k.(xq,75,x5) = (kxy, kx o, kxg ).
Similarly R¥and R~ are real vector spaces w.r.t. operations
defined in examplesi) and ii).
Therefore ¥ = R® x R* x R~ is area vector space w.r.t.
operations defined here asit is product vector space.
Now, B, = {(1,1,1),(1,1,0),(1,0,0)} ,
B, ={5},B3 ={—7) are bases and (0,0,0),1,—1 are
zero vectors for real vector spacesR?, R, R ~respectively.

= (B, x {1} x {~1)u ((0,0,0) x B, x {~1}) U
((0,0,0) x {1} U B;)
isabasisfor vector space IV.

Nowin B3, (1,2,3) = 3(1,1,1) —1{1,1,0) — 1{1,0,0)
=~ (1,23)5 = (3 —1,-1).

Similarly in
¥ _ _ k _ log=s _ (log4
R*4=kS=5 =k =200 o (4), = (25)
And in
- _©_ _ 7k _ logs _ _

B-,—5—Li{-7) 75 =k :Gg?—b(ﬁ}ﬁs
loghs
(!og?)
From this
(1,234,—5)5 = ((1,23)5,, @5, (—5)5,) =
(3 _l Log4 ;ogs)

agE logT.

CONCLUSION

In this paper we studied basis for product vector space and
its application to find the coordinate vectors in terms of
coordinate vectors of vectors lying in vector spaces whose
vector product is defined.
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