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Abstract- The purpose of this paper is to study fuzzy Mealy machines and their (output) subsystems. Apart from usual properties 
of subsystems of a fuzzy Mealy machine, we characterize them using a class of of fuzzy sets for fixed strings of input and output. Also a 
class of subsystems of a given fuzzy Mealy machines is obtained with the help of fuzzy points. Cyclic and super cyclic subsystems are also 
encountered and characterized.  
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I. PRELIMINARIES 
 

   In recent studies on fuzzy automaton, various extensions 

such as,general fuzzy automaton [5, 18], Intutionistic fuzzy 

automaton [4], Bipolar fuzzy automaton [9], fuzzy pushdown 

automaton [16, 4] etc are successfully studied. Apart from 

these extensions various properties of fuzzy finite state 

machines are extended to these extensions [1, 3, 7, 8, 10, 11, 

12, 15]. In [10] subsystem of fuzzy finite state machine is 

introduced and various issues relating to them are discussed. 

Since many concepts of fuzzy finite state machine are 

introduced for fuzzy Mealy machine [2, 8, 15, 17]. It is 

natural to think about the extension for fuzzy Mealy machine. 

In [1] fuzzy Mealy and Moore machines are introduced and 

discussed comparatively. Recall that X* denote the set of all 

string of finite length over X, λ denotes the empty string and 

|X| denotes the length of x. This section contains notions in 

Mealy-type fuzzy finite state machines that are introduced by 

Liu et al. [14] and Malik et al. [13]. We have also introduced 

homomorphisms of fuzzy Mealy machines. Few new results 

on coverings and homomorphisms of Mealy-type fuzzy finite 

state machines are also reported. 

Definition 1.1 [13, 14] A fuzzy Mealy machine is a quintuple 

M = (Q,X,Y, , ),δ σ where Q is a finite non-empty set called 

the set of states, X is a finite non-empty set called the set of 

inputs, Y is a finite non-empty set called the set of outputs,  

 

 

 
δ is a fuzzy subset of  called the transition 

function,  

Q X Q× ×

σ is a fuzzy  subset of  called  the  output  Q X Y× ×

function and following condition is satisfied: 

(( q Q), ( a X), ( p Q, (q,a,p) 0) (( b Y), (q,
a,b) 0).

δ σ∀ ∈ ∀ ∈ ∃ ∈ > ⇔ ∃ ∈
>

 Definition 1.2 [13, 14] Let  M = (Q,X,Y, , ),δ σ be a fuzzy 

Mealy machine. Then  

(i) define  as:  * *: Q X Q [0,1]δ × × → q,p Q, a X,∀ ∈ ∀ ∈
*x X∀ ∈  

  * 1 if q p
(q, , p)

0 if q p
δ λ

=⎧
= ⎨ ≠⎩

 
* *

r Q
(q, xa, p) { (q, x, r) (r, a, p)}δ δ δ

∈

= ∧∨ and  

 

(ii)define  as * * *: Q X Y [0,1]σ × × → q Q, a X,∀ ∈ ∀ ∈  
and * *x X , b Y, y Y∀ ∈ ∀ ∈ ∀ ∈

 

 * 1 if x y
(q, x, y)

0 if (x , y )or(y , x
λ

σ
)λ λ λ

= =⎧
= ⎨ = ≠ = ≠⎩ λ

 
* * *

r Q

* *

r Q

(q, xa, yb) { (q, x, y) (q, x, r) (r, a, b)}

(q, x, y) { (q, x, r) (r, a, b)}

σ σ δ σ

σ δ σ
∈

∈

= ∧ ∧

= ∧ ∧

∨

∨
 

Definition 1.3 [13, 14] Let  M = (Q,X,Y, , ),δ σ be a fuzzy 
Mealy machine. Then  *q,p Q, x,u X∀ ∈ ∀ ∈

  * * *

r Q
(q, xu, p) { (q, x, r) (r, u, p)}δ δ δ

∈

= ∧∨
Definition 1.4 [13] Let  M = (Q,X,Y, , ),δ σ be a fuzzy Mealy 
machine, if | x | | y |,≠ then  * *(q, x, y) 0, q Q, x X ,σ = ∀ ∈ ∀ ∈

*y Y∀ ∈ . 
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2. FUZZY MEALY MACHINES AND

HOMOMORPHISMS

In this section, we introduce and discuss various properties of fuzzy

Mealy machine.

Definition 2.1LetM = (Q,X, Y, δ, σ) be a fuzzy Mealy machine.

Let q, p ∈ Q. Then p is called an immediate successor of q, if

∃ a ∈ X and b ∈ Y such that δ(q, a, p) ∧ σ(q, a, b) > 0 and

p is called successor of q, if ∃ x ∈ X∗ and y ∈ Y ∗ such that

δ∗(q, x, p) ∧ σ∗(q, x, y) > 0.

Let M = (Q,X, Y, δ, σ) be a fuzzy Mealy machine and q ∈ Q.

We shall denote S(q) the set of all successor of q. If T ⊆ Q, then

set of all successor of T , denoted by S(T ), is defined by the set

S(T ) =
⋃
{S(q) | q ∈ T}.

Theorem 2.2 Let M = (Q,X, Y, δ, σ)be a fuzzy Mealy machine.

Define a relation ∼ on Q as p ∼ q if and only if q is successor of p.

Then ∼ is reflexive and transitive.

Clearly ∼ is not symmetric.

Theorem 2.3 Let M = (Q,X, Y, δ, σ)be a fuzzy Mealy machine.

Let A,B ⊆ Q

(1) if A ⊆ B then S(A) ⊆ S(B)

(2) A ⊆ S(A)

(3) S(S(A)) = S(A)

(4) S(A ∪B) = S(A) ∪ S(B)

(5) S(A ∩B) ⊆ S(A) ∩ S(B)

Proof The proofs of (1), (2), (4) and (5) are straightforward.

(3) By (2) we have S(A) ⊆ S(S(A)). Let q ∈ S(S(A)). Then q ∈
S(p), for some p ∈ S(A). Thus p ∈ S(r), for some r ∈ A. Now,

q is successor of p and p is successor of r, hence by Theorem (2.2),

q is successor of r. Thus q ∈ S(r) ⊆ S(A). Hence, S(S(A)) ⊆
S(A).

Definition 2.4 LetM = (Q,X, Y, δ, σ) be a fuzzy Mealy machine.

Let T ⊆ Q. Let δ′ and σ′ be fuzzy subset of Q × X × Q and

Q×X × Y respectively and let N = (T,X, Y, δ′, σ′). Then N is

called a submachine of M , if (1) δ′ = δ|T×X×T and σ′ = σ|T×Y
and (2) S(T ) ⊆ T .

Clearly, if K is a submachine of N and N is a submachine of M ,

then K is a submachine of M .

Definition 2.5 LetM = (Q,X, Y, δ, σ) be a fuzzy Mealy machine.

Then M is called strongly connected, if p ∈ S(q), ∀ p, q ∈ Q.

Definition 2.6 Let M1 = (Q1,X1, Y1, δ1, σ1) and M2 =

(Q2,X2, Y2, δ2, σ2) be a fuzzy Mealy Machines. A triplet (f, g, h)

of mappings, f : Q1 −→ Q2, g : X1 −→ X2 and h :

Y1 −→ Y2, is called fuzzy Mealy machine homomorphism

from M1 to M2, denoted by (f, g, h) : M1 −→ M2, if (i)

δ1(q1, x1, p1) ≤ δ2(f(q1), g(x1), f(p1)) (ii) σ∗1(q1, x1, y1) ≤
σ∗2(f(q1), g(x1), h(y1)), ∀ q1, p1 ∈ Q1, x1 ∈ X∗1 and y1 ∈
Y ∗1 . Fuzzy Mealy machine homomorphism (f, g, h) is called

strong homomorphism, if δ2(f(q), g(x), f(p)) = δ1(q, x, p) and

σ∗2(f(q), g(x), h(y)) = σ∗1(q, x, y), ∀ p, q ∈ Q1, x ∈ X∗1, y ∈
Y ∗1 .

Remark 2.7In above definition (2.6), if X1 = X2, Y1 = Y2 and

g, h are identity maps, then we simply write f : M1 −→ M2 and

say that f is a homomorphism or strong homomorphism accord-

ingly.

Theorem 2.8 Let (f, g, h) : M1 −→ M2 be a fuzzy Mealy ma-

chine homomorphism. Then

(1) if p is a successor of q in M1, then f(p) is a successor of f(q)

in M2.

(2) S(f(q)) = f(S(q)), ∀ q ∈ Q1, if (f, g, h) is strong.

Proof The proof of (1) is straightforward.

(2) f(p) ∈ f(S(q)) ⇔ p ∈ S(q) ⇔ δ∗1(q, x, p) ∧ σ∗1(q, x, y) > 0

⇔ δ∗1(q, x, p) > 0 and σ∗1(q, x, y) > 0⇔ δ∗2(f(q), g(x), f(p)) >

0 and σ∗2(f(q), g(x), h(y)) > 0 ⇔ δ∗2 (f(q), g(x), f(p)) ∧
σ∗2(f(q), g(x), h(y)) > 0⇔ f(p) ∈ S(f(q)).
Theorem 2.9Let M1 = (Q1,X1, Y1, δ1, σ1) and M2 =

(Q2,X2, Y2, δ2, σ2) be a fuzzy Mealy Machines and let (f, g, h) :

M1 −→M2 be onto homomorphism. If M1 is strongly connected,

then M2 is strongly connected.

Proof Let q2, q′2 ∈ Q2. Then ∃ q1, q
′
1 ∈ Q1 such that

f(q1) = q2 and f(q′1) = q′2. Since M1 is strongly connected,

we have q1 ∈ S(q′1). Then f(q1) ∈ f(S(q′1)). By Theorem ??(2)

f(q1) ∈ S(f(q′1)), that is q2 ∈ S(q′2). Hence, M2 is strongly con-

nected.

3. FUZZY SUBSYSTEMS OF FUZZY MEALY

MACHINES

In this section the concept of fuzzy subsystem of fuzzy Mealy ma-

chine is introduced. Its characterization will be discussed through

a fuzzy set defined for fixed strings of input and output. For a fixed

state and an element of [0,1] a particular class of fuzzy subsystems

will be obtained. Towards the end of the section notions of cyclic

ISSN (Online):2278-5299 133



International Journal of Latest Research in Science and Technology

and super cyclic fuzzy subsystems will be discussed.

Definition 3.1 Let M = (Q,X, Y, δ, σ) be a Fuzzy Mealy Ma-

chines. Let µ be a fuzzy subset of Q. Then µ is called a fuzzy

subsystem of M , if µ(q) ≥ µ(p)∧ δ(p, a, q)∧σ(p, a, b), ∀ q, p ∈
Q, a ∈ X and b ∈ Y .

If (Q,X, Y, δ, σ, µ) is a fuzzy subsystem ofM , then we shall write

µ for (Q,X, Y, δ, σ, µ).

Theorem 3.2 Let M = (Q,X, Y, δ, σ) be a fuzzy Mealy ma-

chine. Then µ is a fuzzy subsystem of M if and only if µ(q) ≥
µ(p) ∧ δ∗(p, x, q) ∧ σ∗(p, x, y), ∀ q, p ∈ Q,x ∈ X∗, y ∈ Y ∗.
Proof Suppose µ is a fuzzy subsystem of M . Let q, p ∈ Q,x ∈
X∗ and y ∈ Y ∗. We prove the theorem by mathematical induction

on |x| = |y| = n.

If n = 0, then x = y = λ. Now if q = p, then µ(p)∧ δ∗(q, λ, q)∧
σ∗(q, λ, λ) = µ(q). If q 6= p, then µ(p)∧δ∗(p, λ, q)∧σ∗(p, λ, λ) =
0 ≤ µ(q). Thus, the theorem is true for n = 0.

Assume that the theorem is true for all u ∈ X∗ and v ∈ Y ∗ such

that |u| = |v| = n − 1, n > 1. Let x = au and y = bv where

a ∈ X, b ∈ Y and |u| = |v| = n− 1.

Then µ(p) ∧ δ∗(p, x, q) ∧ σ∗(q, x, y) = µ(p) ∧ δ∗(p, au, q) ∧
σ∗(q, au, bv) = µ(p)∧{

∨
r∈Q

[δ(p, a, r) ∧δ∗(r, u, q)]∧ [δ(p, a, r)∧

σ(r, a, b) ∧ σ∗(r, u, v)]} = µ(p) ∧ {
∨
r∈Q

[δ(p, a, r) ∧ δ∗(r, u, q)] ∧

[σ∗(p, a, b) ∧ σ∗(r, u, v)]} = {
∨
r∈Q

[µ(p)∧δ(p, a, r)∧σ∗(p, a, b)]∧

[δ∗(r, u, q) ∧ σ∗(r, u, v)]} ≤
∨
r∈Q
{µ(r) ∧ δ∗(r, u, q) ∧

σ∗(r, u, v)} ≤ µ(q). Hence, µ(q) ≥ µ(p) ∧ δ∗(p, x, q) ∧
σ∗(p, x, y). The converse is trivial.

The following theorem gives a class of constant fuzzy subsystems

for M .

Theorem 3.3 Every constant fuzzy set µ on Q determines a fuzzy

subsystem of M .

Proof Suppose µ is constant fuzzy set ofQ. Then for any p, q ∈ Q,
we have µ(p) = µ(q). Then for any a ∈ X and b ∈ Y , clearly

µ(q) = µ(p) ≥ µ(p) ∧ δ(q, a, p) ∧ σ(q, a, b). Therefore, µ is a

fuzzy subsystem of M .

Theorem 3.4 Let M = (Q,X, Y, δ, σ) be a fuzzy Mealy machine.

Let µ1 and µ2 be fuzzy subsystems of M . Then

(1) µ1 ∩ µ2 is a fuzzy subsystem of M and

(2) µ1 ∪ µ2 is a fuzzy subsystem of M.

Proof Since µ1 and µ2 are fuzzy subsystem of M, for p, q ∈
Q,x ∈ X∗, y ∈ Y ∗ we have µ1(q) ≥ µ1(p) ∧ δ∗(p, x, q) ∧
σ∗(p, x, y) and µ2(q) ≥ µ2(p) ∧ δ∗(p, x, q) ∧ σ∗(p, x, y)

1. Therefore, (µ1 ∩µ2)(q) = µ1(q)∧µ2(q) ≥ (µ1(p)∧µ2(p))∧
δ∗(p, x, q) ∧ σ∗(p, x, y). Hence, (µ1 ∩ µ2) is a fuzzy subsystem.

2. Therefore, (µ1 ∪µ2)(q) = µ1(q)∨µ2(q) ≥ (µ1(p)∨µ2(p))∧
δ∗(p, x, q) ∧ σ∗(p, x, y). Hence, (µ1 ∪ µ2) is a fuzzy subsystem.

The following example show that the complement of a fuzzy

subsystem is not always a fuzzy subsystem.

Example 3.5 Let Q = {p, q},X = {a}, Y = {b}, δ(r, a, s) =

1
3
∀ r, s ∈ Q,σ(r, a, b) = 1

2
∀ r ∈ Q. Let µ(q) = 4

5

and µ(p) = 1
2

. Then µ(q) ≥ µ(p) ∧ δ(p, a, q) ∧ σ(p, a, b) and

µ(p) ≥ µ(q)∧δ(q, a, p)∧σ(q, a, b). Then, µ is a fuzzy subsystem,

but µc = 1− µ is not.

Theorem 3.6 Let M1 = (Q1,X1, Y1, δ1, σ1) and

M2 = (Q2,X2, Y2, δ2, σ2) be fuzzy Mealy machines. Let

(f, g, h) : M1 −→ M2 be onto strong homomorphism. If µ is a

fuzzy subsystem of M1, then f(µ) is a fuzzy subsystem of M2.

Proof Let p2, q2 ∈ Q2 and x2 ∈ X∗2, y2 ∈ Y ∗2 . Since f

is onto, there exist p1, q1 ∈ Q1 be such that f(p1) = p2

and f(q1) = q2. Also, g and h are onto, therefore there

exists x1 ∈ X∗1 and y1 ∈ Y ∗1 such that g(x1) = x2 and

h(y1) = y2. Suppose also that there is r1 ∈ Q1 be such that

f(r1) = p2. Then, δ∗1(p1, x1, q1) = δ∗2(f(p1), g(x1), f(q1)) =

δ∗2(f(r1), g(x1), f(q1)) = δ∗1(r1, x1, q1). Similarly

σ∗1(p1, x1, y1) = σ∗1(r1, x1, y1).

Now,f(µ)(p2) ∧ δ∗2(p2, x2, q2) ∧ σ∗2(p2, x2, y2)
=

∨
{µ(r1)|f(r1) = p2} ∧ δ∗2(p2, x2, q2) ∧ σ∗2(p2, x2, y2)

=
∨
{µ(r1) ∧ δ∗2(p2, x2, q2) ∧ σ∗2(p2, x2, y2)|f(r1) = p2}

=
∨
{µ(r1) ∧ δ∗2(f(p1), g(x1), f(q1)) ∧

σ∗2(f(p1), g(x1), h(y1))|f(r1) = p2}
=

∨
{µ(r1) ∧ δ∗1(p1, x1, q1) ∧ σ∗1(p1, x1, y1)|f(r1) = p2}

=
∨
{µ(r1) ∧ δ∗1(r1, x1, q1) ∧ σ∗1(r1, x1, y1)|f(r1) = p2}

≤
∨
{µ(q1)|f(r1) = p2)}, since µ is fuzzy subsystem of M1

≤
∨
{f(µ)(q2)|f(r1) = p2)}.

= f(µ)(q2).

Therefore, f(µ) is a fuzzy subsystem of M2

The following example show that the ontoness is necessary for the

above theorem

Example 3.7 Let Q1 = {p, q}, Q2 = {r, s},X =

{a}, Y = {b}, δ1(q, a, q) = δ1(p, a, p) = δ1(p, a, q) =

δ1(q, a, p) = 1, σ1(t, a, b) = 1
2
∀ t ∈ Q. and

δ2(r, a, s) = 1
4
, δ2(s, a, r) = 1

7
, δ2(r, a, r) = 1 = δ2(s, a, s) =

1, σ2(r, a, b) = 1
2
, σ2(s, a, b) = 1

8
. Let f : Q1 −→ Q2 de-

fined by f(q) = f(p) = r. Then f is not onto. Clearly, f is
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strong homomorphism. Let µ1 be a fuzzy subset of Q1 such that

µ1(p) = 1
2
, µ1(q) = 2

3
. Then µ1 is fuzzy subsystem of M1, but

f(µ) is not a fuzzy subsystem of M2.

Theorem 3.8 Let (f, g, h) : M1 −→ M2 be a strong homomor-

phism. If µ is the fuzzy subsystem of M2. Then f−1(µ) is a fuzzy

subsystem of M1.

Proof Let M1 = (Q1,X1, Y1, δ1, σ1) and M2 =

(Q2,X2, Y2, δ2, σ2) be fuzzy Mealy machines. Let

p1, q1 ∈ Q1 and x1 ∈ X∗1, y1 ∈ Y ∗1 . Then

f(p1), f(q1) ∈ Q2, g(x1) ∈ X∗2, h(y1) ∈ Y ∗2 . Now

since µ is fuzzy subsystem of M2, we have, µ(f(p1)) ≥
µ(f(q1)) ∧ δ2(f(q1), g(x1), f(p1)) ∧ σ2(f(q1), g(x1), h(y1)).

Thus, µ(f(p1)) ≥ µ(f(q1))∧ δ(q1, x1, p1)∧ σ1(q1, x1, y1). That

is, f−1(µ)(p1) ≥ f−1(µ)(q1) ∧ δ(q1, x1, p1) ∧ σ1(q1, x1, y1).

Therefore, f−1(µ) is a fuzzy subsystem of M1.

Theorem 3.9 Let M = (Q,X, Y, δ, σ) be a fuzzy Mealy machine

and µ be a fuzzy set of Q. Then

(1) if µ is fuzzy subsystem of M , then N =

(Supp(µ),X, Y, δ′, σ′) is a submachine of M , where

δ′ = δ|Supp(µ)×X×Supp(µ) and σ′ = σ|Supp(µ)×Y .

(2) ifNt = (µt,X, Y, δt, σt) is a submachine of M, where,

µt = {q ∈ Q|µ(q) ≥ t}, δt = δ|µt×X×µt , and σt =

σ|µt×Y , t ∈ [0, 1], then µ is a fuzzy subsystem of M .

Proof 1. Let p ∈ S(Supp(µ)). Then p ∈ S(q), for some q ∈
Supp(µ). Then µ(q) > 0. Since p ∈ S(q), ∃ x ∈ X∗, y ∈ Y ∗

such that δ∗(q, x, p) ∧ σ∗(q, x, y) > 0. µ is fuzzy subsystem,

we have µ(p) ≥ µ(q) ∧ δ∗(q, x, p) ∧ σ∗(q, x, y) > 0 Thus,

p ∈ Supp(µ). Therefore S(Supp(µ)) ⊆ Supp(µ). Hence, N is a

submachine of M .

2. Let q, p ∈ Q,x ∈ X∗, y ∈ Y ∗. If µ(p) = 0 or δ∗(q, x, p) = 0 or

σ∗(q, x, y) = 0 then µ(q) ≥ 0 = µ(p) ∧ δ∗(p, x, q) ∧ σ∗(p, x, y).
Suppose, µ(p) > 0, δ∗(p, x, q) > 0, σ∗(p, x, y) > 0 and let

µ(p) ∧ δ∗(p, x, q) ∧ σ∗(p, x, y) = t. Then p ∈ µt. Since Nt is

submachine of M, we have S(µt) = µt. Now, q ∈ S(p) and

S(p) ⊆ S(µt) as p ∈ µt. As S(µt) = µt, we have q ∈ µt.

Hence, µ(q) ≥ t = µ(p) ∧ δ∗(p, x, q) ∧ σ∗(p, x, y). Thus, µ is

fuzzy subsystem.

The following example show that a fuzzy subsystem ofM need not

be a submachine of M

Example 3.10 Let Q,X, Y, δ, σ be defined in Example ??. Let

µ(q) = 4
5

and µ(p) = 1
2

. Then µ is a fuzzy subsystem. Let

t = 2
3

. Let Nt = (µt,X, Y, δt, σt). Now µ(q) ≥ t. Thus,

q ∈ µt. Also δ(q, a, p) = 1
3
> 0 and σ(q, a, b) = 1

2
> 0. Thus,

δ(q, a, p) ∧ σ(q, a, b) > 0. Therefore, p ∈ S(q). Thus p ∈ S(µt).
But µ(p) = 1

2
< t. Thus, p 6∈ µt. Hence, Nt is not a submachine

of M .

We now define a fuzzy subset µ of Q to characterize it as a fuzzy

subsystem for fixed input and output strings as follows:

Let M = (Q,X, Y, δ, σ) be a fuzzy Mealy machine and µ be a

fuzzy subset ofQ. For x ∈ X∗, y ∈ Y ∗ define a fuzzy subset (µxy)

of Q by (µxy)(q) =
∨
p∈Q
{µ(p)∧ δ∗(p, x, q)∧ σ∗(p, x, y)}, ∀ q ∈

Q.

Theorem 3.11Let M = (Q,X, Y, δ, σ) be a fuzzy Mealy machine

and let µ be a fuzzy subset of Q. Then µ is a fuzzy subsystem of

M if and only if µxy ⊆ µ, ∀ x ∈ X∗, y ∈ Y ∗.
Proof Let µ be a fuzzy subsystem of M . Let x ∈ X∗, y ∈ Y ∗, q ∈
Q. Then (µxy)(q) =

∨
p∈Q
{µ(p)∧δ∗(p, x, q)∧σ∗(p, x, y)} ≤ µ(q).

Hence, µ(xy) ⊆ µ.
Conversely, let q ∈ Q and x ∈ X∗, y ∈ Y ∗. Then

µ(q) ≥ (µxy)(q) =
∨
p∈Q
{µ(p) ∧ δ∗(p, x, q) ∧ σ∗(p, x, y)} ≥

µ(p) ∧ δ∗(p, x, q) ∧ σ∗(p, x, y), ∀ p ∈ Q. Hence, µ is a fuzzy

subsystem of M .

Theorem 3.12 Let M = (Q,X, Y, δ, σ) be a fuzzy

Mealy machine. Then for all fuzzy subset µ of Q,

(µxy)uv = (µxu)yv, ∀ u, x ∈ X∗, v, y ∈ Y ∗

Proof Let µ be a fuzzy finite subset of Q and let x, u ∈ X∗

and y, v ∈ Y ∗. We use induction on |u| = |v| = n to prove the

theorem.

case(i) If n = 0, then u = v = λ. Let q ∈ Q. Then

(µxy)λλ(q) =
∨
p∈Q
{(µxy)(p) ∧ δ(p, λ, q) ∧ σ∗(p, λ, λ)} =

(µxy)(q). Hence, µxyλλ = (µxy) = (µxλ)yλ.

case(ii) Suppose, that the theorem is true for all u ∈ X∗, v ∈ Y ∗

such that |u| = |v| = n−1, n > 1 and for all µ. Let u′ = au ∈ X∗

where a ∈ X,u′ ∈ X∗ and v′ = bv ∈ Y ∗ where b ∈ Y, v ∈ Y ∗

and |u| = |v| = n− 1. Let q ∈ Q. Then,

(µxu′)yv′(q) = (µxau)ybv(q) = (µ(xa)u)(yb)v(q) =∨
r∈Q
{(µxayb)(r) ∧ δ∗(r, u, q) ∧ σ∗(r, u, v) } =∨

r∈Q
{
∨
p∈Q
{(µxy)(p) ∧ δ(p, a, r) ∧ σ∗(p, a, b)} ∧δ∗(r, u, q) ∧

σ∗(r, u, v)} =
∨
p∈Q
{(µxy)(p) ∧ {

∨
r∈Q
{δ(p, a, r) ∧ δ∗(r, u, q)} ∧

{σ∗(p, a, b) ∧ {δ(p, a, r) ∧ σ∗(r, u, v)}}}}
=

∨
p∈Q
{(µxy)(p) ∧ δ∗(p, au, q) ∧ σ∗(p, au, bv) =
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∨
p∈Q
{(µ(xy))(p) ∧ δ∗(p, u′, q) ∧ σ∗(p, u′, v′) = (µxy)u′v′(q).

Hence, (µxu′)yv′ = (µxy)u′v′.

Our aim is now to use the characterization Theorem (3.11) to find

a particular class of fuzzy subsystems of M , we begin with classes

of fuzzy sets

Definition 3.13 Let M = (Q,X, Y, δ, σ) be a fuzzy Mealy

machine and µ be a fuzzy subset of Q. Define fuzzy subsets µXY

and µX∗Y ∗ of Q by

(µXY )(p) =
∨

a∈X,b∈Y,r∈Q
{µ(r)∧δ(r, a, p)∧σ(r, a, b)} ∀ p ∈ Q

and

(µX∗Y ∗)(p) =
∨

u∈X∗,v∈Y ∗,r∈Q
{µ(r) ∧ δ∗(r, u, p) ∧

σ∗(r, u, v), } ∀ p ∈ Q.
Note that

(1) (µXY ) ⊆ (µX∗Y ∗)

(2) (µXY ) = 0 and (µX∗Y ∗) = 0 if there exists r ∈ Q such that

µ(r) = 0, and

(3) (µxy) ⊆ (µX∗Y ∗) ∀ x ∈ X∗, y ∈ Y ∗.

Theorem 3.14 LetM = (Q,X, Y, δ, σ) be a fuzzy Mealy machine

t ∈ [0, 1] and q ∈ Q. Then (qtXY )(p) =
∨

a∈X,b∈Y
{t∧ δ(q, a, p)∧

σ(q, a, b)}, ∀ p ∈ Q and (qtX
∗Y ∗)(p) =

∨
u∈X∗,v∈Y ∗

{t ∧

δ∗(q, u, p) ∧ σ∗(q, u, v)} ∀ p ∈ Q.
One can note that for arbitrary fuzzy subset of Q, µX∗Y ∗ is not

necessarily a fuzzy subsystem of M , but for µ = qt for any q ∈ Q
and t ∈ (0, 1], (qtX

∗Y ∗) is a fuzzy subsystem ofM . Thus we have

following theorem

Theorem 3.15 Let M = (Q,X, Y, δ, σ) be a fuzzy Mealy ma-

chine. Let t ∈ (0, 1] and q ∈ Q. Then the following hold

(1) qtX
∗Y ∗ is a fuzzy subsystem of M

(2) Supp(qtX
∗Y ∗) = S(q)

Proof 1. Let x ∈ X∗ and y ∈ Y ∗. Then for any r ∈ Q, we have

((qtX
∗Y ∗)(xy))(r) =

∨
p∈Q
{(qtX∗Y ∗)(p) ∧ δ∗(p, x, r) ∧

σ∗(p, x, y)} =

=
∨
p∈Q
{

∨
u∈X∗,v∈Y ∗

{t ∧ δ∗(q, u, p) ∧ σ∗(q, u, v)} ∧ δ∗(p, x, r) ∧

σ∗(p, x, y)}
=

∨
p∈Q,u∈X∗,v∈Y ∗

{t ∧ δ∗(q, u, p) ∧ σ∗(q, u, v) ∧ δ∗(p, x, r) ∧

σ∗(p, x, y)}
=

∨
p∈Q,u∈X∗,v∈Y ∗

{t ∧ {δ∗(q, u, p) ∧ δ∗(p, x, r)} ∧ {σ∗(q, u, v) ∧

{δ∗(q, u, p) ∧ σ∗(p, x, y)}}

=
∨

u∈X∗,v∈Y ∗
{t ∧ δ∗(q, ux, r) ∧ σ∗(q, ux, vy)}

≤
∨

u′∈X∗,v′∈Y ∗
{t ∧ δ∗(q, u′, r) ∧ σ∗(q, u′, v′)}

≤ (qtX
∗Y ∗)(r).

Thus, ((qtX∗Y ∗)(xy)) ⊆ (qtX
∗Y ∗). Hence, (qtX∗Y ∗) is a fuzzy

subsystem of M , by Theorem(3.11).

2. p ∈ S(q) ⇔ ∃ x ∈ X∗, y ∈ Y ∗ such that δ∗(q, x, p) ∧
σ∗(q, x, y) > 0 ⇔

∨
x∈X∗,y∈Y ∗

{t ∧ δ∗(q, x, p) ∧ σ∗(q, x, y)} >

0⇔ (qtX
∗Y ∗)(p) > 0⇔ p ∈ Supp(qtX∗Y ∗).

Theorem 3.16 Let M = (Q,X, Y, δ, σ) be a fuzzy Mealy ma-

chine. Let µ be a fuzzy subset of Q and q ∈ Q. Then the following

are equivalent

(1) µ is a fuzzy subsystem of M

(2) qtX
∗Y ∗ ⊆ µ, ∀ t ∈ [0, 1] such that t ≤ µ(q)

(3) qtXY ⊆ µ, ∀ qt ⊆ µ, ∀ t ∈ [0, 1] such that t ≤ µ(q)

Proof 1.⇒ 2. Let q ∈ Q, t ∈ [0, 1] such that t ≤ µ(q). Then for

p ∈ Q, we have

(qtX
∗Y ∗)(p) =

∨
u∈X∗,v∈Y ∗

{t ∧ δ∗(q, u, p) ∧ σ∗(q, u, v)} ≤∨
u∈X∗,v∈Y ∗

{µ(q) ∧ δ∗(q, u, p) ∧ σ∗(q, u, v)} ≤ µ(p), since µ is

fuzzy subsystem. Hence, qtX∗Y ∗ ⊆ µ.
2.⇒ 3. Clear, due to qtXY ⊆ qtX∗Y ∗.
3.⇒ 1. let p, q ∈ Q and a ∈ X, b ∈ Y. If µ(q) = 0 or δ(q, a, p) =

0 or σ(q, a, b) = 0 then µ(p) ≥ 0 = µ(p)∧ δ(q, a, p)∧ σ(q, a, b).
Suppose µ(q) 6= 0 and δ(q, a, p) 6= 0 and σ(q, a, b) 6= 0. Let

µ(q) = t. Thus, by the hypothesis, qtXY ⊆ µ. Then µ(p) ≥
(qtXY )(p) =

∨
u∈X,v∈Y

{t∧δ(q, u, p)∧σ(q, a, v)} ≥ t∧δ(q, a, p)∧

σ(q, a, b) = µ(q)∧δ∗(q, a, p)∧σ(q, a, b).Hence, µ is a fuzzy sub-

system of M .

Corollary 3.17 Let M = (Q,X, Y, δ, σ) be a fuzzy Mealy ma-

chine and µ be a fuzzy subsystem of M . Then for any q ∈ Q, we

have

(1) µ ⊇ qµ(q)XY. and

(2) µ ⊇ qµ(q)X∗Y ∗.

Definition 3.18 Let M = (Q,X, Y, δ, σ) be a fuzzy Mealy ma-

chine and µ be a fuzzy subsystem of M . Then µ is called cyclic if

∃ q ∈ Q, t ∈ (0, 1] with t ≤ µ(q) such that µ ≤ qtX∗Y ∗. In this

case we call qt a generator of µ.

The Theorem (3.16) enable to characterize cyclic fuzzy subsystems

as:

Theorem 3.19 Let M = (Q,X, Y, δ, σ) be a fuzzy Mealy ma-
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chine. and µ be a fuzzy subsystem of M . Then µ is cyclic if and

only if ∃ q ∈ Q and t ∈ (0, 1] such that µ = qtX
∗Y ∗, whenever

t ≤ µ(q).
Theorem 3.20 Let M = (Q,X, Y, δ, σ) be a fuzzy Mealy ma-

chine. Suppose the fuzzy subsystem µ of M is cyclic with genera-

tor qt, q ∈ Q and t ∈ (0, 1]. Then

(1) µ(q) = t,

(2) µ(q) ≥ µ(p), ∀ p ∈ Q

(3) for any fuzzy subsystem µ′ of M such that µ′ ⊆ µ, if µ′(q) ≥
µ′(r), ∀ r ∈ Q, we have µ′ = qµ′(q)X

∗Y ∗.

Proof 1. Since µ = qtX
∗Y ∗, we have µ(q) =

(qtX
∗Y ∗)(q) =

∨
x∈X∗,y∈Y ∗

{t ∧ δ∗(q, x, q) ∧ σ∗(q, x, y)} =

t ∧ (
∨

x∈X∗,y∈Y ∗
{δ∗(q, x, q) ∧ σ∗(q, x, y)}) = t ∧ 1 = t.

2. Let p ∈ Q. Since µ = qtX
∗Y ∗, we have µ(p) =

(qtX
∗Y ∗)(p) =

∨
x∈X∗,y∈Y ∗

{t ∧ δ∗(q, x, p) ∧ σ∗(q, x, y)}

=
∨

x∈X∗,y∈Y ∗
{µ(q) ∧ δ∗(q, x, p) ∧ σ∗(q, x, y)} =

µ(q) ∧ (
∨

x∈X∗,y∈Y ∗
{δ∗(q, x, p) ∧ σ∗(q, x, y)}) ≤ µ(q)

3. Let p ∈ Q. Since µ′ ⊆ µ we have µ′(p) ≤ µ(p). Then

µ′(p) = µ′(p) ∧ µ(p). Also since µ = qtX
∗Y ∗, µ(p) =

(qtX
∗Y ∗)(p) =

∨
x∈X∗,y∈Y ∗{t ∧ δ∗(q, x, p) ∧ σ∗(q, x, y)} =∨

x∈X,y∈Y {µ(q) ∧ δ∗(q, x, p) ∧ σ∗(q, x, y)}. Hence,

µ′(p) = µ′(p) ∧ µ(p) =
∨
x∈X∗,y∈Y ∗ {µ′(p) ∧ µ(q) ∧

δ∗(q, x, p) ∧ σ∗(q, x, y)} =∨
x∈X∗,y∈Y ∗{µ′(p) ∧ δ∗(q, x, p) ∧ σ∗(q, x, y)}, since

µ′(p) ≤ µ′(q) ≤ µ(q) ≤
∨
x∈X∗,y∈Y ∗ {µ′(q) ∧ δ∗(q, x, p) ∧

σ∗(q, x, y)} = (qµ′(q)X
∗ Y ∗)(p). Hence µ′ ⊆ qµ′(q)X∗Y ∗. Thus,

µ′ = qµ′(q)X
∗Y ∗, by above corollary.

Definition 3.21 Let M = (Q,X, Y, δ, σ) be a fuzzy Mealy

machine and µ a fuzzy subsystem of M . Then µ is called super

cyclic, if qµ(q) is its generator ∀ q ∈ Q.

Theorem 3.22 LetM = (Q,X, Y, δ, σ) be a fuzzy Mealy machine

and µ a fuzzy subsystem of M . Then µ is called super cyclic if and

only if µ = qµ(q)X
∗Y ∗, ∀ q ∈ Q.

Theorem 3.23 If µ is super cyclic, then µ is constant.

Proof Since µ is super cyclic, for any p ∈ Q we have

µ = pµ(p)X
∗Y ∗. Also, we have µ(p) ≥ µ(r), ∀ r ∈ Q.

This implies that µ(p) = µ(r), ∀ p, r ∈ Q. Therefore, µ is

constant.

Corollary 3.24 Every super cyclic fuzzy subsystem of a fuzzy

Mealy machine M is cyclic.

The following example show that a constant fuzzy subsystem µ of

M need not be (super) cyclic fuzzy subsystem.

Example 3.25 Let Q = {p, q},X = {a}, Y =

{b}, δ(q, a, q) = δ(p, a, p) = 1
2
, δ(p, a, q) = δ(q, a, p) =

1
3
, σ(r, a, b) = 1 ∀ r ∈ Q. Let µ(q) = µ(p) = 3

4
.

Then µ(q) ≥ µ(p) ∧ δ(p, a, q) ∧ σ(p, a, b) and µ(p) ≥
µ(q) ∧ δ(q, a, p) ∧ σ(q, a, b). Hence, µ is a fuzzy subsystem and

µ is constant. Now,

(q1X
∗Y ∗)(p) =

∨
x∈X,y∈Y

{1 ∧ δ∗(q, x, p) ∧ σ∗(q, x, y)} = 1
3
<

3
4
= µ(p). Therefore, µ is not cyclic.

Theorem 3.26 LetM = (Q,X, Y, δ, σ) be a fuzzy Mealy machine

and µ be a fuzzy subsystem of M . Suppose Supp(µ) = Q. If µ is

super cyclic, then M is strongly connected.

Proof Let p, q ∈ Q. Then (qµ(q)X
∗Y ∗)(p) =∨

x∈X,y∈Y
{µ(q) ∧ δ∗(q, x, p) ∧ σ∗(q, x, y) } > 0, since µ is

super cyclic µ = (qµ(q)X
∗Y ∗) and Supp(µ) = Q. Hence,

δ∗(q, x, p) ∧ σ∗(q, x, y)} > 0, for some x ∈ X∗, y ∈ Y ∗. Thus

p ∈ S(q). Hence, M is strongly connected.

Theorem 3.27 Let M = (Q,X, Y, δ, σ) be a fuzzy Mealy

machine and µ a fuzzy subsystem of M . Then µ is super cyclic

if and only if ∀ p, q ∈ Q, ∃ x ∈ X∗, y ∈ Y ∗ such that

δ∗(p, x, q) ∧ σ∗(p, x, y) ≥ µ(p).
Proof Suppose that µ is super cyclic. Then µ is constant by

Theorem (3.23). Suppose ∃ p, q ∈ Q, ∀ x ∈ X∗, y ∈
Y ∗, δ∗(p, x, q) ∧ σ∗(p, x, y) < µ(p). Then

(pµ(p)X
∗Y ∗)(q) =

∨
x∈X,y∈Y

{µ(p) ∧ δ∗(p, x, q) ∧ σ∗(p, x, y)} <

µ(p).

Thus, pµ(p)X∗Y ∗ 6= µ. which is contradiction to µ is super cyclic.

Conversely, Suppose that ∀ p, q ∈ Q, ∃ x ∈
X∗, y ∈ Y ∗ such that δ∗(p, x, q) ∧ σ∗(p, x, y) ≥ µ(p).

Then ∀ p, q ∈ Q, ∃ x ∈ X∗, y ∈ Y ∗ such that

µ(q) ≥ µ(p) ∧ δ∗(p, x, q) ∧ σ∗(p, x, y) = µ(p). Similarly

µ(p) ≥ µ(q). Hence, µ is constant. Now,

(pµ(p)X
∗Y ∗)(q) =

∨
x∈X,y∈Y

{µ(p) ∧ δ∗(p, x, q) ∧ σ∗(p, x, y)} =

µ(p) = µ(q). Thus, pµ(p)X∗Y ∗ = µ. Hence, µ is super cyclic.

4. CONCLUSION

In this paper the results of fuzzy finite state machine are success-

fully extended for fuzzy Mealy machines. We introduced successor,

submachines, subsystem, homomorphism and (super) cyclic sub-

systems for Fuzzy Mealy machines. Along with various properties,
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we have characterized subsystems and (super) cyclic subsystems.

Three classes, based on constants fuzzy sets, fuzzy input-output

sets and fuzzy points, of subsystems are also obtained.
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