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Abstract- We consider a k-unit series system with life time of each unit following inverted exponential distribution with an 
unknown scale parameter. We provide two generalized confidence intervals for the scale parameter based on maximum likelihood 
estimator and modified maximum likelihood estimator respectively. The performance of proposed generalized confidence intervals is 
evaluated using extensive simulation work. The proposed confidence intervals found to perform well for small to moderate sample sizes. 
Further the proposed generalized confidence intervals perform better than asymptotic confidence interval for small sample sizes. 
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I. INTRODUCTION 
 

    There is a large amount of literature about the estimation 
of scale parameter of inverted exponential distribution using 
different approaches. Inverted exponential distribution is life 
time distribution which is used in the reliability discipline. 
The inverted exponential distribution (IED) has been 
discussed as a life time model by Lin et al (1989) in detail. 
They have obtained maximum likelihood estimators, 
confidence limits and uniformly minimum variance unbiased 
estimators for the parameter and reliability function with 
complete samples. Stefanski (1996) has discussed some basic 
properties of the IED. 
 

  We see from the literature review that there is more work on 
estimation of parameter of inverted exponential distribution 
as compared to interval estimation. The main purpose of this 
article is to develop a generalized pivot variable that is simple 
to use for interval estimation of the parameter in life time 
distribution of a series system. The concept of generalized p-
value was introduced by Tsui and Weerahandi (1989) for 
hypothesis testing. Weerahandi (1993) extended the idea for 
constructing confidence interval. Weerahandi (1995) gives a 
detailed discussion along with numerous examples. The 
concept of generalized confidence intervals have turned out 
to be very satisfactory for obtaining confidence interval for 
many complex problems; see Weerahandi(1993,1995),  
 
 

Krishnamoorthy and Mathew (2003), Guo and 
Krishnamoorthy (2005), Ng (2007), Ye and Wang (2008), 
Kurian et al.(2008). 
    In this paper, we consider the problem of setting 
generalized confidence interval (GCI) for the scale 
parameter, when lifetime distribution of a unit in a k-unit 
series system has inverted exponential distribution. Recently 
Potdar and Shirke (2014) explained reliability estimation of 
k-unit series system based on progressively censored data. 

   
  In section 2, we provide asymptotic confidence interval 
(ACI) based on maximum likelihood estimator (MLE) and 
modified maximum likelihood estimator (MMLE) for the 
scale parameter, when lifetime distribution of a unit in a k-
unit series system has inverted exponential distribution. Tiku 
and Suresh (1992) obtained a new method of estimation for 
location and scale parameters by using MMLE. R.P.Suresh 
(2004) provides estimation of location and scale parameters 
in the two parameter exponential distribution using MMLE. 
In section 3, generalized confidence interval has been 
developed. In section 4, we study performance of both 
confidence intervals (ACI, GCI) using MLE as well as 
MMLE for k=2, 3 and for small sample sizes using 
simulation technique. The proposed GCIs are simple to 
compute and perform better in small sample sizes.  
 

2.  Asymptotic Confidence Interval based on MLE and 
MMLE 
  Consider a k-unit series system with independent and 
identically distributed lifetimes of components. Let Y1, 
Y2�Yk be the lifetimes, where Yi is the lifetime of ith 
component namely inverted exponential distribution. 
Lifetime of the system is X=min (Y1, Y2� Yk). The cdf of X 
is 

 (2.1) 

The pdf of X is given by, 

  (2.2)      = 0  ;  otherwise 
Here log likelihood of the sample is given by 
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  The MLE of è can be obtained by solving  = 0, where 

 
 

                                            

(2.3) 
  The solution can be obtained by Newton-Raphson Method 
by taking initial solution .Then Fisher Information is 
given by 

= E   

  =    (2.4)                                   
  By using asymptotic normal distribution of MLE, we 
construct confidence interval for è. Let is the MLE of è. 

Therefore by Cramer (1946)   where 

be the asymptotic variance. 

Therefore, 100(1-á) % asymptotic confidence interval for è is 
given by 

  (2.5) 

  where   is the upper 100(á/2)th percentile of standard 
normal distribution. 
  In the following we discuss ACI based on MMLE on the 
lines of Tiku and Suresh (1992).  
The likelihood equation is given by  

   (2.6) 

where   

  The maximum likelihood equation (2.6) does not have 
explicit solution for è. This is due to the fact that the term 

  is intractable. In this paper, we use the 

MML approach to derive approximate MLE for è by 

linearizing the term  using Taylor series 

expansion around the quantile point of F with reference to 
Tiku et. Al. (1986), Tiku and Suresh (1992), R.P.Suresh 
(2004). The linearization is done in such a way that the 
derived MML estimators retain all the desirable asymptotic 
properties of the maximum likelihood estimators. 
Here MMLE is  

                                                                                                              

(2.7) 

where a =   ,  b = . 

   For more details one may refer to Tiku and Suresh (1992) 
and Suresh (2004). 

Lemma 2.1:   Distribution of   , both are 

free from è. 
 

Proof: The proof is similar to the one given by Gulati and Mi 
(2006). 
While constructing generalized pivot this lemma can be used. 
 

3. Generalized Confidence Intervals 

   Suppose that X=(X1, X2 ,�, Xn) form a random sample from 
a distribution which depends on the parameters  

where  is the parameter of interest and  is a vector of 
nuisance parameters. A generalized pivot  where  
 
 

x is a observed value of X, for interval estimation defined by 
 Weerahandi (1995), has the following properties: 

 has a distribution free of unknown 
parameters. 
 
ii) The value of  
  The percentiles of can then be used to obtain 
confidence intervals for . Such confidence intervals are 
referred to as generalized confidence intervals. For example, 
if  denotes the th percentile of , 
then  is a generalized upper confidence limit for . A 
lower confidence limit or two-sided confidence limits can be 
similarly defined. Thus GCI is obtained by using a 
generalized pivot.  
  The generalized pivotal quantity based on  is 

   

Obviously, the observed value of Qi is è. Moreover, the 
distribution of Qi does not depend on unknown parameter. 
Therefore, Qi is a generalized pivot for è. 
 

 
Computing algorithm 
 

   For a given data set X1, X2�Xn, the generalized confidence 
interval can be computed by the following steps. Here N is 
the number of simulations. 
Algorithm to obtain GCI: 

1. Input N, n, k, è. 
2. Generate independently and identically distributed 

observations (U1, U2,�,Un) from U(0,1). 
3. For the given value of the parameter è , set 

4. for i= 1,2,�,n. 
5. Then (x1, x2,�, xn) is the required sample from the 

distribution of a k-unit series system with inverted 
exponential distribution as the component life 
distribution.  

6. Compute MLE of è ( ). 
7. Generate N samples from F (.) (as given in (2.1)) by 

setting è=1 and for each of the sample compute 

MLE (say ). 

8. Using and , i=1,2,�,N 

9. compute  
10. Arrange Qi in ascending order as Q [1] , Q[2], �, 

Q[N]. 
11. Compute GCI for è as [Q([Ná/2]) , Q([ N(1-á/2])]. 
12. Extending above algorithm one can estimate 

coverage probability of the proposed GCI. Here 
[Q([Ná/2]) , Q([ N(1-á/2]) ] is a two-sided 100(1-á) 
percent GCI based on MLE.  

13. In the above algorithm, we can replace MLE by 
MMLE and obtain GCI, based on MMLE. 
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1. Simulation study 

   We conduct extensive simulation experiments to evaluate 
performance of GCIs based on MLE and MMLE. We choose 
different values of è, k, n and á. Results are tabulated in 
Table (1-6). Figures in the 1st row are based on MLE, while 
figures in the 2nd row are based on MMLE. From tables 1-6, 
we observe that simulated coverage of GCI does not differ 
significantly whether it can be computed from MLE as well 
as MMLE. However, large sample approach underestimates 
the coverage probabilities for most of the scenarios, 
especially when the sample size is small and (or) the 
parameter è is large. Also the performance of the proposed 
GCI does not depend on è. As the sample size is large, the 
two estimators (MLE, MMLE) are equally efficient.The 
results reported in this paper can be extended to other 
members of inverted scale family of distributions given by 
Potdar and Shirke (2013). 
 
 

able 1. Mean coverage of ACI and GCI by using MLE 
and MMLE when è=1, k=1. 

 
Nomin

al 

covera

ge  

 

0.90 

 

0.95 

 

0.97 

 

0.99 
 

ACI 

 

GCI 

 

ACI 

 

GCI 

 

ACI 

 

GCI 

 

ACI 

 

GCI 
2 0.76

31 

0.90

21 

0.79

24 

0.95

47 

0.80

96 

0.97

26 

0.84

36 

0.99

68 
3 0.79

73 

0.90

95 

0.82

62 

0.95

25 

0.84

36 

0.97

41 

0.87

97 

0.99

32 
4 0.81

4 

0.90

32 

0.85

37 

0.95

19 

0.86

88 

0.97

19 

0.89

89 

0.99

56 
5 0.82

78 

0.90

01 

0.87

31 

0.95

39 

0.88

34 

0.97

75 

0.91

68 

0.99

58 
6 0.84

54 

0.90

64 

0.88

56 

0.95

64 

0.89

8 

0.97

84 

0.92

91 

0.99

05 
7 0.85

33 

0.90

31 

0.88

41 

0.95

99 

0.90

03 

0.97

64 

0.93

45 

0.99

11 
8 0.86

21 

0.90

22 

0.89

13 

0.95

31 

0.91

52 

0.97

33 

0.93

69 

0.99

87 
9 0.86

33 

0.90

40 

0.89

55 

0.95

88 

0.90

75 

0.97

09 

0.93

99 

0.99

07 
10 0.86

47 

0.90

19 

0.90

32 

0.95

94 

0.92

08 

0.97

57 

0.94

71 

0.99

14 
15 0.88

29 

0.90

08 

0.92

11 

0.95

34 

0.92

75 

0.97

94 

0.95

96 

0.99

94 
30 0.88

69 

0.90

54 

0.93

45 

0.95

89 

0.94

97 

0.97

20 

0.97

36 

0.99

61 
50 0.89

3 

0.90

87 

0.94

28 

0.95

64 

0.95

69 

0.97

90 

0.97

83 

0.99

85 
 

 

 

 

 

 

 

 

 

Table2. Mean coverage of ACI and GCI when è=1, k=2. 
 

Nomin

al 

covera

ge  

 

0.90 

 

0.95 

 

0.97 

 

0.99 
 

ACI 

 

GCI 

 

ACI 

 

GCI 

 

ACI 

 

GCI 

 

ACI 

 

GCI 
2 0.69

98 

0.90

25 

0.70

95 

0.95

21 

0.87

33 

0.97

03 

0.90

62 

0.99

35 
3 0.72

21 

0.90

16 

0.74

78 

0.95

31 

0.89

55 

0.97

14 

0.92

81 

0.99

64 
4 0.73

94 

0.90

02 

0.78

2 

0.95

42 

0.90

97 

0.97

98 

0.93

81 

0.99

17 
5 0.75

43 

0.90

31 

0.78

31 

0.95

15 

0.91

98 

0.97

14 

0.94

71 

0.99

94 
6 0.77

8 

0.90

08 

0.80

78 

0.95

29 

0.93

21 

0.98

25 

0.95

15 

0.99

33 
7 0.78

49 

0.90

14 

0.81

49 

0.95

64 

0.93

5 

0.97

98 

0.95

11 

0.99

09 
8 0.79

38 

0.90

87 

0.83

31 

0.95

24 

0.93

68 

0.97

35 

0.95

72 

0.99

47 
9 0.80

21 

0.90

19 

0.83

73 

0.95

08 

0.93

93 

0.97

44 

0.96

04 

0.99

64 
10 0.80

17 

0.90

34 

0.84

23 

0.95

11 

0.94

07 

0.97

29 

0.96

4 

0.99

19 
15 0.82

07 

0.90

64 

0.87

15 

0.95

09 

0.95

35 

0.97

67 

0.97

13 

0.99

35 
30 0.84

69 

0.90

74 

0.90

05 

0.95

34 

0.95

63 

0.97

14 

0.97

74 

0.99

60 
50 0.94

87 

0.91

08 

0.94

69 

0.95

24 

0.96

01 

0.97

31 

0.98

23 

0.99

76 
 

Table 3. Mean coverage of ACI and GCI when è=1, k=3. 

Nomin

al 

covera

ge  

 

0.90 

 

0.95 

 

0.97 

 

0.99 
 

ACI 

 

GCI 

 

ACI 

 

GCI 

 

ACI 

 

GCI 

 

ACI 

 

GCI 
2 0.84

78 

0.90

10 

0.88

33 

0.95

65 

0.88

89 

0.97

09 

0.92

64 

0.99

58 
3 0.86

49 

0.90

37 

0.89

92 

0.95

67 

0.91

55 

0.97

80 

0.94

14 

0.99

19 
4 0.87

26 

0.90

05 

0.90

82 

0.95

58 

0.93

03 

0.97

57 

0.95

67 

0.99

71 
5 0.88

23 

0.90

81 

0.92 

0.91

0.95

8 

0.93

33 

0.97

44 

0.95

78 

0.99

11 
6 0.88

28 

0.90

29 

0.92

68 

0.95

14 

0.94

29 

0.97

88 

0.96

31 

0.99

04 
7 0.89

05 

0.90

97 

0.92

57 

0.95

74 

0.93

91 

0.97

64 

0.96

5 

0.99

20 
8 0.88

73 

0.90

11 

0.92

6 

0.95

02 

0.94

79 

0.97

79 

0.97

07 

0.99

94 
9 0.88

58 

0.90

27 

0.93

33 

0.95

15 

0.95

15 

0.97

02 

0.96

99 

0.99

17 
10 0.89

16 

0.90

99 

0.93

77 

0.95

41 

0.94

48 

0.97

47 

0.97

24 

0.99

68 
15 0.89

13 

0.90

12 

0.94

09 

0.95

56 

0.95

62 

0.97

98 

0.98

17 

0.99

74 
30 0.89

45 

0.90

06 

0.94

77 

0.95

09 

0.96

26 

0.97

05 

0.98

38 

0.99

13 
50 0.89

56 

0.90

02 

0.94

75 

0.96

01 

0.96

41 

0.97

0 

0.98

49 

0.99

91 
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Table 4. Mean coverage of ACI and GCI when è=2, k=1. 

Nomin

al 

covera

 

0.90 

 

0.95 

 

0.97 

 

0.99  

ACI 

 

GCI 

 

ACI 

 

GCI 

 

ACI 

 

GCI 

 

ACI 

 

GCI 2 0.76

09 

0.90

21 

0.79

77 

0.95

47 

0.81

46 

0.97

26 

0.84

29 

0.99

68 3 0.79 0.90 0.82 0.95 0.84 0.97 0.87 0.99

4 0.82 0.90 0.85 0.95 0.86 0.97 0.90 0.99

5 0.83

21 

0.90

01 

0.86

35 

0.95

39 

0.89

31 

0.97

75 

0.91

86 

0.99

58 6 0.84

22 

0.90

64 

0.88

24 

0.95

64 

0.89

2 

0.97

84 

0.92

01 

0.99

05 7 0.85

26 

0.90

31 

0.88

77 

0.95

99 

0.90

64 

0.97

64 

0.93 

0.92

0.99

11 8 0.85 0.90 0.89 0.95 0.90 0.97 0.93 0.99

9 0.86 0.90 0.89 0.95 0.91 0.97 0.94 0.99

10 0.86

35 

0.90

19 

0.90

13 

0.95

94 

0.91

89 

0.97

57 

0.94

06 

0.99

14 15 0.88

37 

0.90

08 

0.91

26 

0.95

34 

0.92

86 

0.97

94 

0.95

67 

0.99

94 30 0.89

01 

0.90

54 

0.93

3 

0.95

89 

0.95

15 

0.97

20 

0.96

55 

0.99

61 50 0.89 0.90 0.94 0.95 0.96 0.97 0.98 0.99

 

Table 5. Mean coverage of ACI and GCI when è=2, k=2. 

Nomin

al 

covera

ge  

 

0.90 

 

0.95 

 

0.97 

 

0.99 
 

ACI 

 

GCI 

 

ACI 

 

GCI 

 

ACI 

 

GCI 

 

ACI 

 

GCI 
2 0.82

75 

0.90

09 

0.85

41 

0.95

13 

0.87

4 

0.97

68 

0.90

5 

0.99

01 
3 0.82

6 

0.90

12 

0.88

09 

0.95

50 

0.89

77 

0.97

89 

0.91

4 

0.99

25 
4 0.84

54 

0.90

13 

0.89

27 

0.95

65 

0.91

63 

0.97

01 

0.93

1 

0.99

89 
5 0.86

28 

0.90

41 

0.90

37 

0.95

40 

0.90

9 

0.97

89 

0.94

9 

0.99

47 
6 0.87

38 

0.90

05 

0.91

27 

0.95

28 

0.94

2 

0.97

12 

0.96

4 

0.99

05 
7 0.87

68 

0.90

06 

0.91

34 

0.95

86 

0.92

8 

0.97

58 

0.95

6 

0.99

15 
8 0.88

09 

0.90

47 

0.92

38 

0.95

10 

0.94

9 

0.97

15 

0.97

1 

0.99

34 
9 0.88

48 

0.90

15 

0.92

45 

0.95

73 

0.94

4 

0.97

29 

0.96

9 

0.99

87 
10 0.88

45 

0.90

85 

0.92

5 

0.95

88 

0.92

7 

0.97

09 

0.96

8 

0.99

13 
15 0.88

8 

0.90

24 

0.93

54 

0.95

14 

0.94

2 

0.97

14 

0.97 

0.99

0.99

24 
30 0.89

59 

0.90

25 

0.94

11 

0.95

50 

0.95

6 

0.97

29 

0.98

3 

0.99

41 
50 0.89

13 

0.90

15 

0.95

01 

0.95

26 

0.96

1 

0.97

13 

0.99

2 

0.99

07 
 

CONCLUSION 
   Generalized confidence intervals are provided for the scale 
parameter of life time distribution of k-unit series system, 
when unit life time distribution is inverted exponential. The 
proposed confidence interval performs satisfactory for small 
to moderate sample sizes. These intervals are superior to the 
asymptotic confidence intervals. 

 

 

 

Table 6.  Mean coverage of ACI and GCI by using MLE 

when è=2, k=3. 

Nomin

al 

covera

ge  

 

0.90 

 

0.95 

 

0.97 

 

0.99 
 

ACI 

 

GCI 

 

ACI 

 

GCI 

 

ACI 

 

GCI 

 

ACI 

 

GCI 
2 0.84

84 

0.89

99 

0.89

01 

0.95

48 

0.90

25 

0.97

61 

0.92

81 

0.99

87 
3 0.87

02 

0.89

15 

0.90

2 

0.95

49 

0.91

87 

0.97

08 

0.94

48 

0.99

85 
4 0.88

16 

0.90

14 

0.91

39 

0.95

47 

0.92

79 

0.97

86 

0.95

38 

0.99

90 
5 0.88

26 

0.90

09 

0.91

93 

0.95

89 

0.93

44 

0.97

41 

0.96

15 

0.99

09 
6 0.88

5 

0.90

21 

0.92

54 

0.95

58 

0.93

62 

0.97

89 

0.96

73 

0.99

94 
7 0.88

43 

0.90

89 

0.92

68 

0.95

04 

0.94

52 

0.97

14 

0.96

74 

0.99

04 
8 0.88

72 

0.90

30 

0.93

03 

0.95

68 

0.94

31 

0.97

35 

0.96

86 

0.99

70 
9 0.89

25 

0.90

29 

0.93

07 

0.95

04 

0.94

81 

0.97

71 

0.97

31 

0.99

88 
10 0.89

51 

0.90

65 

0.93

34 

0.95

87 

0.95

13 

0.97

00 

0.97

43 

0.99

05 
15 0.89

35 

0.90

54 

0.93

68 

0.95

49 

0.95

76 

0.97

56 

0.97

9 

0.99

46 
30 0.90

1 

0.90

47 

0.94

23 

0.95

06 

0.96

23 

0.97

78 

0.98

38 

0.99

19 
50 0.89

29 

0.90

68 

0.94

76 

0.95

55 

0.96

16 

0.97

77 

0.98

59 

0.99

28 
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