

International Journal of Latest Research in Science and Technology ISSN (Online):2278-5299 Volume 4, Issue 6: Page No.12-14, November-December 2015 (special Issue Paper) http://www.mnkjournals.com/ijlrst.htm Special Issue on International conference on Methematics Sciences-2015(MSC-2015) Conference Held at Sadguru Gadage Maharaj College, Karad ,Maharastra,(India)

SOME REMARKS IN SEMI Q-LATTICE

A. D. Lokhande¹ and Ashok S Kulkarni²

¹Research Guide, Department of Mathematics,

Y. C. Warana Mahavidyalay Warananagar, Dist-Kolhapur, Maharashtra, India. Email: aroonlokhande@gmail.com ²Research Student, Department of Mathematics D.A.B.N. College, Chikhali, Tal-Shirala, Dist-Sangli, Maharashtra, India. Email: ashokkulkarni02@gmail.com

Abstract- In this paper, We define concepts semi q-lattice and down set, proper down set, prime down set, minimal down set for semi q-lattice. We prove Any prime down set of a semi q-lattice contains a minimal prime down set.

Also we define filter in semi q-lattice and prove F be a non empty proper subset of a semi q-lattice S. Then F is a filter if and only if S-F is a prime down set. We prove F be a non empty subset of a semi q-lattice S. Then F is a maximal filter if and only if S - F is a minimal prime down set.

Keywords - Semi q-lattice, Down Sets, Prime Down Sets, Filter

1. INTRODUCTION

Ivan Chajda [8] introduced the concept of a q-lattice and defined distributive q-lattice. After that G. C. Rao, P. Sundarayya, S. Kalesha vali, and Ravi Kumar Bandaru [3] defined ideals of distributive q-lattice, A. D. Lokhande, Ashok S Kulkarni [4] in paper 'Filter and Annihilator in Distributive q-lattices' defined Filter in a distributive q-lattice In paper [4] A. D. Lokhande, Ashok S Kulkarni defined annihilator in distributive q-lattice A and proved some properties.

In this paper We define concepts semi q-lattice and down set, proper down set, prime down set, minimal down set for semi q-lattice. We prove Any prime down set of a semi qlattice contains a minimal prime down set We prove some remarks related to filter and maximal filter

2. PRELIMINARIES

Definition 2.1:[3]. An algebra (A, V, Λ) whose binary operations V, Λ satisfy the following is called a q-lattice.

(i) $a \lor b = b \lor a$; $a \land b = b \land a$ (commutativity)

(ii) a V (b V c) = (a V b) V c ; a \land (b \land c) = (a \land b) \land c (associatativity)

(iii) $a \lor (a \land b) = a \lor a$; $a \land (a \lor b) = a \land a$

(weak-absorption)

(iv) $a \lor b = a \lor (b \lor b)$; $a \land b = a \land (b \land b)$ (weak-idempotence)

(v) a V a = a \land a (equalization)

3. semi q-lattice

Definition 3.1: S is a non empty set and \land is a binary operation then (S, \land) where binary operation \land satisfy for all a, b, c \in S the following

1) $a \wedge b = b \wedge a$ (Commutative) 2) $a \wedge (b \wedge c) = (a \wedge b) \wedge c$ (Associative) 3) $a \wedge b = a \wedge (b \wedge b)$ (Weak idempotence) Then (S, \wedge) is called semi q-lattice

Definition 3.2:

A semi q- lattice S with 0 is called 0-distributive if for any a, b, $c \in S$ such that

 $a \wedge b = 0 = a \wedge c$ implies $a \wedge d = 0$ for some d satisfying $d \wedge b = b \wedge b$ and

 $d \wedge c = c \wedge c$

Definition 3.3:

Let S be a semi q- lattice. A non –empty subset D of S is called a down-set if a \land a \in D , b \in S with a \land b = b \land b implies that b \land b \in D.

A down-set D of S is called a proper down set if $D \neq S$.

Definition 3.3:

A prime down set is a proper down set P of S such that $a \land b \in P$ implies $a \in P$ or

 $b \in P$.

Definition 3.4:

A prime down set P is called minimal if there is a prime down set Q such that $Q \subseteq P$, then P = Q.

Theorem 3.1: Any prime down set of a semi q-lattice contains a minimal prime down set .

Proof: Let S be a semi q-lattice with 0. Let P be a prime down set of S and let β be the set of all prime down sets contained in P.

Therefore β = { $Q \ / \ Q$ is a prime down set contained in P }

Then β is non empty since $P \in \beta$.

Let \hat{C} be a chain in $\hat{\beta}$ and let $M = \bigcap \{ X / X \in \hat{C} \}$

We claim that M is a prime down set.

As for all $a \land a \in P$ and for $0 \in S$

 $a \land 0 = 0 \land 0 = 0 \text{ implies } 0 \in P$

Therefore 0 belongs to every down set

Implies $0 \in M$

Hence M is non empty.

To show M is a prime down set

i) let $a \land a \in M$, $b \in S$ such that $b \land a = b \land b$.

As $a \wedge a \in M$ implies $a \wedge a \in X$, $b \in S$ for all $X \in \hat{C}$ such that $b \wedge a = b \wedge b$.

Hence $b \land b \in X$ for all $X \in \hat{C}$ as X is a down set.

Thus $b \land b \in M$

Therefore M is a down set.

ii) Now let $x \land y \in M$ for some $x, y \in S$.

Then $x \land y \in X$ for all $X \in \hat{C}$.

Since X is a prime down set for all $X \in \hat{C}$,

we have either $x \in X$ or $y \in X$ for all $X \in \hat{C}$.

This implies that either $x \in M$ or $y \in M$.

Hence M is a prime down set.

Thus by applying the dual form of Zorms lemma to β , there is a minimal member of β .

Definition 3.5:

Let S be a semi q-lattice. A non empty subset F of S is called a filter if

i) a, b \in F implies a \land b \in F

ii) $a \in S$, $b \wedge b \in F$ satisfying $a \wedge b = b \wedge b$ then $a \wedge a \in F$. A filter F of a semi q-lattice S is called proper filter if $F \neq S$. A maximal filter F of S is called proper filter if it is not contained in any other proper filter. This means if there is a proper filter G such that $F \subseteq G$ then F = G.

Theorem 3.2 : Let M be a proper filter of S with o. Then M is maximal if and only if for all $a \in S-M$, there is some $b \in M$ such that $a \wedge b = o$.

Proof: Let M be a proper filter of S with o.

suppose M is maximal and

for all b in M, $a \land b \neq 0$ where $a \notin M$ means $a \in S-M$ Consider the set

 $\mathbf{M}' = \{ \mathbf{y} \in \mathbf{S} : \mathbf{y} \land (\mathbf{a} \land \mathbf{b}) = \mathbf{a} \land \mathbf{b}, \ \mathbf{b} \in \mathbf{M} \}$

Now to show M' is a filter of S

(1) Let x, y \in M'Implies x \land (a \land b) = a \land b and y \land (a \land b) = $a \wedge b$

Now
$$(x \land y) \land (a \land b) = x \land (y \land (a \land b))$$

= $x \land (a \land b)$
= $(a \land b)$

Implies $(x \land y) \in M'$ (2) Now let $z \in S$, $y \land y \in M$ ' such that $z \land y = y \land y$ means $z \in S$, $(y \land y) \land (a \land b) = a \land b$ such that $z \land y = y$

 $\wedge \mathbf{y}$

Now consider $(z \land z) \land (a \land b) = (a \land b) \land (z \land z)$

$$= (a \wedge b) \wedge z$$

= $z \wedge (a \wedge b)$ -----(i)

Also as $z \land y = y \land y$ Implies $(z \land y) \land (a \land b) = (y \land y) \land (a \land b)$

Implies $z \land (y \land (a \land b)) = (a \land b) \land (y \land y)$

Implies $z \land (a \land b) = (a \land b)$ as $y \land y \in M'$

Implies $z \land (a \land b) = (a \land b)$ -----(ii)

from (i) and (ii) we write $(z \land z) \land (a \land b) = (a \land b)$

Therefore ($z \land z$) $\in M'$

Therefore M' is a filter of S.

Now as $0 \land (a \land b) = 0$

Means as $0 \land (a \land b) \neq (a \land b)$ implies $0 \notin M'$

Hence M' is proper filter. Now let $b \in M$ then $\exists a \notin M$ Such that $a \wedge b \neq 0$ Now $b \land (a \land b) = (b \land a) \land b$ $= (a \wedge b) \wedge b$ $= a \wedge (b \wedge b)$ $= a \wedge b$ Implies $b \in M'$ Thus $M \subseteq M'$ Which is contradiction of maximality of M Hence for $a \in S-M$ there must exist some b in M such that $a \wedge b = 0$ Conversely let for any element $a \in S-M$ means for $a \notin m$ there exist an element $b \in M$ with $a \wedge b = 0$ To show that M is maximal : Now, suppose M is not maximal then (as $0 \in S$), there exist a maximal filter M' properly containing M means $M \subset M'$ Therefore for any element $a \in M' - M$, means for any $a \notin M'$ M there exist an element $b \in M$ such that $a \wedge b = 0$ Now as $a \in M'$, $b \in M'$ and as M' is filter imply that $a \wedge b$ ∈ M'

Implies $a \wedge b = o \in M'$

Which is a contradiction Hence M must be a maximal filter. Theorem 3.3: Let F be a non empty proper subset of a semi q-lattice S. Then F is a filter if and only if S-F is a prime down set .

Proof: Let F be a filter of a semi q-lattice S. To show that S-F is a prime down set Let $x \land x \in S$ -F, $y \in S$ and $y \land x = y \land y$. Then $x \land x \notin F$, $y \land x = y \land y$ and F is a filter Implies $y \land y \notin F$.

This implies $y \land y \in S$ -F. Thus S-F is a down set. Since F is a filter and S- $F \neq S$. Thus S-F is a proper down set . Now to prove S- F is a prime down set. Let $a, b \in S$ such that $a \land b \in S - F$.

Then $a \land b \notin F$ and hence as F is a filter either $a \notin F$ or $b \notin F$. This implies either $a \in S$ -F or $b \in S$ -F. Therefore, S - F is prime down set. Conversely, Let S - F be a prime down set

To prove that F is a filter Let x, $y \in F$. Then clearly, x, $y \notin S - F$ Hence $x \land y \notin S - F$ as S-F is a prime down set. Thus $x \land y \in F$. Now let $y \in S$, $x \land x \in F$ and $x \land y = x \land x$. Then $x \land x \notin S - F$ and $x \land y = x \land x$ Since S - F is a down set, we have $y \land y \notin S - F$.

Hence $y \land y \in F$.

This implies F is a filter of S.

Theorem 3.4: Let F be a non empty sub set of a semi q-lattice S. Then F is a maximal filter if and only if S - F is a minimal prime down set .

Proof: Let F be a maximal filter of a semi q-lattice and S - F is not a minimal prime down set . Then there exists a prime down set I such that $I \subseteq S - F$ Which implies $F \subseteq S - I$ Which contradict to the maximality of F. Hence S - F is a minimal prime down set .

Conversely, Let S - F be a minimal prime down set and F is not a maximal filter. Thus there exists a proper filter G such that $F \subseteq G$ Implies S - G \subseteq S -F which contradict the minimality of S -F. Hence F is a maximal filter of S.

Definition 3.6: A semi q- lattice S is called directed above if for all x , $y \in S$ there exists $z \in S$ such that $z \wedge x = x \wedge x$ and $z \wedge y = y \wedge y$.

Theorem 3.5: Let S be a directed above semi q-lattice with 0. If S is not 0 -distributive , then the set

 $F = \{ x \in S / x \land (a \land y) = (a \land y) \neq 0 \text{ for all } y \land b = b \land b \text{ and } y \land c = c \land c \}$

Where a ,b , $c \in S$ such that $a \wedge b = a \wedge c = 0$, is a proper filter.

Proof: As S is not 0-distributive , there are a , b, c \in S such that $a \wedge b = a \wedge c = 0$ and $a \wedge d \neq 0$ for all $d \wedge b = b \wedge b$, $d \wedge c = c \wedge c$

As $a \land (a \land y) = (a \land y)$

Implies $a \in F$. Hence F is non empty.

Also as $0 \land (a \land y) = 0 \neq (a \land y)$

Implies 0 ∉ F

Now to show F is a filter

Let x, $y \in F$

 $\begin{array}{l} \mbox{Implies } x \land (\ a \land y \) = (a \land y) \ \mbox{and} \ \ y \land (\ a \land y) = (\ a \land y \) \\ \mbox{For all } y \land b = b \land \ \ b \ , \ y \land c = c \land c \end{array}$

Now consider

(1) $(x \land (a \land y)) \land (y \land (a \land y)) = (a \land y) \land (a \land y)$ Implies $((x \land (a \land y)) \land y) \land (a \land y) = (a \land y)$ Implies $(x \land (y \land (a \land y)) \land (a \land y) = (a \land y)$ Implies $(x \land y) \land ((a \land y) \land (a \land y)) = (a \land y)$ Implies $(x \land y) \land (a \land y) = (a \land y)$ Implies $(x \land y) \land (a \land y) = (a \land y)$ Implies $x \land y \land (a \land y) = (a \land y)$

(2) Let $\ x \land x \in F$, $z \in S$ with $z \land x = x \land x$ then to show $z \land z \in F$

As $x \land x \in F$, $z \in S$ with $z \land x = x \land x$ Implies $(x \land x) \land (a \land y) = (a \land y)$ for all $y \land b = b \land b$, $y \land c = c \land c$

And $z \in S$ with $z \land x = x \land x$

To show $z \land z \in F$ We have to show $(z \land z) \land (a \land y) = (a \land y)$ for all $y \land b = b \land b$, $y \land c = c \land c$ AS $(z \land z) \land (a \land y) = (a \land y) \land (z \land z)$ $= ((a \land y) \land z)$ $= (z \land (a \land y))$ We show $z \land (a \land y) = a \land y$ for all $y \land b = b \land b$, $y \land c = c \land c$ And $z \in S$ with $z \land x = x \land x$ Consider $(z \land x) = (x \land x)$ $(z \land x) \land (a \land y) = (x \land x) \land (a \land y)$ $(z \land x) \land (a \land y) = x \land (x \land (a \land y))$ $z \land (x \land (a \land y)) = x \land (x \land (a \land y))$

 $z \land (a \land y) = x \land (a \land y)$

 $z \land (a \land y) = a \land y$ Implies $z \in F$

And since $0 \notin F$

Therefore F is a proper filter.

REFERENCES:

- A. D. Lokhande and Ashok S Kulkarni: Semi- Ideal and Semi-Filter in Distributive Q-lattices, international Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 2 Issue: 3 501 – 506
- A.S.A. Noor and Momtaz Begum: Some properties of 0-distributive Meet Semilattices, Annals of Pure and Applied Mathyematics Vol. 2, No. 1, 2012, 60-66
- G. C. Rao, P. Sundarayya, S. Kalesha Vali and Ravi Kumar Bandaru : Some remarks on Distributive Q-lattices. International Journal of compitational cognition Vol. 9 No; 79 -81,2 June 2011
- 4. H.S. Chakraborty and M.R. Talukder.: Some Characterizations of 0-Distributive Semilattices
- Ivan Chajada. Lattices in quasiordered sets. Acta Uni. Pal. Olo.Fac.,105: 6-12, 1992
- P. Balasubramani, Perundural : Characterizations of the 0-Distributive semilattice, Mathematica Bohemica 128(2003) No. 3, 237-252
- Y.S.Pawar and A.D. Lokhande: Normal Semilattices, Indian J pure math. 29(12), December 1998
- Y.S.Pawar and N.K. Thakare., 0-Distributive Semilattices, Canad. Math. Bull. Vol.21(4), 1978