A NOTE ON NUMBER OF BINAY SEQUENCES ENDING BY A TYPICAL RUN

H. S. PATIL

Department of Statistics,S. B. Zadbuke Mahavidyalaya, Barsi-413401,Maharashtra, India.Email: hspatil1960@yahoo.com R. N. RATTIHALLI School of Mathematics and Statistics University of Hyderabad, Hyderabad-500 046, India.Email: rn55@rediffmail.com

Abstract

Binary sequences have many applications in statistics. In this article we give a simpler method than that of Feller (1972) to find number of sequences for which the run of 1's of length r (>0) occurs for first time as the right end tail subsequence. We have shown that this is a valid rule and the expression for mean time is obtained. Key words: Random length; Mean length; Bernoulli trials; Sequential rule.

AMS (2000) Subject Classification: 60A05

I. INTRODUCTION

Binary sequences and a typical run:Consider a binary sequence of 0 and 1 of random length N . For $\mathrm{N}=k$, in all there are 2^{k} sequences. Of these we are interested to find number of sequences for which the run of 1's of length r (> 0) occurs for first time as the right tail subsequence. Collection of all such sequences is denoted by a set B_{k}. Note that B_{i} 's are disjoint. Here we have $\mathrm{B}_{1}=\mathrm{B}_{2}=\ldots=\mathrm{B}_{\mathrm{r}-1}=\phi$ and B_{r}, a set containing sequence of 1 's of length r. If stopped according to this rule by taking sequences of length $\mathrm{N}=\mathrm{k}$ (> r) then the subsequence of 1 's of length r do not appear in the first ($\mathrm{k}-\mathrm{r}-1$) places and ' 0 ' must appear in ($\mathrm{k}-\mathrm{r})^{\text {th }}$ place together with ' 1 ' appearing in each of the $(\mathrm{k}-\mathrm{r}+1)^{\text {th }}$, $(\mathrm{k}-\mathrm{r}+2)^{\text {th }}$, $\ldots,(\mathrm{k}-1)^{\text {th }}$ and $\mathrm{k}^{\text {th }}$ places. For a path leading to a sequence in $\mathrm{B}_{\mathrm{k}}, \mathrm{k} \geq \mathrm{r}$, the right tail subsequence must start with 0 followed by 1's of length r and the left tail subsequence of length k-r-1 (if any) should not contain 1's of length r. For k $\geq \mathrm{r}$, total number of sequences of length k with right tail subsequence starting with 0 followed by 1 's of length r is 2^{k-r} ${ }^{1}$. But for a path leading to a sequence in B_{k}, we should not have subsequence containing 1 's of length r in the left tail of length k-r-1. We know that as any such sequence containing 1 's of length r is of the form "subsequence containing 1 's of length r occurs for the first time by the end of the left tail subsequence of length $\mathrm{i}(\leq \mathrm{k})$ and followed by any subsequence of length $k-r-1-i$ ". Let $\left|\mathrm{B}_{\mathrm{i}}\right|$, cardinality of B_{i}, denote the total number of sequences of length i for which subsequence containing 1 's of length r occurs only at the end. Hence the total number of sequences with the left tail of length k-r-1 containing at least one subsequence of 1's of length r is $\sum_{\mathrm{i}=1}^{\mathrm{k}-r-1}\left|\mathrm{~B}_{\mathrm{i}}\right| 2^{\mathrm{k}-\mathrm{r}-1-\mathrm{i}}=\sum_{\mathrm{i}=r}^{\mathrm{k}-r-1}\left|\mathrm{~B}_{\mathrm{i}}\right| 2^{\mathrm{k}-\mathrm{r}-1-\mathrm{i}}$. Thus $\left|\mathrm{B}_{\mathrm{k}}\right|=$ $2^{\mathrm{k}-\mathrm{r}-1}-\sum_{\mathrm{i}=r}^{\mathrm{k}-r-1}\left|\mathrm{~B}_{\mathrm{i}}\right| 2^{\mathrm{k}-\mathrm{r}-1-\mathrm{i}}$. For example, in case of $\mathrm{r}=4$, the boundary regions are $\mathrm{B}_{1}=\mathrm{B}_{2}=\mathrm{B}_{3}=\phi ; \mathrm{B}_{4}=\{(1111)\} ; \mathrm{B}_{5}=$ $\{(01111)\} ; \mathrm{B}_{6}$ has a 2 sequences; B_{7} has 4 sequences; B_{8} has

8 sequences; B_{9} has $16-\sum_{\mathrm{i}=4}^{4}\left|\mathrm{~B}_{\mathrm{i}}\right| 2^{4-\mathrm{i}}=16-\left|\mathrm{B}_{4}\right| 2^{0}=16-1=$
15 sequences; B_{10} has $32-\sum_{\mathrm{i}=4}^{5}\left|\mathrm{~B}_{\mathrm{i}}\right| 2^{5-\mathrm{i}}=32-\left[\left|\mathrm{B}_{4}\right| 2^{1}+\left|\mathrm{B}_{5}\right|\right.$
$\left.2^{0}\right]=32-3=29$ sequences and so on (for details one may refer to [2]).

2. Valid Rule:

Let the probability of occurrence of 1 and 0 are respectively p and q such that $p+q=1$. In the following, we will show that N is a proper random variable and obtain the mean length (time) $\mathrm{E}(\mathrm{N})$ of the rule (that is expected number of sequences in which the subsequence of 1 's of length r occurred for first time as the right end tail subsequence) by simpler method than that of [1, page 324].
If $\mathrm{P}_{\mathrm{k}}=\mathrm{P}(\mathrm{N}=\mathrm{k})$ then we have, $\mathrm{P}_{\mathrm{r}}=\mathrm{p}^{\mathrm{r}} ; \mathrm{P}_{\mathrm{r}+1}=\mathrm{q} \mathrm{p}^{\mathrm{r}} ; \mathrm{P}_{\mathrm{r}+2}=\mathrm{q}^{2} \mathrm{p}^{\mathrm{r}}$ $+q p^{r+1}=q p^{r}$ and so on. In general for $k \geq r+1$, let E be the event that subsequence containing 1's of length r occurs only at the end in the sequences of length k . Then we have,
$P_{k}=P($ Subsequence of 1's of length r has occurred for the first time in the sequences of length k)
$=\mathrm{P}$ (Subsequence of 1 's of length r does not occur in any of the previous sequences of length ($k-r-1$) and E occurred at end in the sequences of length k)
$=P(N>k-r-1) P(N=r)$, since by independence
$=[1-\mathrm{P}(\mathrm{N} \leq \mathrm{k}-\mathrm{r}-1)] \mathrm{qp}^{\mathrm{r}}$
$=\left[1-\left(\mathrm{P}_{\mathrm{r}}+\mathrm{P}_{\mathrm{r}+1}+\ldots+\mathrm{P}_{\mathrm{k}-\mathrm{r}-1}\right)\right] \mathrm{qp}^{\mathrm{r}}(2.1)$
This implies $\mathrm{P}_{\mathrm{r}}+\mathrm{P}_{\mathrm{r}+1}+\ldots+\mathrm{P}_{\mathrm{k}-\mathrm{r}-1}=1-\mathrm{P}_{\mathrm{k}} / \mathrm{qp}^{\mathrm{r}}$ for all $\mathrm{k} \geq$ $\mathrm{r}+1$. Hence we have,
$\mathrm{P}(\mathrm{N}<\infty)=\sum_{\mathrm{k}=1}^{\infty} \mathrm{P}(\mathrm{N}=\mathrm{k})=\lim _{\mathrm{k} \rightarrow \infty}\left(\mathrm{P}_{\mathrm{r}}+\mathrm{P}_{\mathrm{r}+1}+\ldots+\mathrm{P}_{\mathrm{k}-\mathrm{r}-1}\right)$

International Journal of Latest Research in Science and Technology.
$=1-\left(\mathrm{qp}^{\mathrm{r}}\right)^{-1} \lim _{\mathrm{k} \rightarrow \infty} \mathrm{P}_{\mathrm{k}}$ To find $\lim _{\mathrm{k} \rightarrow \infty} \mathrm{P}_{\mathrm{k}}$ we proceed as
below. From (2.1) we have,
$P_{k+1}-P_{k}=-q p^{r} P_{k-r}$ for all $k \geq r+1$.(2.2)
Since $P_{k+1}-P_{k}<0,\left\{P_{k}\right\}$ is bounded and decreasing. Hence $\lim P_{k}$ exists. Let $\lim \quad P_{k}=A$ (constant). Then from
$\mathrm{k} \rightarrow \infty \quad \mathrm{k} \rightarrow \infty$
(2.2) by taking limit as $\mathrm{k} \rightarrow \infty$ we get,

$$
\begin{array}{rl}
A-A=-q p^{3} & A \\
& \Rightarrow A=0 \\
& \Rightarrow \lim _{k \rightarrow \infty} P_{k}=0
\end{array}
$$

$$
\text { Hence } \mathrm{P}(\mathrm{~N}<\infty)=1 \text {. }
$$

Thus the stopping rule is valid that is N is a proper r.v.

Mean Time:

Further from (2.2) we have, $P_{k}-P_{k+1}=q p^{r} P_{k-r}$ for $k=r+1, \ldots$
$\Rightarrow \sum_{k=r+1}^{\infty}\left\{\mathrm{kP}_{\mathrm{k}}-(\mathrm{k}+1) \mathrm{P}_{\mathrm{k}+1}+\mathrm{P}_{\mathrm{k}+1}\right\}=\sum_{k=r}^{\infty} \mathrm{qp}^{\mathrm{r}}\left\{(\mathrm{k}-\mathrm{r}) \mathrm{P}_{\mathrm{k}-\mathrm{r}}+\right.$
$\left.\mathrm{rP}_{\mathrm{k}-\mathrm{r}}\right\}$
$\Rightarrow \quad\left[\mathrm{E}(\mathrm{N})-\mathrm{rP}_{\mathrm{r}}\right]-\left[\mathrm{E}(\mathrm{N})-\mathrm{rP}_{\mathrm{r}}-(\mathrm{r}+1) \mathrm{P}_{\mathrm{r}+1}\right]+\left[1-\mathrm{P}_{\mathrm{r}}-\mathrm{P}_{\mathrm{r}+1}\right]=$ $\mathrm{qp}^{\mathrm{r}}[\mathrm{E}(\mathrm{N})+\mathrm{r}]$
$\Rightarrow \quad 1-\mathrm{P}_{\mathrm{r}}+\mathrm{rP}_{\mathrm{r}+1}=\mathrm{qp}^{\mathrm{r}}[\mathrm{E}(\mathrm{N})+\mathrm{r}]$
$\Rightarrow \quad 1-p^{r}+r q p^{r}=r q p^{r}+q p^{r} E(N)$
$\Rightarrow \quad \mathrm{E}(\mathrm{N})=\frac{1-\mathrm{p}^{\mathrm{r}}}{\mathrm{qp}^{\mathrm{r}}}$ for $\mathrm{r}>0$. (2.3)
Feller (1972) has obtained the same $\mathrm{E}(\mathrm{N})$ by using the probability generating function of stopping r.v N.

Applications in Statistics: Binary sequences are useful in sequential procedures. The above result is directly applicable to the sequential rule "Stop as soon as r successive 1 's are observed" associated with a sequence of independent identical Bernoulli trials.

References

1. Feller William (Reprint, 1972). An Introduction to Probability Theory and its Application Vol. I., Wiley Eastern Pvt. Ltd., New Delhi, India.
2. Patil H. S. (2009). Sequential Procedures for Some NonRegular and Regular Families of Distributions. Ph. D Thesis (unpublished), Shivaji University, Kolhapur.
