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Abstract- Binary sequences have many applications in statistics. In this article we give a simpler method than that of Feller (1972) to find 
number of sequences for which the run of 1�s of length r (> 0) occurs for first time as the right end tail subsequence. We have shown that 
this is a valid rule and the expression for mean time is obtained. 
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I. INTRODUCTION 
 

   Binary sequences and a typical run:Consider a binary 
sequence of 0 and 1 of random length N. For N = k, in all 
there are 2k sequences. Of these we are interested to find 
number of sequences for which the run of 1�s of length r (> 
0) occurs for first time as the right tail subsequence.  
Collection of all such sequences is denoted by a set Bk. Note 
that Bi�s are disjoint. Here we have B1 = B2 = � = Br-1 =   

and Br, a set containing sequence of 1�s of length r. If stopped 
according to this rule by taking sequences of length N = k (> 
r) then the subsequence of 1�s of length r do not appear in the 
first (k-r-1) places and  �0� must appear in (k-r)th place 
together with �1� appearing in each of the (k-r+1)th,  (k-r+2)th, 
�, (k-1)th and kth places. For a path leading to a sequence in 
Bk, k ≥ r, the right tail subsequence must start with 0 
followed by 1�s of length r and the left tail subsequence of 
length k-r-1 (if any)  should not contain 1�s of length r. For k 
≥ r, total number of sequences of length k with right tail 
subsequence starting with 0 followed by 1�s of length r is 2k-r-

1. But for a path leading to a sequence in Bk, we should not 
have subsequence containing 1�s of length r in the left tail of 
length k-r-1. We know that as any such sequence containing 
1�s of length r is of the form �subsequence containing 1�s of 
length r occurs for the first time by the end of the left tail 
subsequence of length i (≤ k) and followed by any 
subsequence of length k-r-1-i�. Let |Bi|, cardinality of Bi, 
denote the total number of sequences of length i for which 
subsequence containing 1�s of length r occurs only at the end. 
Hence the total number of sequences with the left tail of 
length k-r-1 containing at least one subsequence of 1�s of 

length r  is 




1k

1i

r
|Bi| 2

k- r-1- i  = 
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|Bi| 2k- r-1- i. For example, in case of r = 4, the 

boundary regions are B1 = B2 = B3 =  ; B4 = {(1111)}; B5 = 

{(01111)}; B6 has a 2 sequences; B7 has 4 sequences; B8 has  
 
 
 
 
 

 

8 sequences; B9 has 16 - 


4

4i

|Bi| 2
4 - i = 16 - |B4| 2

0 = 16 - 1 = 

15 sequences; B10 has 32 - 


5

4i

|Bi| 2
5- i = 32 � [|B4| 2

1+ |B5| 

20] = 32 � 3 = 29 sequences and so on (for details one may 
refer to [2]). 
 
2. Valid Rule: 
  Let the probability of occurrence of 1 and 0 are respectively 
p and q such that p+q = 1. In the following, we will show that 
N is a proper random variable and obtain the mean length 
(time) E(N) of the rule (that is expected number of sequences 
in which the subsequence of 1�s of length r occurred for first 
time as the right end tail subsequence) by simpler method 
than that of [1, page 324]. 
  If Pk = P(N = k) then we have, Pr = pr; Pr+1 = qpr; Pr+2 = q2 pr 
+ qpr+1 = qpr and so on. In general for k ≥ r+1, let E be the 
event that subsequence containing 1�s of length r occurs only 
at the end in the sequences of length k. Then we have, 

Pk = P(Subsequence of 1�s of length r has occurred for the 
first    time in the sequences of length k) 

 = P(Subsequence of 1�s of length r does not occur in any of 
the previous sequences of length (k- r-1) and E occurred at 
end  in the sequences of length k) 

 = P(N > k-r-1) P(N = r), since by independence 

 = [1 � P(N ≤ k-r-1)] qpr 

 = [1 � (Pr + Pr+1 + � + Pk-r-1)] qpr(2.1)  

   This implies Pr+ Pr+1+ � + Pk-r-1 = 1 � Pk/qpr for all k ≥ 
r+1. Hence we have, 

P(N < ∞) = 


1k

P(N = k) = 
k

lim (Pr+ Pr+1 + � + Pk-r-1) 
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 = 1 � (qpr) -1 
k

lim Pk To find 
k

lim Pk we proceed as 

below. From (2.1) we have,  

 

Pk+1 � Pk = -qprPk-r for all k ≥ r+1.(2.2) 

Since Pk+1 � Pk < 0, {Pk} is bounded and decreasing. Hence 

k

lim Pk exists. Let 
k

lim Pk= A (constant). Then from  

(2.2) by taking limit as k → ∞ we get,  

     A � A = -qp3 A   

  A = 0  


k

lim Pk = 0.  

Hence P(N < ∞) = 1.  

 Thus the stopping rule is valid that is N is a proper r.v.  
 

Mean Time:    

Further from (2.2) we have,  Pk � Pk+1 = qprPk-r for k = r+1, � 

 


 1rk

{kPk � (k+1)Pk+1 + Pk+1} = 


rk

qpr{(k-r)Pk-r + 

rPk-r} 

    [E(N) � rPr] � [E(N) � rPr � (r+1)Pr+1] + [1- Pr � Pr+1] = 
qpr[E(N) + r] 

   1- Pr + rPr+1 = qpr[E(N) + r] 

   1 � pr+ rqpr = rqpr+ qprE(N) 

  E(N) = r

r

qp

p1
 for r > 0. (2.3) 

  Feller (1972) has obtained the same E(N) by using the 
probability generating function of stopping r.v N. 

 Applications in Statistics: Binary sequences are useful in 
sequential procedures. The above result is directly applicable 
to the sequential rule �Stop as soon as r successive 1�s are 
observed� associated with a sequence of independent 
identical Bernoulli trials.  
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