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Abstract- By using the covariant techniques with full connection, we derived the nonlinear electromagnetic formulae and successively 
applied to the magnetohydrodynamics (MHD) approximations in Riemann-Cartan (RC) space-time. In this formalism, the torsion      does 
not generate any different physical field but it occurs algebraic in character in covariant equations. It is proved that the magnetic field 
remains frozen-in with the highly conducting fluid  and the electric field remains frozen-in with charged fluid provided that magnetic field 
vanishes in RC space-time. Finally, the derived electrodynamics formulae are successively applied to study the space-like congruences of 
magnetic and electric field lines. It is found that, the magnetic field lines have zero rotation in a perfectly conducting fluid if and only if 
the conduction current is orthogonal to the magnetic field.    
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I. INTRODUCTION 
 

   In RC space-time, we review the covariant approach to 
relativistic electrodynamics and then derive the set of 
constraints and propagation equations that describe the 
magnetic effect on the kinematics and dynamics of the 
medium. In particular, the torsion terms in   the covariant 
equations are all algebraic in character; it does not give a 
different physical field. Therefore, we describe the covariant 
equations with mathematical transparency and physical 
clarity. Further, we consider the case of ideal MHD 
approximation and examine the kinematical implications in 
the evolution of magnetic field. 
  We consider the formalism of gauge invariance and minimal 
coupling to be compatible with the torsion. The 
electromagnetic field tensor has secure gauge invariance in 
the presence of torsion [1]. The Hojman-Rosenbaum-Ryan-
Shepley (HRRS) dynamical theory of torsion preserves local 
gauge invariance of electrodynamics and makes minimal 
coupling compatible with torsion. The allowed torsion in this 
theory is completely determined by the gradient of a scalar 
function [2]. It is possible to propose a theory in which 
torsion and electromagnetism interact, without modifying the 
form of local gauge invariance, provided that a semi-minimal 
photon-torsion coupling is chosen on the ground of physical 
reasonableness [3]. A particle with a Coulombian electric 
field and a dipolar magnetic field has also a torsionic dipolar 
moment proportional to its magnetic moment and it generates 
a torsion field. Recently, HRRS theory is modified and made 
it consistent with experiment by introducing a massive 
component of the torsonic potential in the existence of both 
the electric and magnetic fields [4].   
  The magnetic fields are a widespread and significant 
component of the universe. To discuss the important role of 
magnetic field in RC space-time we extend our work to the 
ideal MHD approximation. A primordial magnetic field could 
produce global spin alignment near the big-bang in  

 

anisotropic cosmological models where the effects of spin 
and torsion may be important, and a strong magnetic field in  
a neutron star could cause spin alignment of the neutrons 
making up the fluid of a neutron star [5-7]. A primordial 
magnetic field produces global spin alignment and it is 
associated with the shear [8]. In the collapsed state of matter 
there will be orientation of the spin which is caused by a 
magnetic field. A cosmic magnetic field, if it exists, may 
have been sufficiently large in the past to cause spin 
alignment during the hottest stage of the evolution of 
universe [9].Therefore the role of the magnetic field vector 
may be significant for the further study in RC space-time.  
  The material of this paper is organized in the following 
manner: The Section 2 reveals the cursory account of the 
kinematics of time-like congruence in RC space-time of 
gravitation. In Section 3, the electrodynamics formulae are 
derived and extended to the    ideal MHD approximation. In 
Section 4, the properties of congruence of magnetic and 
electric field lines are discussed. It is proved that, the 
comoving observer measures the electric strength which 
depends on the charge density of the fluid in the expansion or 
contraction of the electric field lines. Finally, some 
conclusions are drawn in Section 5. 
 

§ (2):  Kinematical Descriptions in RC Space-time  
 

  In the standard general relativity, the covariant approach 
leads to the kinematical variables of the fluid, its energy 
density and pressure and electromagnetic fields. Initially, the 
covariant techniques were introduced by Ellis [10] to study of 
electrodynamics fields and more recently it is reviewed in 
[11-13]. All these studies are relativistic and many authors 
have worked out with numerous applications. In RC space-
time; we consider the covariant formalism leads to the 
kinematical variables with full connection of the fluid and the 
electromagnetic fields.    
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   A comprehensive description of Riemann-Cartan 
kinematics (RCK) of time-like congruence is described in 

this section. In RCK, the connection a
bc  is antisymmetric   

which is related to abg through 0/ cabg . Here the  
 
 

covariant derivative with respect to the connection a
bc  and 

Christoffel symbol }{a
bc are denoted by oblique line / (or the 

operator a ) and by semicolon ; (or by operator a
� ) 

respectively. Because of the connection, the RCK includes 

the torsion term where the torsion a
bcQ      is the antisymmetric 

part of connection and is defines as 

   .  )(
2

1 a
cb

a
bc

a
bcQ  (2.1) 

  It is well known that; the connection is expressed as the 
combination of Christoffel symbol and contorsion tensor 

a
bcK      in the form 

 }{ a
bc

a
bc

a
bc K ,(2.2) 

where a
bc

a
bc

a
bc

a
bc QQQK     

  
   

          .(2.3) 

    The covariant derivatives with respect to the connection 
and Christoffel symbol are related through the relation 

ca
bc

a
b

a
b AKAA      

 ;      /  .  (2.4)  

   The signature (-, -, -, +) is used through out this paper. The 

covariant decomposition of 4-velocity  au  in RC space-time 
is given by [14]  
                                  

dc
bdcabaabababba uQhuuhu     

/ 2
3

 


 , (2.5)

         

    where baabab uugh   and ba
b

a uuu /   . The vector 
au determines the time direction, and the tensor abh projects 

orthogonal to 4-velocity field into what is known as the 
observer�s instantaneous rest space of the fluid. When dealing 

with multi-component medium, one needs to account for the 
velocity �tilt� between the matter components and the 

fundamental observers. Here we will consider a single 
component fluid and we assume that the fundamental 
(comoving) observer moves with it. The observer�s motion is 

characterized by the irreducible kinematical quantities which 

emerge from the covariant decomposition of au in equation 
(2.5).         

The relative position vector ba
b

a xhx   of associated 

world lines in a time-like congruence can be expressed as 
b

ab
b

ab xxh    )(  ,  (2.6)   

where     dc
bdcadc

d
b

c
aab uQhuhh     

/     2 . (2.7)   

    The tensor ab can be decompose in the kinematical 

quantities  

abababab h 


 
3

 ,  (2.8)  

   where ab describes the relative motion of the neighboring 

observers (with the same 4-velocity). To discuss the 
Riemannian and non-Riemannian parts in the kinematical  
 
 
 

quantities, by using the relation (2.2) we may express the 

tensor ab as   

 ababab  � , (2.9)      

where       ;�   ,c d
ab a b c dh h u     (2.10) and 

   .      
t

tcd
d
b

c
aab uKhh (2.11)          

 

   The antisymmetric space-like part ab  in equation (2.5) 

denotes the rotation of the flow having the expression                   

  �][ abababab   , (2.12)   

   The space-like symmetric traceless part ab - the shear of 

the fluid and the expansion   are defined as  

    ,  �
3 abababab h 


        (2.13) 

    �
/    a

a
a

a uQu  ,  (2.14)  

      where the expansion tensor ab is defined by 

ababab  �
)(  and b

aba QQ     2 . Out of these 

kinematical quantities in RC space-time, only 

vorticity ab contains changes triggered by torsion through 

the skew tensor ab . In particular, the vorticity vector a in 

RC space-time and a� in Riemann space-time are related 

through aaa
 � , one defines the vorticity 

vector a and the torsion vector a with the help of abcd as  

 cdb
abcda u 

2

1
 ,  (2.15)   

                                  

ab
ab

a
acdb

abcda u 
2

1
  ,  

2

1 2  ,  (2.16)  

  where abcd represents the totally antisymmetric 

permutation tensor of the space-time. Further, the 
permutation tensor is a covariantly constant quantity, with 

][!4 d
t

c
s

b
r

a
qqrst

abcd   , ][!3 d
t

c
s

b
rarst

abcd    

(2.17)   
  

§ (3):  Electromagnetic field and torsion interaction 
 

    The Maxwell�s equations can be expressed covariantly on 

any differential manifold and which do not depend on the 
specific connections used. Maxwell�s equations can be 
expressed covariantly with respect to the affine connections 
and are gauge invariant in the presence of torsion [1]. By 
assuming the Maxwell�s electromagnetic field equations are 

valid in RC space-time, the electrodynamics formulae are 
derived and successively applied to the highly conductive 
fluid. It is shown that, the covariant equations isolate the  
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magnetic effects on the kinematics and the dynamics of the 
medium in RC space-time.   
    The Maxwell�s equations in RC space-time are given by      

abca
bc

ab
bb

ab JFQFQF / ,   

 0/   
a

a
a

a JQJ ,   (3.1)        

and             

  [ / ] [ ]2 0 ,t
ab c ab c tF Q F  (3.2)           

  where aJ is the electric 4-current that sources the 

electromagnetic field. By operating arst  on (3.2), and using 

the identity (2.17) we obtain     

   0   
/     

 a
bc

bcab
b TFF ,(3.3)                    

where  [ ]  ,
a a a

bc bc b cT Q Q   (3.4)      

   is called the modified form of the torsion tensor. The 
Maxwell�s field is covariantly characterized by the 

electromagnetic field tensor abF and it�s dual
abF . It can be 

split up into the 4-velocity vector au , the magnetic field 

vector aH  and electric field vector aE as follows: 

dc
abcdabbaab HuEuEuF  ,    (3.5) 

                                  

dc
abcdabbaab EuHuHuF  , (3.6)  

where b
aba uFE  and cdb

abcda FuH 
2

1
 .  

   The relation between the 4-cuurent vector aJ and the 

electric field vector aE is determined by the Ohm�s law as  
aaa kEquJ  ,    (3.7)    

  where a
auJq  represents the measurable charge density 

and k  is the electric   conductivity of the medium. Thus, 

Ohm�s law in the observer�s frame is
aa kEI  , 

and )(   
ba

b
a JhI  is orthogonally projected conduction 

current. This form of Ohm�s law corresponds to the ideal 

MHD approximation; the non-zero conduction currents are 
compatible with a vanishing electric field as long as the 
conductivity is infinite (i.e. for k ). Thus, at the limit of 

ideal MHD, electric field vanishes (i.e. 0aE ) in the frame 
of the fluid [10]. On the other hand, zero conductivity implies 
that the conduction current vanishes, even when the electric 
field is non-zero.     
  Relative to fundamental observer, each one of the 
Maxwell�s equations decomposes into a time-like and space-
like component. The Maxwell�s equations in RC space-time 

can be decomposed with respect au into the following 
constraints and propagation equations. 
 

3.1 Divergence equations for aH and aE  
 
  The Maxwell�s equations (3.3) with (3.6) can be 

decomposed with au  

                                  

a
aaa

aaa
b

b
a EHTQhH )(2)(/   ,   (3.8) 

 

where cb
abca uuQT 2 is the space-like vector. However, if 

we define the covariant operator  

)�(
~

aaaaaa TTQ   and the orthogonally 

projected operator a
b

b
a

a
a HhHD 

~
 then equation (3.8) 

becomes  

    a
aaa

a EHD )(2   .(3.9) 

  Similarly, for the electric field vector aE , the Maxwell�s 

equations (3.1) and (3.5) can be decomposed with au as 
                                  

a
aaa

aaa
b

b
a HqETQhE )(2)(/   .  (3.10) 

This can be written as 

a
aaa

a HqED )(2   . (3.11) 

   The effects contain in equations (3.9) and (3.11) which are 
triggered by the divergence term as well as the relative 
motion of the observer carried by the kinematical 

quantity )(2 aa  . The right hand side of the equation 

(3.9) shows how the interaction between the torsion and the 
vorticity along the electric field lines affects the change on 

the magnetic field. But the term a , in particular, is a 
response of rotation to the twisting of force lines only and it 
does not represent any physical field. Therefore, the physical 

meaning of this side is clear: the torsion term a induces a 

change in a which does not affect the change in motion of 

the observer. The term a
aa E)(2   in equation (3.9) 

acts as an effective magnetic charge caused by the relatively 
moving E -field, while in equation (3.11), the effective 
electric charge is caused by the relative motion of the 
magnetic field.              
 

3.2 Propagation equation for aH and aE :  
 

Contracting equation (3.3) with c
ah  , we find   

                                 

)(2       /    EHuQhHHuHh adcb
cd

a
b

aba
b

ba
b   , (3.12)  

 

   where )(Ea is a space-like vector and it can be expressed 

after simplification as        
                                  

t
dtcb

abcd
dcdccb

abcda EKuEETuuE   }){()( / .(3.13)   

  The torsion terms on the right-hand side of these equations 
are all algebraic in character. If torsion vanishes then it 
reduces to Ellis�s results for Riemann space-time [10]. In 
addition, we define the curl operator in RC space-time for 

any vector av according to ce
e
bd

abcda vhucurlv 
~

   . 

Using this curl operator and with equation (2.5), equations 
(3.12) and (3.13) may be expressed in the form   
                                  , 

a
dcb

abcd
b

abababa curlEEuuHhH  
  ) 

3

2
(    (3.14) 



 
International Journal of Latest Research in Science and Technology. 

ISSN:2278-5299                                                                                                                                                                                105 
 

 
 
 

Similarly, for the electric field vector aE , contracting 

equation (3.1) with c
ah  we get  

                                  
aadcb

cd
a
b

aba
b

ba
b IHEuQhEEuEh  )(2       /     ,  (3.15)          

where                              
t

dtcb
abcd

dcdccb
abcda HKuHHTuuH   }){()( /   (3.16)                                                                                                                                  

    We also write the propagation equation for the electric 
field in the kinematical form as  
                                  

aa
dcb

abcd
b

abababa IcurlHHuuEhE  
  ) 

3

2
( ,   (3.17) 

  We note that, in addition of the usual �curl� term, the effects 

contain in equations (3.14) and (3.17) are caused by the 
relative motion of neighbouring observers. Those effects are 
carried by the kinematical quantities which are defined with 
respect to the full connections on the right hand side of the 
equations. It is also note that there is no torsion contribution. 
This means that torsion does not explicitly affect the 
magnetic evolution, although the effect of torsion in the other 
constraint and propagation equations is taken into account. 
The acceleration term in those equations also reflects the fact 
that the RC space-time is treated as a single entity. 
  In a relativistic analogous way, instead of the last term in 
equation (3.12), the later part compare with equations (2.6-
2.7) ensure that 

)()( 33 b
ab

b
ab HlHlh  (3.18)                                          

  where )�()/(3  ll . Hence aa Hlx 3 is relative 

position vector connecting the same particles at all times. 
This guarantees that the magnetic field lines remain frozen-in 

with the matter if and only if 0)( EI a in RC space-time. 

On the other hand the equation (3.15) describes that, the 
electric field lines are frozen-in with the matter if and only 

if 0)(  aa IHI . If Ohm�s law 
aa kEI  is satisfied 

then, zero electric conductivity implies that conduction 
current vanishes, even when the electric field is non-zero. 
Further, in a charged fluid with vanishing magnetic field and 
in which Ohm�s law is valid,  commoving observers can be 

used all along a congruence of electric field lines, and the 
electric field lines are frozen-in with this fluid.  
 

3.3 Ideal magnetohydrodynamics 
 

  In MHD, consider a space-time filled with a single 
barotropic fluid of infinite electric conductivity. The Ohm�s 

law aa kEI    in the frame of fundamental observers 
guarantees that the electric field vanishes even if the 
conduction current is finite. In the absence of electric field, 
the Maxwell�s equations reduce to a single propagation 

formula, namely the covariant magnetic induction equation 
and three constraint equations as follows  

b
abababa HhH ) 

3

2
(   ,(3.19)            

dcb
abcd

a
a HuuIcurlH  ,(3.20) 

      
 
 

qH a
aa

 )(2  (3.21) 0a
a HD  (3.22) 

 

   In the magnetic induction equation (3.19), the torsion does 
not affect explicitly on magnetic evolution. Therefore, the 
relative motion of the neighbouring observer carried out by 
kinematical quantities guarantees that the magnetic field lines 
are frozen-in with the fluid in MHD. The expression (3.20) 
provides a direct relation between the conduction current and 
magnetic field, which is responsible for keeping the magnetic 
field lines frozen-in with the matter. The equation (3.21) 

shows that, when   0)(  a
aa H , the rotating 

neighbouring observer will measure a non-zero charge 
density where the torsion term will measure only the 
rotational degrees of the freedom of the rotating observer. 
This result also holds in Riemann space-time if 

0� a
a H [15].   The equation (3.22) represents that the 

magnetic field lines are closed, based on the operator aD in 

RC space-time. 
   Finally, to study of space-like congruences of electric and 

magnetic field lines, the space-like vectors )(Ea  and 

)(Ha  play an important role. From equations (3.13) and 

(3.16), we obtain the mathematical identities as follows:  
                                  

][]/[][][]/[ ststr
r

tsstts EuuEuETEuE 
     

                                           

)(
2

1
2 ][ EuuEQuEQ er

stre
re

rets
e

ste   , (3.23)  

                                  

][]/[][][]/[ ststr
r

tsstts HuuHuHTHuH  

                                                                                            
                                            

)(
2

1
2 ][ HuuHQuHQ er

stre
re

rets
e

ste   . (3.24) 

    These identities are used in the latter section to calculate 
the expressions for rotation tensor of the congruence of 
electric and magnetic field lines. 
 

§ (4):  Congruences of magnetic and electric field lines 
 

4.1 Theory of Space-like Congruence   
   The theory of space-like congruence in Riemann space-
time was first introduced by Greenberg [16]. Further, the 
theory of space-like congruence in RC space-time is 
developed by us in our previous paper [17]. Here we list 
some results from our earlier paper for developing the space-
like congruences in electrodynamics and mention the 
appropriate physical interpretations.   

  In Riemann space-time, the connecting vector ax of two 
particles on neighboring curves with respect to the space-like 

vector ah satisfies  

h

0 .£
ax  (4.1)         
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   As the Lie derivative is connection independed, it holds 
also in RC space-time. The Lie derivative of connecting 

vector with respect to ah is in the form     
                        

/ /
h

2 0 .£
a a c a c a d c

c c cdx x h h x Q x h        (4.2)  

 

   To observe the deformation of the curves of the space-like 
congruence, we now introduced an observer at a point P on 

the curve with 4-velocity aw such that 1a
a ww  

and 0a
a hw . For a given space-like vector ah , there is not 

a unique time-like unit vector aw . The vector 
aaa wu  is another time-like unit vector orthogonal to 

ah  where a  satisfies the conditions 

0a
a h   and   02  a

a
a

a w .(4.3)  

   This freedom of choice of an observer is essential to 
observe the deformations of the curves of the congruence. 
The observer erects a screen orthogonal to curve at point P , 
so that the congruence of curves passes perpendicularly 
through the screen at P . Because the connecting 

vector ax need not lie on the screen at P , we introduced the 
projection tensor 

babaabab hhwwgP   .(4.4) 

Since 0
b

ab
b

ab hPwP , the orthogonal connecting 

vector is given by ba
b

a xPx     )( 
.          

With the aid of (4.2), a direct calculation gives   
                                  

ba
b

ba
b

ba
b xBxAxP          )()(  




,(4.5)  

where ba
b

a hAA /   


. In the equation (4.5), the operator 

abA and the additional term abB are defined as    

                                  

 2/
t

dtcb
d

a
c

dcb
d

a
c

ab hQPPhPPA  ,  

      (4.6)  
                                   

( 2 )  ,ad a b b b t c d
b ctB P h w Q h w w

 

      

      (4.7)  

where /
a b

a bh h w


 and 0/ a
ba hh .   

   The presence of term abB is crucial. Except at the given 

point P , the motion of the observers employed along the 
curve has still to be specified. To observe the resulting 
deformation for the second observer, a transport law for the 

vector aw  must be specified as   
              

2 2 2  .a a b a b a a t c b t c a b t c a
bb ct ct b ct bw h h ww h wh Q hw Q hwww Q hwhh

  

     

(4.8) 
   Further the kinematics of the space-like congruence in 
Riemann and RC space-time are related through the relation 
(2.3) 

)(
~

hAA ababab  (4.9)      

 
 
 
 

where ;  ,c d
ab a b c dA P P h (4.10)      

  t
tcd

d
b

c
aab hKPPh  )( . (4.11)      

We decompose abA  into its irreducible parts as follows: 

1
 ,

2ab ab ab abA P        (4.12)                       

where )(
~

][ hA abababab  , (4.13)    

                                  


~

)( /   /   
a

aa
ba

ba
a

a
a

a hTQwwhhA ,

    (4.14)   

 . 
~

2

1
)( ababc

c
abab PAA   (4.15)   

Clearly ab0 , 0 ,a a
abw h      

            ab0 , 0 .a a
abw h    (4.16)                                                                      

The quantities ab , ab and  are called, the rotation 

tensor, the shear tensor and expansion of the congruence as 

measured by aw . The reader is referred to equations (4.13)-
(4.15) for only a comparison between the kinematics of 
space-like congruence in Riemann and Riemann-Cartan 
space-time. Of the kinematical quantities, torsion therefore 

alters only rotation through the skew tensor )(hab . Here, 

we note that, the rotation )(
~

hababab  consists of 

two parts. One part ab
~

is the Riemannian part which 

measure the rotation of the curves whereas the other part 

)(hab  proportional to a
bcK     describes the rotational 

degrees of freedom [18]. Therefore, the additional source 

term )(hab in the expression is unaffected the rotational 

motion of the curves. The antisymmetry of rotation 

tensor ab and torsion tensor )(hab implies that we can 

define the rotation vector a
  and torsion vector )(ha   by 

means of the alternating tensor abcd  

cdb
abcda w  

2

1
 ,  (4.17)   

)(
2

1
)( hwh cdb

abcda
   .(4.18)    

  Rotation vector together with torsion vector determines the 
axis of rotation which is perpendicular to the screen and 

parallel to ah . They represent only the direction of the axis 
and remains unaffected the rotational motion. In the present 
article, our analysis applies to all situations we use the 
kinematical quantities of the space-like congruence with full 
connection.  
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4.2 congruence of magnetic field lines 
      

    In an electromagnetic field, the magnetic and electric field 

4-vectors are defined in terms of au . A space-like vector 
field gives rise to a space-like congruence of curves and is 

orthogonal to 4-velocity vector field au everywhere. To 
measure the deformation of the curves, a comoving 

observer, aa uw  , can be employed at any point P on a 

curve of congruence. Since 0a
auH , we can always 

choose a comoving observer at any point P on a magnetic 
field line, although the other observer employed along the 
field line will not be comoving unless the magnetic field lines 
are frozen-in with the fluid. As proved in Section 3, for the 
magnetic field lines are frozen-in with the fluid, we may 
employ a comoving observer and observe the deformation of 
the field lines.       
  Because of the antisymmetry in the mathematical identities 

(3.23) and (3.24) we cannot calculate shear ab and 

expansion  of the congruence of magnetic and electric field 
lines. But an expression for the rotation of congruence of 
magnetic and electric field lines can be obtained from those 
mathematical identities. 

  With the aid of equation (4.6) and aa HhH  , the 
expression for rotation tensor of a congruence of magnetic 
field lines is  

   ][abab A  

                                        

t
ctddtc

d
b

c
adc

d
b

c
a HQQPP

H
HPP

H
][

11
      ]/[       . (4.19)     

By using the mathematical identity (3.24) for the magnetic 

field vector aH , the expression (4.19) gives   
                                  

)()(
2

1
     hHuPP

H ab
ts

cdst
d
b

c
aab   .  (4.20)                                                                                                                                                                                                                     

  For a comoving observer at a point P the projection tensor 

is babaabab hhuugP  . The   rotation and torsion 

vectors are constructed for a commoving observer along the 
magnetic field lines by using (4.17) and (4.18) as follows:  

cdb
abcda u  

2

1
and )(

2

1
)( huh cdb

abcda   (4.21)   

  It follows directly from (4.20) and (4.21) by means of the 

permutation tensor abcd  that 

)())((
2

1
hhHh

H
aab

b
a   .4.22)   

   The dynamics is introduced through Maxwell�s equation 

(3.15) in terms of aE  and conduction current aI . In ideal 
MHD, the Maxwell�s equation (3.15) reduces into 

aa IH  )( and the equations (4.20) and (4.22) read 

                                  

)(
2

1
     hIuPP

H ab
ts

cdst
d
b

c
aab   ,4.23) 

)()(
2

1
hhIh

H
aab

b
a  .(4.24)                                                                                             

    These equations provide the relation between rotation of 
magnetic field lines and the conduction current. Since the 

torsion term )(hab is directly coupled with the rotation 

tensor ab  and the conduction currents are unaffected by 

torsion, then the magnetic field lines have zero rotation in a 

perfectly conducting fluid measured by au  if and only if 

0a
a IH .     

  The space-like vector )(Ha from the propagation equation 

(3.16) yields only ]/[ dcH  and not )/( dcH . But the expression 

for expansion can be evaluated by using Maxwell�s 

equation (3.8). It follows from (4.14) with aa HhH   for a 
comoving observer that 
                                  



 hHE
H a

aa
/)(ln)(

2
  . (4.25)   

  The right hand side of the equation (4.25) shows that, the 
rotating comoving observer along the electric field lines will 
measure the magnetic strength (pressure) in the expansion or 
contraction of the fluid. It should also be noted that there are 
no effects due to torsion to measure of magnetic strength in 
the expansion or contraction of the fluid. In ideal MHD 
approximation, the above equation reduces to 



 hH /)(ln .   (4.26)                            

   Hence, the magnetic strength either dilutes with the 
expansion or increases with the contraction of the fluid. We 
also note that, the magnetic strength of magnetic field is 
conserved if and only if the congruence of magnetic field 
lines is expansion free in RC space-time. This result also 
holds in the case of MHD approximation in Riemann space-
time [19]. 
  

4.3 Congruence of electric field lines 
 

   For a comoving observer, we consider a congruence of 
electric field lines in an electromagnetic field. To study the 
congruence of electric field lines, the roles played by the 

Maxwell�s equations for 
aH in congruence of magnetic field 

lines are interchanged by the electric field vector aE .      
  The rotation of a congruence of electric field lines can be 
measured by a comoving observer at a point P and can be 

obtained from the equation (4.6) with aa EhE  :    
                          

t
ctddtc

d
b

c
adc

d
b

c
aab EQQPP

E
EPP

E
][

11
      ]/[       .(4.27)     

    Similarly, the rotation vector a
 of the congruence of 

electric field lines measured by a comoving observer is given 
by                                

)()(
2

1
     hEuPP

E ab
ts

cdst
d
b

c
aab   (4.28) 

)())((
2

1
hhEh

E
aab

b
a

 . (4.29)  
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  We consider a charged fluid with vanishing magnetic field 

as measured by au ; then from (3.12), we have 0)(  Ea . 

Consequently, the electric field lines have zero rotation as 
measured by comoving observer at point P along the curve in 
RC space-time.     
      The expression for    can be evaluated by using 
Maxwell�s equation (3.10). It follows from (4.14) 

with aa EhE   for a comoving observer that  
                                  



 hEHq
E a

aa
/)(ln})(2{

1
 . (4.30) 

   The electric strength measure by the comoving observer 
along the magnetic field line depends on the charge density 
of the fluid in the expansion or contraction of the electric 
field lines. If we consider a charged fluid with vanishing 
magnetic field, then equation (4.30) reduces to   



 hEq /)(ln .(4.31) 

   If the fluid lines are expansion free then the electric 
strength is proportional to the charged density of the fluid. 
  

§ (6):  CONCLUSIONS 
 

   The covariant techniques have been applied by many 
authors for the study of electromagnetic field in Riemann 
theory. These techniques were originally applied within the 
Newtonian framework before extended to general relativistic 
electrodynamics. In this article, we successively used the 
covariant techniques with full connection for the study of 
electromagnetic field in RC space-time. We developed the 
nonlinear electrodynamics formulae and the same is extended 
in ideal MHD approximations. By taking the advantage of a 
relative motion treatment, we examined the kinematical 
implications on the evolution of magnetic and electric fields. 
It is shown that, the role of torsion in the fluid kinematics is 
neither affected on the relative motion of the neighbouring 
observer nor in the evolution of magnetic and electric fields. 
With the consideration of full MHD equations, the magnetic 
field lines are frozen-in with the fluid in RC space-time.               
      The main aim of our work is to develop the space-like 
congruences of magnetic and electric field lines by using the 
electrodynamics formulae. The effect caused by torsion is 
only on the rotation of magnetic field lines, but not on its 
shear and deformation. Moreover, it should be noted that, 
there are no effects due to torsion with the measure of 
magnetic strength in the expansion or contraction of the fluid. 
For a charged fluid with vanishing magnetic field, it is proved 
that the electric field lines have zero rotation in RC space-
time.   
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