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Abstract- By using the covariant techniques with full connection, we derived the nonlinear electromagnetic formulae and successively
applied to the magnetohydrodynamics (MHD) approximations in Riemann-Cartan (RC) space-time. I n this formalism, thetorsion  does
not generate any different physical field but it occurs algebraic in character in covariant equations. It is proved that the magnetic field
remains frozen-in with the highly conducting fluid and the electric field remains frozen-in with charged fluid provided that magnetic field
vanishes in RC space-time. Finally, the derived electrodynamics formulae are successively applied to study the space-like congruences of
magnetic and electric field lines. It is found that, the magnetic field lines have zero rotation in a perfectly conducting fluid if and only if

the conduction current is orthogonal to the magnetic field.
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. INTRODUCTION

In RC space-time, we review the covariant approach to
relativistic electrodynamics and then derive the set of
constraints and propagation equations that describe the
magnetic effect on the kinematics and dynamics of the
medium. In particular, the torsion terms in  the covariant
equations are al algebraic in character; it does not give a
different physical field. Therefore, we describe the covariant
equations with mathematical transparency and physical
clarity. Further, we consider the case of ideal MHD
approximation and examine the kinematical implications in
the evolution of magnetic field.

We consider the formalism of gauge invariance and minimal
coupling to be compatible with the torson. The
electromagnetic field tensor has secure gauge invariance in
the presence of torsion [1]. The Hojman-Rosenbaum-Ryan-
Shepley (HRRS) dynamical theory of torsion preserves local
gauge invariance of electrodynamics and makes minimal
coupling compatible with torsion. The allowed torsion in this
theory is completely determined by the gradient of a scalar
function [2]. It is possible to propose a theory in which
torsion and electromagnetism interact, without modifying the
form of local gauge invariance, provided that a semi-minimal
photon-torsion coupling is chosen on the ground of physical
reasonableness [3]. A particle with a Coulombian electric
field and a dipolar magnetic field has also a torsionic dipolar
moment proportional to its magnetic moment and it generates
atorsion field. Recently, HRRS theory is modified and made
it consistent with experiment by introducing a massive
component of the torsonic potential in the existence of both
the electric and magnetic fields [4].

The magnetic fields are a widespread and significant
component of the universe. To discuss the important role of
magnetic field in RC space-time we extend our work to the
ideal MHD approximation. A primordial magnetic field could
produce global spin alignment near the big-bang in
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anisotropic cosmological models where the effects of spin
and torsion may be important, and a strong magnetic field in
a neutron star could cause spin aignment of the neutrons
making up the fluid of a neutron star [5-7]. A primordial
magnetic field produces global spin alignment and it is
associated with the shear [8]. In the collapsed state of matter
there will be orientation of the spin which is caused by a
magnetic field. A cosmic magnetic field, if it exists, may
have been sufficiently large in the past to cause spin
alignment during the hottest stage of the evolution of
universe [9].Therefore the role of the magnetic field vector
may be significant for the further study in RC space-time.
The material of this paper is organized in the following
manner: The Section 2 reveas the cursory account of the
kinematics of time-like congruence in RC space-time of
gravitation. In Section 3, the electrodynamics formulae are
derived and extended to the ideal MHD approximation. In
Section 4, the properties of congruence of magnetic and
electric field lines are discussed. It is proved that, the
comoving observer measures the electric strength which
depends on the charge density of the fluid in the expansion or
contraction of the electric field lines. Finaly, some
conclusions are drawn in Section 5.

§ (2): Kinematical Descriptionsin RC Space-time

In the standard general relativity, the covariant approach
leads to the kinematical variables of the fluid, its energy
density and pressure and electromagnetic fields. Initially, the
covariant techniques were introduced by Ellis[10] to study of
electrodynamics fields and more recently it is reviewed in
[11-13]. All these studies are relativistic and many authors
have worked out with numerous applications. In RC space-
time; we consider the covariant formalism leads to the
kinematical variables with full connection of the fluid and the
electromagnetic fields.
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A comprehensive description of  Riemann-Cartan
kinematics (RCK) of time-like congruence is described in

this section. In RCK, the connection Fg‘c is antisymmetric

whichisrelated to g, throughg,,,. = 0. Herethe

covariant derivative with respect to the connection I’ and

Christoffel symbol{{_} are denoted by oblique line / (or the

operator V) and by semicolon ; (or by operator @a)
respectively. Because of the connection, the RCK includes
the torsion term where the torsion Q,.° is the antisymmetric
part of connection and is defines as

1
Q" =5 (Mo ~Ta) -2
It is well known that; the connection is expressed as the
combination of Christoffel symbol and contorsion tensor
K,.” intheform

T ={8} — Ky (22

whereK.* = -Q,.* +Q.%, —Q%,. -(23)
The covariant derivatives with respect to the connection
and Christoffel symbol are related through the relation

AN A"";b - K. *A°. (24
The signature (-, -, -, +) is used through out this paper. The

covariant decomposition of 4-velocity U® in RC space-time
isgiven by [14]

0 . d
Ua/b = O ap +§hab + o, +U,U, +2h,Q,u’, (25)

where h, =g, —U,U, ard U* =U%,U". The vector

u? determines the time direction, and the tensor hab projects

orthogonal to 4-velocity field into what is known as the
observer’s instantaneous rest space of the fluid. When dealing
with multi-component medium, one needs to account for the
velocity “tilt’ between the matter components and the
fundamental observers. Here we will consider a single
component fluid and we assume that the fundamental
(comoving) observer moves with it. The observer’s motion is
characterized by the irreducible kinematical quantities which

emerge from the covariant decomposition of U®in equation
(2.5).

The relative position vector &, X* = h26x"of associated
world linesin atime-like congruence can be expressed as

h, (8, X)) =08, X, (26)
where v, =h°h%u,, —2hQ,u’. 27
The tensor v, can be decompose in the kinematical

guantities

Uy =0q + % h, + @, . (298
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wherev,, describes the relative motion of the neighboring

observers (with the same 4-velocity). To discuss the
Riemannian and non-Riemannian partsin the kinematical

quantities, by using the relation (2.2) we may express the
tensor v, as

Uy =0, +Q, (29)
where O, =h’hlu, 4 , (210)and

d t

Q. =h%hi K u" .(211)

The antisymmetric space-like part @, in equation (2.5)
denotes the rotation of the flow having the expression

Oy = Uy = Oy + Qg 4 (212)

The space-like symmetric traceless part o, - the shear of

the fluid and the expansion @ are defined as

0

O =04 _ghab =6, , (213

0=u®,+Qu*=6, (214
where the defined by
Ou = V(ar) = éab andQ, =2Q_,". Out of these
kinematical  quantities in RC  spacetime, only
vorticity @, contains changes triggered by torsion through

expansion  tensor @, is

the skew tensor Q. In particular, the vorticity vector @®in
RC space-time and @°in Riemann space-time are related
throughw?® = @* + Q*, one defines the
vector @ and the torsion vector Q2 with the help of 7% as

vorticity

1
o* ==n1"u,0,, (2.15)

2
Qa _} abed Q QZ _Q Qa _ }Q Qab
- 2?7 ub cd T"*fa - 2 ab ! (2-16)

where nabw represents  the totally  antisymmetric

permutation tensor of the spacetime. Further, the
permutation tensor is a covariantly constant quantity, with

Ny = 480806568 0y =555
(2.17)
§ (3): Electromagnetic field and torsion interaction

The Maxwell’s equations can be expressed covariantly on
any differential manifold and which do not depend on the
specific connections used. Maxwell’s equations can be
expressed covariantly with respect to the affine connections
and are gauge invariant in the presence of torsion [1]. By
assuming the Maxwell’s electromagnetic field equations are
valid in RC space-time, the electrodynamics formulae are
derived and successively applied to the highly conductive
fluid. It is shown that, the covariant equations isolate the
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magnetic effects on the kinematics and the dynamics of the
medium in RC space-time.
The Maxwell’s equations in RC space-time are given by

FP +QF® +Q, F™=1J°,

J% +Q,J*=0, 31
and

F[ab/c] - 2Q[abt Fc]t =0,332

where J%is the electric 4-current that sources the
electromagnetic field. By operating7,,4 on (3.2), and using
the identity (2.17) we obtain

F¥,+FYT,.* =0,33
where T, * =Q.* +5%,Q, , (34)

is caled the modified form of the torsion tensor. The
Maxwell’s field is covariantly characterized by the

electromagnetic field tensor F ® and it’s dual * F ® . It can be
split up into the 4-velocity vectoru®, the magnetic field
vector H # and electric field vector E? asfollows:

F® =u*E" -u"E* - ™ u_H,, (35

“F® =uH® —u’H? + ™ u.E,, (36)
where E? = —Fabuband H? =%77&b6dub|:od'

The relation between the 4-cuurent vector J%and the
electric field vector E® is determined by the Ohm’s law as
J%=qu®+kE®*, (37

whereq = J auarepr&eents the measurable charge density

and K is the electric conductivity of the medium. Thus,

Ohm’s law in the observer’s frame isl? =kE?,
and| #(= h3J")is orthogonally projected conduction

current. This form of Ohm’s law corresponds to the ideal
MHD approximation; the non-zero conduction currents are
compatible with a vanishing electric field as long as the

conductivity isinfinite (i.e. for K — o0). Thus, at the limit of
ideal MHD, electric field vanishes (i.e. E* = 0) in the frame
of the fluid [10]. On the other hand, zero conductivity implies
that the conduction current vanishes, even when the electric
field is non-zero.

Relative to fundamental observer, each one of the
Maxwell’s equations decomposes into a time-like and space-
like component. The Maxwell’s equations in RC space-time

can be decomposed with respectu®into the following
constraints and propagation equations.

3.1 Divergence equations for H #and E?®

The Maxwell’s equations (3.3) with (3.6) can be
decomposed with u?
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H%ph% =—(Q, ~T,)H? + 2(0* ~Q*)E,, (38)

whereT, = 2Q_,_uu°is the space-like vector. However, if
we define the covariant operator

ga =V,+Q,-T,(=V,-T,) and the orthogonally

projected operator D, H?# = h:%bH ? then equation (3.8)
becomes
D,H® =2(0® -Q%)E, .(39)
Similarly, for the electric field vector E?, the Maxwell’s
equations (3.1) and (3.5) can be decomposed withu® as

E%phPa =«Q,—T,)E* +q-20® ~OF)H,. (3.10)
This can be written as
D,E® =q-2(0* -Q")H,. (311
The effects contain in equations (3.9) and (3.11) which are

triggered by the divergence term as well as the relative
motion of the observer carried by the kinematical

quantity 2(@® — Q%) . The right hand side of the equation

(3.9) shows how the interaction between the torsion and the
vorticity along the electric field lines affects the change on

the magnetic field. But the termQ?, in particular, is a
response of rotation to the twisting of force lines only and it
does not represent any physical field. Therefore, the physical

meaning of this side is clear: the torsion term Q2 induces a
change in @ ® which does not affect the change in motion of
the observer. The term 2(w® — Q*)E, in equation (3.9)

acts as an effective magnetic charge caused by the relatively
moving E -field, while in equation (3.11), the effective
electric charge is caused by the relative motion of the
magnetic field.

3.2 Propagation equation for H *and E?:
Contracting equation (3.3) with h°a , wefind

h HP =u? H® —6H? + 202, Q UPH? +13(E) , (3.12)

where 1% (E) is a space-like vector and it can be expressed
after smplification as

(B =n""U{ G -T)E +Ea} +1" WKy E (313)

The torsion terms on the right-hand side of these equations
are al algebraic in character. If torsion vanishes then it
reduces to Ellis’s results for Riemann space-time [10]. In
addition, we define the curl operator in RC space-time for

any vector V*according to curlv? =n®**u h% V. v, .

Using this curl operator and with equation (2.5), equations
(3.12) and (3.13) may be expressed in the form

H, = (o +wab—§t9hab)Hb +1, WPUCE® +ourlE  (3.14)
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Similarly, for the electric field vector E®, contracting
equation (3.1) with h®, we get

b E® =u  E° — B + 202 Q UCEY —I°(H)-1?, (3.15)
where

() =" U € —TOH, +Hya} +7 UK H' (316)
We also write the propagation equation for the electric
field in the kinematical form as

E, :(oab+a5b—§9¢b)|z“ —n MUPH —curlg-1,,  (3.17)

We note that, in addition of the usual ‘curl’ term, the effects
contain in equations (3.14) and (3.17) are caused by the
relative motion of neighbouring observers. Those effects are
carried by the kinematical quantities which are defined with
respect to the full connections on the right hand side of the
equations. It is also note that there is no torsion contribution.
This means that torsion does not explicitly affect the
magnetic evolution, although the effect of torsion in the other
constraint and propagation equations is taken into account.
The acceleration term in those equations also reflects the fact
that the RC space-time is treated as a single entity.

In a relativistic analogous way, instead of the last term in
equation (3.12), the later part compare with equations (2.6-
2.7) ensure that

hy (1I°H) =04, (I°H") (3.18)

where3(I /1) = O(= 6) . Hence &, x* = |°H ®is relative
position vector connecting the same particles at al times.
This guarantees that the magnetic field lines remain frozen-in
with the matter if and only if 1*(E) = Oin RC space-time.

On the other hand the equation (3.15) describes that, the
electric field lines are frozen-in with the matter if and only
if1*(H)+1%=0. If Ohm’s law | =KE®is satisfied
then, zero electric conductivity implies that conduction
current vanishes, even when the electric field is non-zero.
Further, in a charged fluid with vanishing magnetic field and
in which Ohm’s law is valid, commoving observers can be
used al aong a congruence of electric field lines, and the
electric field lines are frozen-in with this fluid.

3.3 Ideal magnetohydrodynamics

In MHD, consider a space-time filled with a single
barotropic fluid of infinite electric conductivity. The Ohm’s

law 1 ® =kE® in the frame of fundamental observers
guarantees that the electric field vanishes even if the
conduction current is finite. In the absence of electric field,
the Maxwell’s equations reduce to a single propagation
formula, namely the covariant magnetic induction equation
and three constraint equations as follows

Ha = (Uab T Wy _ée hab)H ° /(3.19)

curlH, = -1 —n,,u°u°H* (3.20)
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2(0*-Q%")H,=q (321 D,H®* =0 (322

In the magnetic induction equation (3.19), the torsion does
not affect explicitly on magnetic evolution. Therefore, the
relative motion of the neighbouring observer carried out by
kinematical quantities guarantees that the magnetic field lines
are frozen-in with the fluid in MHD. The expression (3.20)
provides a direct relation between the conduction current and
magnetic field, which is responsible for keeping the magnetic
field lines frozen-in with the matter. The equation (3.21)

shows that, when (0®*—Q*)H, #0, the rotating

neighbouring observer will measure a non-zero charge
density where the torsion term will measure only the
rotational degrees of the freedom of the rotating observer.
This result aso holds in Riemann spacetime if

®*H, #0[15]. The equation (3.22) represents that the

magnetic field lines are closed, based on the operator D in

RC space-time.
Finaly, to study of space-like congruences of electric and

magnetic field lines, the space-like vectors 1*(E) and

I*(H) play an important role. From equations (3.13) and
(3.16), we obtain the mathematical identities as follows:

— r
E[s/t] - u[t Es] +T[sEt] +u Er/[tus] + u[t Es]

+QgE®+ 2u[th]reEeur - %nmu’le(E) ,(3.23)

. r
H[S,t] = u[tHS] +T[5Ht] +Uu Hr,[tusl +u[tHS]

+QuH®+ 2u,,QyH U — %nmu’le(H) .(3.24)

These identities are used in the latter section to calculate
the expressions for rotation tensor of the congruence of
electric and magnetic field lines.

§ (4): Congruences of magnetic and electric field lines

4.1 Theory of Space-like Congruence

The theory of space-like congruence in Riemann space-
time was first introduced by Greenberg [16]. Further, the
theory of spacelike congruence in RC spacetime is
developed by us in our previous paper [17]. Here we list
some results from our earlier paper for devel oping the space-
like congruences in electrodynamics and mention the
appropriate physical interpretations.

In Riemann space-time, the connecting vector oX® of two
particles on neighboring curves with respect to the space-like

vector h? satisfies
£ox*=0.(41)
h
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As the Lie derivative is connection independed, it holds
also in RC spacetime. The Lie derivative of connecting

vector with respect to h?isin the form
£05 =%, —, 56X —2Q 20X =0. (4.2)
h

To observe the deformation of the curves of the space-like
congruence, we now introduced an observer at a point P on

the curve with 4-velocity Wsuch that w°w, =1

and Wah,cl = 0. For agiven space-like vector h? | thereis not

a unique timelike unit vector W%,

The vector
u® = w? + A%is another time-like unit vector orthogonal to
h® where A% satisfies the conditions
A°h, =0 and A,A% +24, W* =0.(43)

This freedom of choice of an observer is essential to
observe the deformations of the curves of the congruence.

The observer erects a screen orthogonal to curve at point P,
so that the congruence of curves passes perpendicularly

through the screen aP. Because the connecting

vector 5X® need not lie on the screen at P, we introduced the
projection tensor

Py = 0 —W,W, + 0, .(4.49)

since P,w’ =P,h" =0, the orthogonal connecting
vector isgiven by (5, X*) = P3,6x".

With the aid of (4.2), adirect calculation gives

P3 (5, X°)" = A% (5,X°) + B3 5X" (45)

where A* = A% h°. In the equation (4.5), the operator
A, and the additional term B, are defined as

Aab = Pcapdbhc/d - I:)Cﬁllz)dszdtcht )
(4.6)

B™ = P2, (h°—wP—2Q  h'w*)w |,
(4.7)
whereh, =h® w’and h_, ,h* =0.
The presence of term B, is crucial. Except at the given

point P, the motion of the observers employed along the
curve has dill to be specified. To observe the resulting
deformation for the second observer, a transport law for the

vector W? must be specified as

P = g -+ Py WH — 22+ 2 gl —2Q Huly .

(4.8

Further the kinematics of the space-like congruence in
Riemann and RC space-time are related through the relation
(2.3
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Ay = Ay +Q, () (49)

where A, =P°, P h., ,(4.10)
Q_ (h)=P°R K h'. (411)

We decompose A, into itsirreducible parts asfollows:
1
Ay =Ry +5OP, + 3, (4.12)

where Ry, = Ay =Ry + Q0 (N), (413)

®@= A% =h*, —h,,W'W +(Q, -T,)h* =0,
(4.14)
1 c ~
Sab = A _EA Py =3, . (415

Clearly R, W =0 ,R,h*=0,
3w =0,3,h*=0.(4.16)
The quantitiesR,;, I, and O are called, the rotation

tensor, the shear tensor and expansion of the congruence as

measured by W* . The reader is referred to equations (4.13)-
(4.15) for only a comparison between the kinematics of
space-like congruence in Riemann and Riemann-Cartan
space-time. Of the kinematical quantities, torsion therefore

alters only rotation through the skew tensor Q2 (h) . Here,
we note that, the rotation R, = i}~{ab +Q_, (h) consists of

two parts. One part iﬁabis the Riemannian part which
measure the rotation of the curves whereas the other part
Q. (h) proportional to K, *describes the rotational
degrees of freedom [18]. Therefore, the additional source
term Q_, (h)in the expression is unaffected the rotational
motion of the curves. The antisymmetry of rotation
tensor R, and torsion tensor Q2 () implies that we can

define the rotation vector R? and torsion vector Q% (h) by

means of the alternating tensor 77 abed

R? = %na"“‘wbiﬂcd , (417)

a 1 al
Q (h)=§n “w, Q. () .(4.18)

Rotation vector together with torsion vector determines the
axis of rotation which is perpendicular to the screen and

parallel toh®. They represent only the direction of the axis
and remains unaffected the rotational motion. In the present
article, our analysis applies to al situations we use the
kinematical quantities of the space-like congruence with full
connection.
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4.2 congruence of magnetic field lines

In an electromagnetic field, the magnetic and electric field

4-vectors are defined in terms of U%. A space-like vector
field gives rise to a space-like congruence of curves and is

orthogonal to 4-velocity vector field U®everywhere. To
measure the deformation of the curves, a comoving

observer, W* = U®, can be employed at any point Pon a
curve of congruence. SinceH “u, =0, we can aways

choose a comoving observer at any point P on a magnetic
field line, dthough the other observer employed aong the
field line will not be comoving unless the magnetic field lines
are frozen-in with the fluid. As proved in Section 3, for the
magnetic field lines are frozen-in with the fluid, we may
employ a comoving observer and observe the deformation of
the field lines.

Because of the antisymmetry in the mathematical identities

(323) and (3.24) we cannot calculate shear I3, and
expansion® of the congruence of magnetic and electric field
lines. But an expression for the rotation of congruence of

magnetic and electric field lines can be obtained from those
mathematical identities.

Wwith the aid of equation (4.6) andH?® = Hh?®, the
expression for rotation tensor of a congruence of magnetic
fieldlinesis

iRab = AYab]

1

c 1
:ﬁ P anbH[c/d] -

~ P%PQu ~QulH' @19
By using the mathematical identity (3.24) for the magnetic
field vector H #, the expression (4.19) gives

Rap == PP T (H) + Q). (420

For a comoving observer at a point P the projection tensor
isP, =0, —u,u, +h,h . The rotation and torsion

vectors are constructed for a commoving observer along the
magnetic field lines by using (4.17) and (4.18) asfollows:

R = %nabcdubmcd and Q* (h) = ;nabcdubszod () (4.21)

It follows directly from (4.20) and (4.21) by means of the

permutation tensor 7™ that

a 1 a a
R = (B (H)h" +Q%(h) 422)

The dynamics is introduced through Maxwell’s equation

(3.15) in terms of E® and conduction current | #. In ideal
MHD, the Maxwell’s equation (3.15) reduces into

I*(H) = —I ® and the equations (4.20) and (4.22) read

R, = 2iH PSP Ul +Q, (D) 423
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a 1 a a
R =—m(hb|")h +Q%(h) .(4.29)

These eguations provide the relation between rotation of
magnetic field lines and the conduction current. Since the

torsion term Q) (h)is directly coupled with the rotation
tensor R, and the conduction currents are unaffected by
torsion, then the magnetic field lines have zero rotation in a
perfectly conducting fluid measured by U® if and only if
H,1%=0.

The space-like vector 1% (H) from the propagation equation
(3.16) yields only H 4, and not H 4, . But the expression

for expanson® can be evaluated by using Maxwell’s

equation (3.8). It follows from (4.14) with H# = Hh? for a
comoving observer that

C) =%(wa -Q*E, —(InH),, h* . (425

The right hand side of the equation (4.25) shows that, the
rotating comoving observer along the electric field lines will
measure the magnetic strength (pressure) in the expansion or
contraction of the fluid. It should also be noted that there are
no effects due to torsion to measure of magnetic strength in
the expansion or contraction of the fluid. In ideal MHD
approximation, the above equation reduces to

®=—(nH), h*. (426

Hence, the magnetic strength either dilutes with the
expansion or increases with the contraction of the fluid. We
also note that, the magnetic strength of magnetic field is
conserved if and only if the congruence of magnetic field
lines is expansion free in RC space-time. This result also
holds in the case of MHD approximation in Riemann space-
time[19].

4.3 Congruence of electric field lines

For a comoving observer, we consider a congruence of
electric field lines in an electromagnetic field. To study the
congruence of electric field lines, the roles played by the
Maxwell’s equations for H ®in congruence of magnetic field

lines are interchanged by the electric field vector E.
The rotation of a congruence of electric field lines can be

measured by a comoving observer at a point P and can be
obtained from the equation (4.6) with E® = Eh?:

1 1
ERab - E P apdbE[c/d] _E P anb[thc _Qctd]Et (4.27)

Similarly, the rotation vector R®of the congruence of
electric field lines measured by a comoving observer is given

by
Ry = =52 PIP T (B) + 2y (0) 420

R = é(hblb(E))ha +07(h). (429)
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We consider a charged fluid with vanishing magnetic field

as measured by U? ; then from (3.12), we havel®(E) = 0.
Conseguently, the electric field lines have zero rotation as

measured by comoving observer at point P along the curvein
RC space-time.

The expression for ® can be evaluated by using
Maxwell’s equation (3.10). It follows from (4.14)

with E® = Eh?® for acomoving observer that

©=2{q- 20" ~Q")H,} - (NB),, h*. (30

The electric strength measure by the comoving observer
aong the magnetic field line depends on the charge density
of the fluid in the expansion or contraction of the electric
field lines. If we consider a charged fluid with vanishing
magnetic field, then equation (4.30) reducesto

®=9g-(InE), h".(431)

If the fluid lines are expansion free then the electric
strength is proportional to the charged density of the fluid.

§ (6): CONCLUSIONS

The covariant techniques have been applied by many
authors for the study of electromagnetic field in Riemann
theory. These techniques were originaly applied within the
Newtonian framework before extended to general relativistic
electrodynamics. In this article, we successively used the
covariant techniques with full connection for the study of
electromagnetic field in RC space-time. We developed the
nonlinear electrodynamics formulae and the same is extended
in ideal MHD approximations. By taking the advantage of a
relative motion treatment, we examined the kinematical
implications on the evolution of magnetic and electric fields.
It is shown that, the role of torsion in the fluid kinematics is
neither affected on the relative motion of the neighbouring
observer nor in the evolution of magnetic and electric fields.
With the consideration of full MHD equations, the magnetic
field lines are frozen-in with the fluid in RC space-time.

The main aim of our work is to develop the space-like
congruences of magnetic and electric field lines by using the
electrodynamics formulae. The effect caused by torsion is
only on the rotation of magnetic field lines, but not on its
shear and deformation. Moreover, it should be noted that,
there are no effects due to torsion with the measure of
magnetic strength in the expansion or contraction of the fluid.
For a charged fluid with vanishing magnetic field, it is proved
that the electric field lines have zero rotation in RC space-
time.
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