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Abstract- In this paper, we consider a general sequence of summation-integral type operators. The aim of the paper is to
study some direct result of summation-integral type operatorsfor functions of bounded variation.

. INTRODUCTION

In the year 2003 Srivastava and Guptd® investigated as
well as estimated the rate of convergence of the genera

sequence of operators Gn’c by means of the decomposition

technique for functions of bounded variation. Also Ispir and
Yukesel? introduced the Bezier variant of these operators
and estimated the rate of convergence for function of
bounded variations.

Srivastava and Gupta defined a summation-integral type

operators G, . asfollows,

x,cf ek (t:0) f (D d+R(xc) f(0)

(- )

where P, (n,¢)=——

¢nc( x)

) e e‘”" ,c=0
an (X)=

T e e
Here {¢n,c(x)}c::1

defined on the closed interval

,c=1,23, ...

is a sequence of functions

[0, b], b > 0 which satisfy the following properties for every
nell and ke Ny=NU{0} .

() #cec”[ab] (b>a=0)
(i) ¢ne(0) =1
(i) 4 (Xis
(D¢ (020 (0 x<b)
(iv) There exist an integer ¢ such that,
N 00 =-n g (%)

(n>max{0,-c};xe[0,b])

completely  monotone so  that
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2) CONSTRUCTION OF THE OPERATORS
In this section, the operators Gn,c( f ,X) defined by (1)

can also be considered when C=—1, we have

n 1
Gl f.¥= P, (x-) j Pyt fa+1-x"(0
k=L 0

(feH,(01);0<x1)

where, B, (x-1) = (EJ xK (1-x)" K
..... 3

On the other hand, the genera operators defined by (2) can
aternatively be written in the form,

1
Go, 1 (f3%)= [k, (xt;=1) f (D)t
0

(feH,(0,1);0<x£1) ... (4
where,

X,t :D I"IE?IKX,]) 1k1 1)+(l—

..... (5)
In the present paper, we estimated direct results of the

operator Gn,_l by means of the decomposition technique for

(1-1)"8(1)

functions of bounded variation using auxiliary function
g, (t) which is defined by

f(t)-f(x-) (0<t<x)
g, ()= (t=x) . (6)
f(t)—f(x+) (x<t<o)

3) AUXILLIARY RESULTS
In order to prove our main result we require following
lemmas.

Lemma-1. Foral xe(0,0) and ke[ ,
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1 1
P N ) [ ———
k(% =1) < N (6)

Lemma-24 : Let

HhlX ])—nZFﬁk I
X

Then, fi0,0 (% =1) =1, 411 (X 1)—m

iy (-1 =X X() r(inl;(lzi(zl)_ X @

In particular, given any number x > 0 lemma 2 yields the
inequality,

:un,2 (X; _1) §

Lemma -3, Let Xe(0,1) and K, (X,t;—1) be defined
by (5). Thenfor A > 2 and for sufficiently large n,
Ax(1-x)

2
n(x-y)
(0y<x) ... (10)

A(EIEXTAHHRY % ..

@(A >2)....(9)

B, (X, y)= J¥kn(x,t;—1)dt <

1
wd 1-By(x,2)= [l (xt-D a2 X
n(z—x)

(X<z<L1).....(11)
Proof : Since 0< y < X, for t [0, y] we have,
x—t

X-y
from definition (4) we find that,

Jiixt :>a<j(j oy sl <

>1

N
iy’

(0L y<x)
The proof of inequality (11) issimilar.

4) MAINRESULTS

In this section, we prove the following resuilt.
Theorem : Let f be a function of bounded variation on
every finite sub-interval of the closed interval [0, 1]. Suppose

also that the one-sided limits f (x—) and f (X+) exist

for some fixed point Xe(0,1). Then, for A >2 and
sufficiently large n,

ql(f:x)—]z{f(x#rf(x—)} S@

f(xmf(xq@
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f(t)-f(x-) (0<t<x)
where, g, (t)=<0 t=x .. (13)
f(t)—f(x+) (x<t<1)

and Vg (gx) denotes total variation of g, on[a, b].
Proof : In our proof of theorem first.

Gl ok FOrb—]| G gof Tl G -4 (1)
We need esimates for G,, _; (9, X) and
G, _1(sign(t—x),x).

To esimates G, _; (sign(t—x),x), we first observe
that,

1
G, _1(sign(t—x),x =jkn ~1)sign(t - x)dt
0

1 X
= [k, (.t =1)dt —[ k, (x,t;~1)dit
X 0

1
= 2_[ k,(x,t;-1)dt—1 ... (15)
1

sincej k,(xt;-1)dt=1
0
- (16)

But, j (b 1)dt_z i (x-1)

Thuswe obta n,

.[ (xt-Dd= ”Z (% :I).[ > it d+H1-X) .[5

n k-1
=Y P (x-1)> R, (x
k=1 i—0

Here, 5(t) =0 for t > x>0.

Since
I :[ X+ (XD +Ro( X+ | R % +R (%) ... ]
Itiseasly verified that,

1
Gio Sgr1t-4 X =2 XDt =RE X +RE X+ x Dt
Hence by lemma (1) we have,

‘le J—ZFr’lkX]) Ji

- (17)
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Next to estimate of G, _; (9, X) wehave,

1 X—= Xt——
. \/ﬁ 3 nl \/R 1 n
Gn-1(9x:%) = [ gy (Dk, (x,t;-1)dt [ V(@)=Y | V& (g)as 55V, (g
0 0 = ¢ K
X
Jn
UL N A=) &y
[ +] +] kixt-2g0d=E+E+E ... Hence, [Ey| < == V" (8,) - (21)
0 X x X ia
X— X \/R
in in Using a similar method and lemma, we obtain,
X (1-x) (1 x)
For t €| X——=— X+—F—=| we have, /1(1 X) ¢
{ Jn Jn } |Es| s —— ZV dy) . (22)
+(1 x) n (17X) From equat|ons(19) (21) and (22), it follows that
0.0V " (a) é%Z AN 1n N L
== k=1 X~ k k
N T Gulaods (e DY FUETE=Y) I(QA)
and so X i g R X * g
(1 x) 1 X+(17x)
|E2| = V \/_ gx éﬁz x ) (%)
T k=l 1% | A1-X ]2 N
k
(19 { " }Z T (g nZV J< (90
, X , kK k=LK
In order to estimate E;, we set Y = X—T and integrate
n
by parts; we thus obtain 21 (1 X) 1] x (1 X)
y y k=1 \/‘
E =g (O ct(B,(x1) =g(¥)B(xY)~[B,(xt)ct(g,(1) o x)
0 0 [2,1(1 X) + x| &
. ) Gra(g ) s XYV
Since |9x(Y)| <Vy(9x) conclude that =} X*W
..... (23)
y Our theorem now follows from (19), (21) and (23).
By < V5 (9,) By (% Y) +.[ B, (x.t)dt (—Vtx (gx)) This completes the proof for the theorem.
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