

International Journal of Latest Research in Science and Technology ISSN (Online):2278-5299 Volume 4, Issue 6: Page No.88-90, November-December 2015 (special Issue Paper) http://www.mnkjournals.com/ijlrst.htm Special Issue on International conference on Methematics Sciences-2015(MSC-2015) Conference Held at Sadguru Gadage Maharaj College, Karad ,Maharastra,(India)

# **S - DISTRIBUTIVE POSET**

A.A. Patil

Padmabhooshan Vasantraodada Patil Institute of Technology, Budhgaon (Sangli) Maharashtra 416304

Abstract- s - Distributivity in a partially ordered set (poset) is defined. Some properties of s - distributive poset are obtained. Mainly it is prove that poset P is a distributive if and only if P is s - distributive for each  $s \square P$ .

#### I. INTRODUCTION

In this paper we extend the concept of s - distributivity in a lattice to the concept of s - distributivity in a poset. Venkatanarasimhan [5] was the first who introduced and studied in detail pseudo complemented poset. As a generalization of pseudo complemented poset, Pawar and Dhamake [3] introduced 0 - distributive poset. This has eased our passage in introducing the notion of s - distributive poset. We define s - distributive poset as,

**Definition :-** Let P be a poset and s ( s  $\neq 1$  ) be any fixed element in P. The poset P is called s - distributive if x ,  $y_1$ ,  $y_2 \dots y_n \in P$ 

(n finite) with (x]  $\cap$  (y<sub>i</sub>]  $\subseteq$  (s] for all i, 1  $\leq$  i  $\leq$  n imply (x]  $\cap$  (y<sub>1</sub>  $\vee$  y<sub>2</sub>  $\vee$ ... $\vee$  y<sub>n</sub>]  $\subseteq$  (s] whenever y<sub>1</sub>  $\vee$  y<sub>2</sub>  $\vee$ ... $\vee$  y<sub>n</sub> exists

in P.

It is interesting to note that a lattice L is s - distributive iff it is

s - distributive poset for any fixed element a (s  $\neq$ 1) in P.

The following flow chart indicates a position of our concept in relation to the known concepts in lattice theory.



§ 1.2 Preliminaries: -

Throughout this chapter we shall concern with partially ordered set or poset . < P,  $\leq >$ , denotes a partially order set with the ordering relation '  $\leq$  ' defined on non-empty set P. For a finite set

 $A=\{a_1,\,a_2\,,\,\ldots\,,\,a_n\},$  the least upper bound ( l. u. b ) and greatest lower bound ( g. l. b ) of A , if exist, are denoted by  $a_1\!\vee\,a_2\!\vee\ldots\!\vee\,a_n$ 

and  $a_1 \wedge a_2 \wedge \ldots \wedge a_n$  respectively. The least and the greatest element of a poset , when

ISSN:2278-5299

they exist, are denoted by 0 and 1 respectively.

A non-empty subset A of P is called as a semi-ideal if  $a \in A$ ,  $b \le a$  implies  $b \in A$ . A semi-ideal A of P is called as an ideal if the least upper bound of any finite number of elements of A, whenever it exists, belongs to A. This definition of an ideal in a poset given by Venkatanarasimhan [5], is different from that introduced by Frink

[2]. An element a of poset P with 0 is said to be dense if ( a ]  $\cap$  ( b ] = ( 0 ]  $\Leftrightarrow$  b = 0 for b  $\in$  P. The set of all elements x of P such that  $x \leq a$  for some fixed a in P forms an ideal of P. It is called the principal ideal generated by a and is denoted by ( a ].

We need following lemmas.

**Lemma 1.2.1 [ 5 ]:-** The set I of all ideals of a poset with 0 is complete lattice under set inclusion as ordering relation.

**Lemma 1.2.2 [ 5 ]:-** In a poset finite join  $a_1 \lor a_2 \lor ... \lor a_n$  exists iff

 $(a_1] \lor (a_2] \lor \dots \lor (a_n]$  is a principal ideal and in this case  $(a_1 \lor a_2 \lor \dots \lor a_n] = (a_1] \lor (a_2] \lor \dots \lor (a_n]$ .

 $(a_1 \lor a_2 \lor \ldots \lor a_n) = (a_1) \lor (a_2) \lor \ldots \lor (a_1) \lor (a_2) \lor (a_2) \lor (a_2) \lor (a_2) \lor (a_1) \lor (a_2) \lor (a_2) \lor (a_2) \lor (a_1) \lor (a_2) \lor (a_2) \lor (a_1) \lor (a_2) \lor (a_$ 

§ 1.3 s - distributive Poset :-

s - distributive semi lattice is first introduced by varlet  $\left[ \begin{array}{c} 4 \\ \end{array} \right]$  .

A semi lattice S with the fixed element s (s  $\neq$  1) is s distributive, if for any x  $\in$  P, < x, s> is an ideal in S where < x, s> = { y  $\in$  S | x  $\wedge$  y  $\leq$  s }.

As a generalization of s - distributive semi lattice  $\left[ \ 4 \ \right]$  we define

s - distributive poset.

**Definition 1.3.1:-** Let P be a poset and s (s  $\neq 1$ ) be any fixed element in P. The poset P is called s - distributive if x, y<sub>1</sub>, y<sub>2</sub>...y<sub>n</sub>  $\in$  P (n finite) with (x ]  $\cap$  (y<sub>i</sub>]  $\subseteq$  (s ] for all i, 1  $\leq$  i  $\leq$  n imply (x ]  $\cap$  (y<sub>1</sub>  $\vee$  y<sub>2</sub>  $\vee$ ... $\vee$  y<sub>n</sub>]  $\subseteq$  (s ] whenever y<sub>1</sub>  $\vee$  y<sub>2</sub>  $\vee$ ... $\vee$  y<sub>n</sub> exists in P. As example of s - distributive poset we have

**Example 1.3.2:** Let  $P = \{0, a, b, c, d, e, f, g, h\}$  and b and h  $\neq 1$  be any fixed element of P. The diagrammatic representation  $\langle P \leq \rangle$  as follows.



Fig.1.1

The poset represented in Fig. 1.1 is b-distributive but not f-distributive .

We furnished one more example of s - distributive poset . This poset contain infinite number of elements.

**Example 1.3.3:** Let  $P = \{0, a, b, c, d, e, f, \dots, g\}$  and  $x \neq 1$  be any fixed element of P. The diagrammatic representation  $< P \le >$  as follows.



The poset represented in Fig. 1.2 is x-distributive  $\forall x \in P$ . An example of a poset which is only h -distributive.

**Example 1.3.4:** Let  $P = \{0, a, b, c, d, e, f, g, h\}$  and  $h \neq 1$  be any fixed element of P. The diagrammatic representation  $< P \le >$  as follows.





The poset represented in Fig. 1. 3 is only h-distributive.  $\square\square$ **Remark 1.3.5:-** A subset of s - distributive poset containing the element a need not be s - distributive.

On the lines of [4] relative annihilators in poset are defined as follows.

**Definition 1.3.6:-** In a poset P containing the element s, b, we define

 $< b,\ s>=\{x\in L\mid (x]\cap (b]\subseteq (s]\}$  . < b ,a > is called the relative annihilators of b in s .

By s-ideal (s-semi ideal) we mean an ideal (semi ideal) containing an element  $s \in P$ .

The necessary and sufficient condition for < b, s > to be s-ideal in the following theorem .

Theorem 1.3.7 :- Let P be a poset and s (s  $\neq$  1) be any fixed element in P. For any b  $\in$  P, < b, s > is s-ideal in P if and only if P is s - distributive.

## Proof:- Only if part.

Let < b, s > is s - ideal in P for any b  $\in$  P. To prove that P is s - distributive poset . Let y , x<sub>1</sub>, x<sub>2</sub>,..., x<sub>n</sub> (n finite)  $\in$  P with

 $(x_i] \cap (y] \subseteq (s]$  for all i,  $1 \le i \le n$  and assume that  $x_1 \lor x_2$  $\lor ... \lor x_n$  exists in P. But then  $x_i \in \langle y, s \rangle$  for all i,  $1 \le i \le n$ . By assumption,  $\langle y, s \rangle$  is an ideal.

Therefore  $x_1 \lor x_2 \lor \ldots \lor x_n \in \langle y, s \rangle$ .

Thus (  $y] \cap$  (  $x_1 \lor x_2 \lor \ldots \lor x_n$  ]  $\subseteq$  ( s ]. Hence P is s -distributive poset.

## If Part.

Let L be s - distributive poset . Fix up any  $b \in P$ . To prove that  $\langle b, a \rangle$  is a-ideal in P. Obviously  $\langle b, s \rangle$  is a-semi ideal in P. Let  $x_1, x_2, \ldots, x_n \in \langle b, s \rangle$  (n finite) such that  $x_1 \lor x_2 \lor \ldots \lor x_n$  exists. Then  $x_i \in \langle b, s \rangle$  implies

 $(x_i] \cap (b] \subseteq (s]$  for all i,  $1 \le i \le n$  as P is s - distributive poset we get  $(b] \cap$ 

(  $x_1 \lor x_2 \lor \ldots \lor x_n$  ]  $\subseteq$  ( s ] .This implies  $x_1 \lor x_2 \lor \ldots \lor x_n \in <$  b, s>.Hence < b, s > is

s-ideal.

A poset Q is called distributive poset if  $(a] \cap (b] \subseteq (c]$  (a, b, c  $\in$  Q) implies the existence of x , y in Q ,  $x \ge a$  ,  $y \ge b$ such that  $(x] \cap (y] = (c]$ .

Now we establish the relation between distributive poset and

s - distributive poset.

**Theorem 6.3.8:** A poset P is distributive if and only if P is s - distributive for each s ( $\neq 1$ ) in P.

# Proof:- Only if part.

Let P be distributive poset. Assume  $x_1, x_2, \dots x_n \in P$  (n finite) such that  $\vee_{i=1}^n x_i$  exists in P. Let  $b \in P$ . Obviously,  $\vee_{i=1}^n (x_i] \cap (b] \supseteq (x_i] \cap (b]$  for all  $i, 1 \le i \le n$ .

Let  $(x_i] \cap (b] \subseteq (s]$  for all i,  $1 \le i \le n$ . If no such a exists in P then obviously,  $\bigvee_{i=1}^{n} (x_i] \cap (b] = \bigvee_{i=1}^{n} (x_i \cap b]$ . As P is distributive and  $(x_i] \cap (b] \subseteq (s]$ , we get

#### International Journal of Latest Research in Science and Technology. REFERENCES

 $(s] = (y_1] \cap (b_1]$  for some

 $y_1 \ge x_1$  and  $b_1 \ge b$ .

Now  $y_1 \ge s$  and  $(s] \supseteq (x_2] \cap (b]$  implies

(  $y_1$ ]  $\supseteq$  (  $x_2$ ]  $\cap$  ( b] . Hence by distributivity of P we get

 $(y_1] = (y_2] \cap (b_2]$  for some  $y_2 \ge x_2$  and  $b_2 \ge b$ . Continuing like this we get an element  $y_{n-1}$  in P such that  $(y_{n-1}] \supseteq (x_n] \cap (b]$ . Applying the distributivity of P again , we get  $(y_{n-1}] = (y_n] \cap (b_n]$  where  $y_n \ge x_n$  and  $b_n \ge b$ . Now  $y_n \ge y_{n-1}$  and

 $y_{n-1} \ge x_{n-1}$  imply

 $y_n \ge x_{n-1}$ . As  $y_n \ge x_{n-1}$  and  $x_{n-1} \ge x_{n-2}$ , by transitivity  $y_n \ge x_{n-2}$ . Continuing like this we get  $y_n \ge x_r$  for each  $r, 1 \le r \le n-1$ .

As y  $_n \geq x$   $_i~$  for each i ,  $1 \leq i \leq n$  we get ~ y  $_n \geq ~ \lor ~^n_{i~=~1} x$   $_i$  .....(I)

#### Again

 $(y_{n-1}] \cap (b] = [(y_n] \cap (b_n]] \cap (b],$ 

as  $(y_{n-1}] = (y_n] \cap (b_n]$  and  $b_n \ge b$ . Thus  $(y_{n-1}] \cap (b] = (y_n] \cap [(b_n] \cap (b]] = (y_n] \cap (b]$ . Similarly we get,  $(y_{n-2}] \cap (b] = [(y_{n-1}] \cap (b_{n-1}]] \cap (b]$ , as  $(y_{n-2}] = (y_{n-1}] \cap (b_{n-1}]$  and  $b_{n-1} \ge b$ .  $(y_{n-2}] \cap (b] = (y_{n-1}] \cap [(b_{n-1}] \cap (b]] = (y_{n-1}] \cap (b_{n-1}]$ .

Continuing in this way we get,  $(y_1] \cap (b] = (y_2] \cap (b] = \dots = (y_{n-1}] \cap (b] = (y_n] \cap (b] \dots (I)$ As  $(a] = (y_1] \cap (b]$ ,  $(a] \cap (b] = (y_1] \cap (b] \cap (b]$  $= (y_1] \cap (b]$  Hence by (II),  $(a] \cap (b] = (y_n] \cap (b]$ . Thus  $(a] \supseteq (y_n] \cap (b]$ . But by (I),  $(a] \supseteq \vee_{i=1}^{n} (x_i] \cap (b]$ . Hence P is a - distributive. The proof if part being obvious we omit it.

In support of result of Theorem 1.3.8 we give the following example.

**Example 6.3.9:** Let  $P = \{0, a, b, c, d, e, f, 1\}$ . The diagrammatic representation  $\langle P \leq \rangle$  as follows.



**Fig.1.4** 

The poset shown in Fig . 1.4 is distributive poset and hence s - distributive poset for each s ( $\neq 1$ ) in P.

**Remark 1.3.10:-** Every s - distributive poset need not be distributive.

For this consider the poset P which describe in the example 6.3. This poset is h-distributive but not distributive.

- 1. Balchandran V.K. :- On Disjunctiction Lattices, Journal of Madras University, 23, 1953, 15-21.
- Frink O:-Ideals In Partially Order Sets, Am. Math. Monthly 61, 954, 223-34.
- Pawar Y .S. and Dhamke V. B. :- 0-Distributive Poset , Indian J. Pure appli. Math. 20 (8) 1989 , 804-811.
- Varlet J. C :- Relative Annihilators In Semi Lattice , Bull. Austral. Math. Soc. , 9, 169. (1973).
- Venkatnarsimhan P.V. :- Pseudocomplements In Poset, Proc. Am. Math. Soc. 23, 1971, 9-17.