

International Journal of Latest Research in Science and Technology ISSN (Online):2278-5299 Volume 4, Issue 6: Page No.84-87, November-December 2015 (special Issue Paper) http://www.mnkjournals.com/ijlrst.htm Special Issue on International conference on Methematics Sciences-2015(MSC-2015) Conference Held at Sadguru Gadage Maharaj College, Karad ,Maharastra,(India)

NORMAL FUZZY BI-IDEALS OF A Γ -SEMINEARRING

S. J. Alandkar¹ and Y. S. Pawar²

¹Head and Associate Professor, Department of Mathematics & Statistics, Walchand College of Arts and Science, Solapur-413006[M.S.]e-mail : <u>sj14557kar@rediffmail.com (M)</u> 9225831482 , ²Ex-Head, Department of Mathematics, Shivaji University, Kolhapur-416004[M.S.] e-mail: <u>y s pawar@yahoo.com</u>

Abstract- In this paper, the concept of normal fuzzy bi-ideal of a **Γ**-semi-near ring is introduced and investigated some of its properties Key-words: **Γ**-semi-nearring, Fuzzy **Γ**-semi-nearrings, Fuzzy bi-ideals of a **Γ**-semi-nearring, Normal fuzzy bi-ideal of a **Γ**-semi-nearring AMS Classification: 08A72, 03E72

I. INTRODUCTION

Saha N. K. and Sen S. K. et al [9-10] defined the concept of a Γ - semi-near-ring which is the generalization of Γ - nearring, seminear ring and Γ - semiring. Pianskool S. et al[5] studied simple Γ - semi-near rings A paradigm shift occurred in the algebra due to Zadeh L. A. [11] in 1962 by introducing the concept of graded membership inplace of membership / nonmembership of ordinary set, namely fuzzy set. Further the notion of fuzzy group was introduced by Rosenfeld [8] and then fuzzy algebra is flourished by the contribution of many mathematicians.

In 1952, Good and Hughes introduced bi-ideals of semigroups. Chelvam T. T. and Ganesan N. [1] introduced bi-ideals of near rings. Pawar and Pandharpure [6] discussed ideals and bi-ideals in near rings. Chelvam T. T. and Meenakumari N. [2] studied bi-ideals of Γ -Near Rings. Fuzzy ideals and fuzzy bi-ideals of semigroups are studied by Kuroki N.[5]. Kim and Lee [4] studied intutionistic fuzzy bi-ideals of semigroup. Ezhilmaran and A. Dhandapani [3] have studied Characterization of Intutionistic Fuzzy Bi-ideals in Γ -semiring.

In this paper we study various properties of fuzzy bi-ideals of a Γ – seminearring.

§1.1. Preliminaries.

Throughout this section M denotes a Γ -semi-near ring unless otherwise specified. We begin with the following definition.

Definition 1.1.1. Let (M, +) be an additive semigroup and for $\alpha \in \Gamma$, a nonempty set, (M, α) be a semigroup. Then M is called a right Γ -seminear ring if there exists a mapping $M \times \Gamma \times M \rightarrow M$ (denoted by $(a, \alpha, b) \rightarrow a\alpha b$) satisfying the conditions:

i) $(a+b) \alpha c = a\alpha c + b\alpha c$,

ii) $a\alpha(b\beta c) = (a\alpha b)\beta c$,

for all a, b, c \in M and α , $\beta \in \Gamma$.

Precisely speaking ' Γ -seminear ring' to mean 'right Γ -seminear ring'.

Example 1.1.2. Let $M = \{ \begin{bmatrix} \alpha & b \\ 0 & 0 \end{bmatrix} / a$, b be nonnegative integers $\} = \Gamma$, Then $(M, +, \alpha)$ is Γ - seminear ring under the

matrix addition and matrix multiplication, $\alpha \in \Gamma$. Define M × $\Gamma \times M \rightarrow M$ (denoted by (a, α , b) $\rightarrow a\alpha b$) where a αb is matrix multiplication of a, α and b. Then M is a Γ -seminear ring.

Definition 1.1.3. Let M be a I-seminear ring. A nonempty subset I of M is a **sub-\Gamma-seminear ring** of M if I is also a Γ -seminear ring with the same operations of M.

Definition 1.1.4. A subset I of a Γ -seminear ring M is a **left** (**resp. right**) **ideal** of a Γ -seminear ring M if I is a subsemigroup of M and rax \in I (resp. xar \in I) for all x \in I and r \in M, $\alpha \in \Gamma$. If I is both left as well as right ideal then we say that I is an **ideal of a \Gamma-seminear ring** M.

Example 1.1.5. Consider the example 1.1.2. of Γ -seminear ring (M, +, α), $\alpha \in \Gamma$ mentioned above. We have I

 $= \{ \begin{bmatrix} 2a & 2b \\ 0 & 0 \end{bmatrix} / a, b \text{ be nonnegative integers} \}$

is an ideal of M.

Definition 1.1.6. A fuzzy subset μ_I of $\Gamma\text{-semi-nearring}\ M$ is called a fuzzy $\Gamma\text{-semi-nearring}\ of\ M$ if

(i) $\mu_{I}(x+y) \ge \min\{\mu_{I}(x), \mu_{I}(y)\},\$

(ii) $\mu_{I}(x\alpha y) \ge \min{\{\mu_{I}(x), \mu_{I}(y)\}},$

for all $\alpha \in \Gamma$ and $x, y \in M$.

Definition 1.1.7. A sub- Γ -semi-nearring I of M is called a **biideal** of Γ -semi-nearring M if $I\Gamma M\Gamma I \subseteq I$.

Definition 1.1.8. Let f: $M \rightarrow M'$ be mapping from Γ -seminearring M to Γ -semi-nearring M'. Then f is said to be homomorphic if f(x+y) = f(x) + f(y) and $f(x \neq y) = f(x) \notin f(y)$.

§1.2. Fuzzy bi-ideals of a Γ-semi-nearring.

Definition 1.2.1: - A fuzzy sub- Γ -semi-nearring I of Γ -semi-nearring M is called a fuzzy bi-ideal of M if

- $(i) \qquad \mu_I(x+y) \geq min\{\mu_I(x),\,\mu_I(y)\},$
- (ii) $\mu_I(x\alpha y) \ge \min\{\mu_I(x), \mu_I(y)\},\$
- (iii) $\mu_I(x\alpha u \beta y) \ge \min\{\mu_I(x), \mu_I(y)\},\$

for all $\alpha, \beta \in \Gamma$ and x, u, $y \in M$.

Example 1.2.2. From Example 1.1.2. and Example 1.1.5., I is a bi-ideal of M. Define μ : M \rightarrow [0, 1] by letting μ (O) = 1, a zero matrix O \in M and μ (X)= 0.4 for all nonzero matrices X

Case 3: If x, u, $y \in I$ and $\alpha, \beta \in \Gamma$, then $x\alpha u\beta y \in I$.

I is a bi-ideal of M then for any 0<t<1, there exists a fuzzy biideal μ of M such that $\mu_t = I$.

Proof. Let μ : M \rightarrow [0, 1] be defined as

$$\mu(\mathbf{x}) = \begin{cases} \mathbf{t}_{e} \text{ if } \mathbf{x} \in \mathbf{I} \\ \mathbf{0}, \text{ if } \mathbf{x} \notin \mathbf{I} \end{cases}$$

where t is a fixed number in (0, 1). Then $\mu_t = I$.

Now suppose that I is a bi-ideal of M.

For all x, $y \in I$ and $\beta \in \Gamma$ such that $x \beta y \in I$, we have

 $\mu(x+y) \ge t = \min{\{\mu_I(x), \mu_I(y)\}}$ since $\mu(x) \ge t$

and $\mu(y) \ge t$ and

For all x, $y \in I$ and $\beta \in \Gamma$ such that $x\beta y \in I$, we have

 $\mu(\mathbf{x\beta y}) \geq t = \min\{\mu_{I}(x), \mu_{I}(y)\},\$

Also for all $\alpha, \beta \in \Gamma$ and $x, u, y \in I$ such that $x\alpha u\beta y \in I$, we have $\mu_A(x\alpha u\beta y) \ge t = \min\{\mu(x), \mu(y)\}$

Thus μ is a fuzzy bi-ideal of M.

Theorem 1.2.4. Let χ_I be the characteristic function of a subset I of M. Then χ_I is a bi-ideal of M if and only if I is a bi-ideal of M.Proof:If part.Let I be a bi-ideal of M.

Case 1: If x, $y \in I$, then $x + y \in I$.

- (a) If x, $y \in I$, then $x + y \in I$. So $\chi_I(x) = 1 = \chi_I(y)$ and $\chi_I(x + y) = 1$. Thus we get $\chi_I(x + y) = \min(\chi_I(x), \chi_I(y)) = 1$.
- (b) If at least one of x and y does not belong to I, then $\chi_I(x + y) \ge \min(\chi_I(x), \chi_I(y)) = 0$. Since $\chi_I(x) = 0$ or $\chi_I(y) = 0$.
- (c) If both x and y does not belong to I, then $\chi_I(x + y) \ge \min(\chi_I(x), \chi_I(y)) = 0$. Since $\chi_I(x) = 0$ or $\chi_I(y) = 0$.
- Thus $\chi_I(x + y) \ge \min(\chi_I(x), \chi_I(y))$.

Case 2: If x, $y \in I$ and $\alpha \in \Gamma$, then $x \alpha y \in I$.

- (a) If x, y \in I, then $\chi_I(x) = 1 = \chi_I(y)$ and $\chi_I(x \alpha y) = 1$. Thus we get $\chi_I(x \alpha y) = \min(\chi_I(x), \chi_I(y)) = 1$.
- (b) If at least one of x and y does not belong to I, then $\chi_I(x\alpha y) \ge \min(\chi_I(x), \chi_I(y)) = 0$. Since $\chi_I(x) = 0$ or $\chi_I(y) = 0$.
- (c) If both x and y does not belong to I, then $\chi_I(x\alpha y) \ge \min(\chi_I(x), \chi_I(y)) = 0.$ Since $\chi_I(x) = 0$ or $\chi_I(y) = 0.$

Therefore $\chi_I(x\alpha y) \ge \min(\chi_I(x), \chi_I(y))$ for all $x, y \in M$.

(a) If x, $y \in I$, $\chi_I(x) = 1 = \chi_I(y)$ and $\chi_I(x \alpha u \beta y) = 1$.

Thus we get $\chi_I(x\alpha u\beta y) = \min(\chi_I(x), \chi_I(y)) = 1$.

(b) If at least one of x and y does not belong to I, then $\chi_I(x\alpha u\beta y) \ge \min(\chi_I(x), \chi_I(y)) = 0.$ Since χ_I

(x) =0 or $\chi_{I}(y) = 0$.

(c) If both x and y does not belong to I, then $\chi_I(x\alpha u \beta y) \ge \min(\chi_I(x), \chi_I(y)) = 0.$ Since $\chi_I(x) = 0$

or $\chi_I(y) = 0$. Therefore $\chi_I(x\alpha u \beta y) \ge \min(\chi_I(x), \chi_I(y))$.

Thus χ_I is a fuzzy bi- ideal of M for all x, u, y \in M and α , β

 \in Γ . Only if part. Suppose χ_1 be a fuzzy bi- ideal of M. Then by Theorem 1.2.3, I is a bi- ideal of M.

In the following theorem we discuss the properties of the image and preimage of fuzzy bi- ideal under a Γ -semi-near ring homomorphism.

Theorem 2.1.5. Let M and M^{\prime} be two Γ -near rings and f:

 $M \rightarrow M'$ be a Γ -seminear ring homomorphism. Then

i) if μ is a fuzzy bi- ideal of M, then $f(\mu)$ is a fuzzy bi-ideal of M',

ii) if γ is a fuzzy bi- ideal of M^{*}, then f⁻¹(γ) is a bi-

ideal of M.Proof : i) Suppose μ is a fuzzy bi- ideal of M. Let x, y \in M, u', v' \in M' and $\alpha \in \Gamma$.To prove that

 $\{z/z \in \mathbf{f}^{-1}(\mathbf{u}'+\mathbf{v}')\} \supseteq \{x + y/x \in \mathbf{f}^{-1}(\mathbf{u}') \text{ and } y \in \mathbf{f}^{-1}(\mathbf{v}')\}.$

Let $x \in f^{-1}(u')$ and $y \in f^{-1}(v')$. Then f(x) = u' and f(y) = v'.

This implies $f(x) + f(y) = u' + v' \Longrightarrow f(x + y) = u' + v'$, since f is

 Γ -semi-near ring homomorphic. So $x + y \in \mathbf{f}^{-1}(u' + v')$.

We have to prove that $\{z \mid z \in \mathbf{f}^{-1}(u^{t}\alpha v')\} \supseteq$

 $\{x\alpha y | x \in f^{-1}(u') \text{ and } y \in f^{-1}(v')\}.$

International Journal of Latest Research in Science and Technology. (f (µ)) $(u'\alpha v') = \sup_{z \in f^{-1}(u'\alpha v')} \mu(z) \ge \sup \{\mu(x \alpha y)/f(x) = u', Hence f^{-1}(\gamma) \text{ is a fuzzy bi- ideal of } M.$

f(y) = v'

 $\geq \sup \{\min\{ \mu(x), \mu(y)\} / f(x) = u', f(y) = v'\} \geq \min\{ \sup \{ \mu(x)/|f(x) = u''\}, \sup \{ \mu(y)/|f(y) = v''\} \} = \min (\{f(\mu)(u')/|f(x) = u''\}, \{f(\mu)(v'')/|f(y) = v''\}).$

Therefore $(f(\mu))$ $(u'\alpha v') \ge \min \{ (f(\mu)) (u'), (f(\mu)) (v') \}$ and we have $\{z \ / \ z \in \mathbf{f}^{-1}(u'\alpha \ v')\} \supseteq \{x\alpha y \ / \ x \in \mathbf{f}^{-1}(u') \text{ and } y \in \mathbf{f}^{-1}(v') \}$.

Also to prove $\{z / z \in f^{-1}(u'\alpha w'\beta v')\} \supseteq \{x\alpha z\beta y / x\in f^{-1}(u')$ and $y \in f^{-1}(v')\}$. Let $x\in f^{-1}(u')$ and $y\in f^{-1}v'$. So f(x) = u', f(z) = w' and f(y) = v'.

This implies $f(x)\alpha f(z)\beta f(y) = u'\alpha w'\beta v' \cdot f(x\alpha z\beta y) = u'\alpha w'\beta$ v' ,since f is Γ -near ring homomorphic. So $x\alpha z\beta y \in f^{-1}(u'\alpha w'\beta v')$.

Thus $\{z / z \in f^{-1}(u'\alpha w'\beta v') \} \supseteq \{x\alpha z\beta y / x\in f^{-1}(u'), z\in f^{-1}(w') \text{ and } y\in f^{-1}(v')\}$

Hence $f(\mu)$ is a fuzzy bi- ideal of M^{\prime}.

ii) Suppose γ is a fuzzy bi- ideal of M^{*}.

 $(\mathbf{f}^{-1}\gamma)) \quad (\mathbf{x}+\mathbf{y}) = \gamma(\mathbf{f}(\mathbf{x}+\mathbf{y})) = \gamma(\mathbf{f}(\mathbf{x}) + \mathbf{f}(\mathbf{y})) \ge \min\{\gamma \quad (\mathbf{f}(\mathbf{x})),$

 $\gamma(f(y)) = \min \{ (f^{-1}(\gamma))(x), (f^{-1}\gamma))(y) \}.$

Thus $(\mathbf{f}^{-1}(\gamma))(x+y) \ge \min\{(\mathbf{f}^{-1}(\gamma))(x), (\mathbf{f}^{-1}(\gamma))(y)\}\$ for all x,y $\in \mathbf{M}$.

 $(\mathbf{f}^{-1}\gamma)$ $(\mathbf{x}\alpha\mathbf{y}) = \gamma(\mathbf{f}(\mathbf{x}\alpha\mathbf{y})) = \gamma(\mathbf{f}(\mathbf{x}) \ \alpha\mathbf{f}(\mathbf{y})) \ge \min\{\gamma \ (\mathbf{f}(\mathbf{x})), \gamma(\mathbf{f}(\mathbf{y}))\} = \min\{(\mathbf{f}^{-1}(\gamma))(\mathbf{x}), (\mathbf{f}^{-1}(\gamma))(\mathbf{y})\}, \text{ for all } \mathbf{x}, \mathbf{y} \in \mathbf{M} \text{ and} \alpha \in \Gamma. \text{Also, } (\mathbf{f}^{-1}(\gamma)) (\mathbf{x}\alpha\mathbf{z}\boldsymbol{\beta}\mathbf{y})$

 $= \gamma \{f(x\alpha z \beta y)\} = \gamma \{f(x)\alpha f(z)\beta f(y)\} \ge \min\{\gamma \ (f(x)), \ \gamma(f(y))\} =$

min {($\mathbf{f}^{-1}(\gamma)$)(x), ($\mathbf{f}^{-1}\gamma$))(y)}, for all x, z, y \in M and α , $\beta \in \Gamma$.

§1.3. Normal Fuzzy bi-ideals of a $\Gamma\text{-semi-nearring}$.

Definition 1.3.1. A fuzzy bi-ideal μ is a normal fuzzy bi-ideal of M if and only if $\mu(0) = 1$. Here we show that a fuzzy set μ^+ of M such that $\mu^+(x) = \mu(x)$

+ 1- $\mu(0)$ for all $x \in M$ is a normal fuzzy bi-ideal of M.

Theorem 1.3.2. Let μ be a fuzzy bi-ideal of M. Let μ^+ be a fuzzy set in M defined by $\mu^+(x) = \mu(x) + 1 - \mu(0)$ for all $x \in M$. Then μ^+ is a normal fuzzy bi-ideal of M which contains μ . **Proof:** For any $x, y \in M$, we have $\mu^+(x) = \mu(x) + 1 - \mu(0)$ and $\mu^+(0) = 1$ and

 $\begin{array}{l} \mu^{+}(x+y) = \mu(x+y) + 1 - \mu(0) \geq \min \left(\mu(x), \, \mu(y)\right) + 1 - \mu(0) \\ = \min \left(\mu(x) + 1 - \mu(0), \, \mu(y) + 1 - \mu(0)\right) = \min \left(\mu^{+}(x), \, \mu^{+}(y)\right), \\ \text{Thus } \mu^{+}(x+y) \geq \min \left(\mu^{+}(x), \, \mu^{+}(y)\right). \end{array}$

Now we have to prove that $\mu^{+}(x\alpha y) = \min(\mu^{+}(x), \mu^{+}(y))$ for all x, y \in M and $\alpha \in \Gamma.\mu^{+}(x\alpha y) = \mu(x\alpha y) + 1 - \mu(0) \ge \min(\mu(x), \mu(y)) + 1 - \mu(0) = \min(\mu(x) + 1 - \mu(0), \mu(y) + 1 - \mu(0)) = \min(\mu^{+}(x), \mu^{+}(y)).$

This shows that μ^+ is a fuzzy ideal of M. Let x, u, y \in M and α , $\beta \in \Gamma$. $\mu^+(x\alpha u\beta y) = \mu(x\alpha u\beta y) + 1 - \mu(0) \ge \min(\mu(x), \mu(y)) + 1 - \mu(0) \ge \min(\mu(x), \mu(x)) + 1 - \mu(0) \ge \max(\mu(x), \mu(x)) + 1 - \mu(x) + \mu(x) + 1 - \mu(x) + \mu(x) +$

 $\mu(0) = \min (\mu(x) + 1 - \mu(0), \ \mu(y) + 1 - \mu(0)) = \min (\mu^+(x), \ \mu^+(y)).$

So μ^+ is a fuzzy bi-ideal of M. Clearly, $\mu \subset \mu^+$ since $\mu^+(x) = \mu(x)+1 - \mu(0) \ge \mu(x)$ as $1 - \mu(0) \ge 0$.

Corollary 1.3.3. Let μ , μ^+ be in Theorem 1.3.2. If there exists $x \in M$ such that $\mu^+(x)=0$, then $\mu(x)=0$.

Definition 1.3.4. Let N(M) denote the set of all normal fuzzy bi-ideals of M. Note that N(M) is a poset under the set inclusion. A fuzzy set μ in M is called a maximal fuzzy bi-ideal of M if it is non-constant and μ^+ is a maximal element of (N(M), \subset).

Following result gives maximal elements when $\mu \in N(M)$ be non-constant.

Theorem 1.3.5. Let μ be a fuzzy bi-ideal of M. Let f: [0, $\mu(0)$] \rightarrow [0, 1] be an increasing function. Then the fuzzy set μ_f : $M \rightarrow [0, 1]$ defined by $\mu_f(x) = f(\mu(x))$ is a fuzzy bi-ideal of M. In particular, if $f(\mu(0)) = 1$, then μ_f is a normal; if $f(t) \ge t$ for all $t \in [0, \mu(0)]$, then $\mu \subseteq \mu_f$. **Proof.** For any $x, y \in M$, $\mu_{f} (x+y) = f(\mu(x+y)) \ge f(\min\{ \mu(x), \mu(y)\}) \ge \min\{ f(\mu(x)), \mu(y)\} \ge \max\{ f(\mu(x)), \mu(y)\} \le \max\{ f(\mu(x), \mu(x), \mu$ $f(\mu(y)) = \min{\{\mu_f(x), \mu_f(y)\}},$ Let x, $y \in M$ and $\alpha \in \Gamma$. $\mu_{f}(x\alpha y) = f(\mu(x\alpha y)) \ge f(\min\{\mu(x), \mu(y)\}) \ge \min\{f(\mu(x)), \mu(y)\}$ $f(\mu(y)) = \min{\{\mu_f(x), \mu_f(y)\}},$ and for x, u, $y \in M$ and α , $\beta \in \Gamma$. $\mu_{f}(x\alpha u\beta y) = f(\mu(x\alpha u\beta y)) \ge f(\min\{ \mu(x), \mu(y)\}) \ge \min\{ f(\mu(x)), \mu(y)\} \ge \max\{ f(\mu(x)), \mu(y)\} \le \max\{ f(\mu(x)),$ $f(\mu(y)) = \min \{ \mu_f(x), \mu_f(y) \},\$ proving that μ_f is a fuzzy bi-ideal of M. If $f(\mu(0)) = 1$, then $\mu_f(0) = 1$. Thus μ_f is normal.

Assume that $f(t) = f(\mu(x)) \ge \mu(x)$, for any $x \in M$, which gives $\mu \subseteq \mu_f$. Hence the proof.

Let N(M) denote the set of all normal fuzzy bi-ideal of M. Note that N(M) is a poset under set inclusion.

Theorem 1.3.6. Let $\mu \in N(M)$ be non-constant such that it is a maximal element of $(N(M), \subseteq)$. Then it takes only two values $\{0, 1\}$.

Proof : Since μ is normal, $\mu(0) = 1$. We claim that $\mu(x) = 0$. If not, then there exists $x_0 \in M$ such that $0 < \mu(x_0) < 1$. Define on M a fuzzy set v by putting

 $v(x) = \frac{1}{2} (\mu(x) + \mu(x_0))$ for each $x \in M$.

Then clearly v is well-defined and for all x, $y \in M$, we have $v(x + y) = \frac{1}{2}\mu(x + y) + \frac{1}{2}\mu(x_0) \ge \frac{1}{2}(\min(\mu(x), \mu(y)) + \frac{1}{2}\mu(x_0))$

 $\min \{ \frac{1}{2}(\mu(x) + \mu(x_0)), \frac{1}{2}(\mu(y) + \mu(x_0)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x_0)), \frac{1}{2}(\mu(y) + \mu(x_0)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x_0)), \frac{1}{2}(\mu(x) + \mu(x_0)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x_0)), \frac{1}{2}(\mu(y) + \mu(x_0)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x_0)), \frac{1}{2}(\mu(y) + \mu(x_0)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x_0)), \frac{1}{2}(\mu(y) + \mu(x_0)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x_0)), \frac{1}{2}(\mu(y) + \mu(x_0)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x_0)), \frac{1}{2}(\mu(y) + \mu(x_0)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x_0)), \frac{1}{2}(\mu(y) + \mu(x_0)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x_0)), \frac{1}{2}(\mu(y) + \mu(x_0)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x_0)), \frac{1}{2}(\mu(y) + \mu(x_0)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x_0)), \frac{1}{2}(\mu(y) + \mu(x_0)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x_0)), \frac{1}{2}(\mu(y) + \mu(x_0)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x_0)), \frac{1}{2}(\mu(y) + \mu(x_0)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x_0)), \frac{1}{2}(\mu(y) + \mu(x_0)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x_0)), \frac{1}{2}(\mu(y) + \mu(x_0)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x_0)), \frac{1}{2}(\mu(y) + \mu(x_0)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x_0)), \frac{1}{2}(\mu(x) + \mu(x_0)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x_0)), \frac{1}{2}(\mu(x) + \mu(x_0)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x_0)), \frac{1}{2}(\mu(x) + \mu(x_0)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x_0)), \frac{1}{2}(\mu(x) + \mu(x_0)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x_0)), \frac{1}{2}(\mu(x) + \mu(x_0)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x_0)), \frac{1}{2}(\mu(x) + \mu(x_0)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x)) \} = \min \{ \frac{1}{2}(\mu(x) + \mu(x)) \} = \min \{ \frac{1}{$

Now $v(x\alpha \mu \beta y) = \frac{1}{2}\mu(x\alpha u \beta y) + \frac{1}{2}\mu(x_0) \ge \frac{1}{2}(\min(\mu(x), \mu(y)) + \frac{1}{2}\mu(x_0)) = \min\{\frac{1}{2}(\mu(x) + \mu(x_0)), \frac{1}{2}(\mu(y) + \mu(x_0))\} = \min\{v(x), v(y)\}, \text{ for all } x, u, y \in M \text{ and } \alpha, \beta \in \Gamma.$

Thus $\Box v$ is a fuzzy bi-ideal of M.

Hence v is a fuzzy bi-ideal of M. By Theorem 1.3.2., v^+ is a maximal fuzzy bi-ideal of M. Note that $v^+(0) = v(0) + 1 - v(0) = 1$. Thus v^+ is a normal fuzzy bi-ideal of M and $v^+(x_0) = v(x_0) + 1 - v(0) = \frac{1}{2}(\mu(x_0) + \mu(x_0)) + 1 - \frac{1}{2}(\mu(0) + \mu(x_0)) = \frac{1}{2}(\mu(x_0) + 1) = v(x_0)$, and $\Box v(x_0) < 1 = v^+(0)$.

Hence v^{\dagger} is a non-constant and μ is not a maximal element of N(M). Which is a contradiction. Thus $\mu(x_0) \ge 0$.

BIBLIOGRAPHY

- Chelvam T. T. and Ganesan N., On bi-ideal of Near-rings, Indian J. Pure appl. Math. 18(11) (1987) 1002-1005.
- Chelvam T.T.and Meenakumari N., Bi-ideal of Γ- Near-rings, Southest Asian Bull. Math., 27(2004), 983-988.
- Ezhilmaran D., Dhandapani A., Characterization of Intutionistic Fuzzy Bi-ideals in Γ- semiring, International Journal of Algebra and Statistics, Vol. 1: 2(2012), 55-62.
- 4. K. H. Kim, J. G. Lee, On Intutionistic Fuzzy Bi-ideals of Semi groups, Turk J. Math, 29(2005),201-210.
- N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets and Systems 5(1981) 203-205.
- Y.S.Pawar and V.B.Pandharpure, Ideals and Bi-ideals in nearrings.News Bull.Cal.Math.Soc.27 (4-6) (2004) 5-12.
- S.Pianskool and P.Khachorncharoenkul, Simple Γ- semi-near rings, Journal of Mathematics Research, Vol. 1, No. 2 (2009),124-129.
- A.Rosenfeld, Fuzzy Groups, J.Math.Anal.Appl.35 (1971), 512-517.
- N. K. Saha, On Γ- seminear ring II, Bull. Calcutta Math. Soc. 79(6) (1987), 331-335.
- S. K.Sen and N. K. Saha, On Γ- seminear ring I, Bull. Calcutta Math. Soc., 78 (1986), no.3, 180-186.
- 11. L.A.Zadeh, Fuzzy Sets, Inform. and Control 8(1965), 338-353.