

International Journal of Latest Research in Science and Technology ISSN (Online):2278-5299 Volume 4, Issue 6: Page No.79-83, November-December 2015 (special Issue Paper) http://www.mnkjournals.com/ijlrst.htm Special Issue on International conference on Methematics Sciences-2015(MSC-2015) Conference Held at Sadguru Gadage Maharaj College, Karad ,Maharastra,(India)

INTRA-REGULAR Γ-SEMIRINGS

R.D. Jagatap

Y.C. College of Science,Karad. ravindrajagatap@yahoo.co.in

Abstract- In this paper we discuss properties of an intra-regular Γ -semiring. Some characterizations of an intra-regular Γ -semiring by using left ideals, right ideals, ideals, interior-ideals, quasi-ideals and bi-ideals of a Γ -semiring are furnished. Key words :- Quasi-ideal, bi-ideal, interior-ideal, intra-regular Γ -semiring.

AMS Mathematics Subject Classification (2010) : 16Y60, 16Y99.

I. INTRODUCTION

A Γ-semiring was introduced by Rao in

[10] as a generalization of a semiring. Author studied quasiideals in Γ -semirings in [3,4] and gave a definition bi-ideal in [4]. In

[7] Lajos considered an intra-regular semigroup and proved some properties of it. Kehayopulu and Tsingelis in

[6] proved that the intra-regular ordered semigroups are semilattices of simple semigroups. Some more characterizations of the intra-regular ordered semigroups were discussed by D. Lee and S. Lee in

[8]. Shabir, Ali, Batool in

[11] gave a definition of an intra-regular semiring and furnished property of it. Author define the notion of an intra-regular Γ -semiring and studied it in

[5]. In this paper efforts are made to prove some properties of an intra-regular Γ -semiring. Some more

characterizations of an intra-regular Γ -semiring by using left ideals, right ideals, ideals, interior-ideals, quasi-ideals and bi-ideals of a Γ -semiring are studied.

§2. Preliminaries

First we recall some definitions of the basic concepts of \mathbf{T} -semirings that we need in sequel. For this we follow Dutta and Sardar [1].

Definition 2.1:- Let *S* and Γ be two additive commutative semigroups. *S* is called a Γ -semiring if there exists a mapping $S \times \Gamma \times S \longrightarrow S$ denoted by aab; for all $a, b \in S$ and for all $a \in \Gamma$ satisfying the following conditions:

(i) $a\alpha(b+c) = (a\alpha b) + (a\alpha c)$

(ii) $(b + c)\alpha a = (b\alpha a) + (c\alpha a)$

(iii) $a(\alpha + \beta)c = (a\alpha c) + (\alpha\beta c)$

(iv) $a\alpha(b\beta c) = (a\alpha b)\beta c$; for all $a, b, c \in S$ and $a, \beta \in \Gamma$.

Definition 2.2 :- An element $\mathbf{0} \in \mathbf{S}$ is said to be an absorbing

Zero if

 $0\alpha a = 0 = a\alpha 0, \alpha + 0 = 0 + a = a$; for all $a \in S$ and for all $\alpha \in \Gamma$.

Definition 2.3:- A non-empty subset T of a Γ -semiring S is said to be sub- Γ -semiring of S if (T, +) is a subsemigroup of (S, +) and $a\alpha b \in T$; for all $\alpha, b \in T$ and for all $\alpha \in \Gamma$.

Definition 2.4: A non-empty subset T of a Γ -semiring S is called a left (respectively right) ideal of S if T is a subsemigroup of (S, +) and $\mathbf{xua} \in \mathbf{T}$ (respectively $\mathbf{aax} \in \mathbf{T}$) for all $\mathbf{a} \in \mathbf{T}, \mathbf{x} \in \mathbf{S}$ and for all $\mathbf{a} \in \mathbf{T}$.

Definition 2.5 :- If a non-empty subset T of a Γ -semiring S is both left and right ideal of S, then T is known as an ideal of S.

Definition 2.6 [3]:- An additive subsemigroup Q of a Γ -semiring S is a quasi-ideal of S if $(S\Gamma Q) \cap (Q\Gamma S) \subseteq Q$.

Definition 2.7 [4]:- A non-empty subset B of a Γ -semiring S is a bi-ideal of S if B is a sub- Γ -semiring of S and $B\Gamma S\Gamma B \subseteq B$.

Definition 2.8 [5]:- An additive subsemigroup I of a Γ -semiring S is an interior-ideal of S STIFS $\subseteq I$.

Definition 2.9 [2]:- A proper ideal I of a Γ -semiring S is a completely semiprime if for any $a \in S$, $a\Gamma a \subseteq I$ implies $a \in I$.

Definition 2.10 [2]:- An proper ideal I of a Γ -semiring S is semiprime if for any ideal A of S, $A\Gamma A \subseteq I$ implies $A \subseteq I$.

Theorem 2.11[3]:- For any non-empty subset X of a Γ -semiring S following statements hold. (I) STX is a left ideal of S. (II) XTS is a right ideal of S. (III) STXTS is an ideal of S.

Corollary 2.12[3]:- For any element α of a Γ -semiring S following statements hold.

(I) $S\Gamma \alpha$ is a left ideal of S. (II) $\alpha\Gamma S$ is a right ideal of S. (III) $S\Gamma \alpha\Gamma S$ is an ideal of S.

Now onwards S denotes a Γ -semiring with an absorbing zero unless otherwise stated.

Theorem 2.13[3] :- Let *a* be any element of *S*. Then $(a)_1 = N_0 a + S \Gamma a$, $(a)_r = N_0 a + a \Gamma S$

and $(a) = N_0 a + S\Gamma a + a\Gamma S + S\Gamma a\Gamma S$, where N_0 denotes the set of non negative integers.

Theorem 2.14[3]:- Let α be any element of S. Then a quasi-ideal of S generated by α is given by

 $(a)_q = N_0 a + (S\Gamma a) \cap (a\Gamma S)$, where N_0 denotes the set of non negative integers.

Theorem 2.15 [4]:- Let *a* be any element of *S*. Then a biideal of *S* generated by *a* is given by $(a)_b = N_0 a + N_0 (a\Gamma a) + a\Gamma S\Gamma a$, where N_0 denotes the set of non negative integers.

Theorem 2.16 :- Let α be any element of S. Then a interior-ideal of S generated by α is $(\alpha)_i = N_0 \alpha + S \Gamma \alpha \Gamma S$, where N_0 denotes the set of non negative integers.

Definition 2.17 [5]:- A Γ -semiring *S* is said to be an intraregular Γ -semiring, if for any $x \in S$, $x \in ST \times T \times T S$.

Example 1:- Consider a set $S = \{0, a, b\}$ and two binary operations + and \cdot are defined on S as follows

+	0	a	h
0	0	a	Ь
a	a	a	a
Ь	Ь	a	Ь

+	0	a	Ь
0	0	a	Ь
a	a	a	a
Ь	Ь	a	Ь

Let $\Gamma = S$. Then both (S, +) and $(\Gamma, +)$ are commutative semigroups. A mapping $S \times \Gamma \times S \longrightarrow S$ is defined by $x\alpha y = x \cdot \alpha \cdot y$; for all $x, y \in S$, $\alpha \in \Gamma$. Then S forms a Γ -semiring. Here S is an intra-regular Γ -semiring.

Theorem 2.18[5]:- S is intra-regular if and only if each right ideal R and a left ideal L of S satisfy $R \cap L \subseteq L\Gamma R$. **§3. Properties of an Intra-regular** Γ -semiring

Properties of an intra-regular Γ -semiring are furnished in the following theorems .

Theorem 3.1:- In an intra-regular Γ -semiring S, an ideal of S is an idempotent ideal.

Proof :- Let S be an intra-regular Γ -semiring and I be an ideal of S. For any $a \in I$, we have $a \in S\Gamma a\Gamma a\Gamma S$. Therefore $a \in S\Gamma a\Gamma a\Gamma S \subseteq S\Gamma I\Gamma I\Gamma S = (S\Gamma I)\Gamma (I\Gamma S) \subseteq I\Gamma I$. This gives $I \subseteq I\Gamma I$. As $I\Gamma I \subseteq I$ holds always, we get $I\Gamma I = I$. Therefore an ideal of S is an idempotent ideal.

]Theorem 3.2:- If **B** is an ideal of an ideal of **S**, then $(B)^3 = (B)\Gamma(B)\Gamma(B) \subseteq B$. Proof:-Let **B** be an ideal of an ideal **A** of **S**. Therefore $(B)\Gamma(B)\Gamma(B) \subseteq A\Gamma(B)\Gamma A = A\Gamma(B + B\Gamma S + S\Gamma B +$

$$\begin{split} S\Gamma E\Gamma S)\Gamma A &= (A\Gamma B + A\Gamma B\Gamma S + A\Gamma S\Gamma B + A\Gamma S\Gamma B\Gamma S)\Gamma A \subseteq \\ (B + B\Gamma S + A\Gamma B + A\Gamma B\Gamma S)\Gamma A &\subseteq (B + B\Gamma S + B + B\Gamma S)\Gamma A \subseteq B \\ B\Gamma S)\Gamma A &\subseteq B + B\Gamma A + B + B\Gamma A \subseteq B \end{split}$$

. Thus we get $(B)^2 = (B)\Gamma(B)\Gamma(B) \subseteq B.$

-

Remark :- An ideal of an ideal of a Γ -semiring S need not be an ideal of S.

Example 2: Let $S = \{0, 1, 2, 3\}$. Two binary operations + and \cdot are defined on S as follows.

•	0	1	2	3
ф	0	9	ð	ð
p	8	8	8	8
2	8	9	8	p
3	8	0	2 7	02
3	0	0	0	3

If $\Gamma = S$, then (S, +) and $(\Gamma, +)$ both are commutative semigroups. A mapping $S \times \Gamma \times S \longrightarrow S$ is defined by $x\alpha y = x \cdot y$; for all x, y in S and $\alpha \in \Gamma$. Then S forms a Γ -semiring. Here $I = \{0,1,2\}$ is an ideal of S. $B = \{0,2\}$ is a two sided ideal of an ideal I of S. But E is not an ideal of S since $3\alpha 2 = 1 \notin B$, for all $\alpha \in \Gamma$. But in an intraregular Γ -semiring S we have Theorem 3.3

Theorem 3.3:- In an intra-regular Γ -semiring S, an ideal of an ideal of S is an ideal of S.

Proof :- Let **S** be an intra-regular Γ -semiring, **A** be an ideal of **S** and **B** be an ideal of **A**. Hence by Theorem 3.2, we have $(B)^2 = (B)\Gamma(B)\Gamma(B) \subseteq B$. By Theorem 3.1, we have any ideal of **S** is an idempotent ideal. Therefore $(B)^2 = (B)\Gamma(B)\Gamma(B) = (B)\Gamma(B) = (B)$. Thus $(B) \subseteq B$. As $B \subseteq (B)$ holds always, we get (B) = B. This shows that **B** is an ideal of **S**.

Theorem 3.4:- If **S** is intra-regular, then any proper ideal

of 5 is semiprime.

Proof :- Let **S** be an intra-regular Γ -semiring and **P** be a proper ideal of **S**. Let **A** be any ideal of **S** such that $A\Gamma A \subseteq P$. For any $a \in A$, we have $a \in S\Gamma a\Gamma a\Gamma S$. Hence we have $S\Gamma a\Gamma a\Gamma S \subseteq S\Gamma A\Gamma A\Gamma S - (S\Gamma A)\Gamma(A\Gamma S) \subseteq A\Gamma A \subseteq P$.

Therefore $a \in P$. Thus $a \in A$ implies $a \in P$. This shows that $A \subseteq P$. Therefore P is a semiprime ideal of S.

Theorem 3.5:-If S is intra-regular, then a proper interiorideal of S is semiprime.

Proof of following theorem is straightforward so omitted.

Theorem 3.6: If $S\Gamma a = S$ or $a\Gamma S = S$ holds for all $a \in S$, then S is intra-regular.

§4. Characterizations of an Intra-regular Γ-semiring

Various characterizations of an intra-regular Γ -semiring are discussed in this section.

Theorem 4.1 :- In **S** following statements are equivalent.

(1) S is intra-regular.

(2) Each ideal of S is completely semiprime.

(3) $a \in (a\Gamma a)$, for any $a \in S$.

(4) $(a) = (a\Gamma a)$, for any $a \in S$.

Proof :- (1) \Rightarrow (2) Let P be a proper ideal of S. For a be any element of S, $a\Gamma a \subseteq P$. As $a \in S$ and S is intraregular, we have $a \in S\Gamma a\Gamma a\Gamma S$. Therefore $S\Gamma a\Gamma a\Gamma S \subseteq S\Gamma P\Gamma S \subseteq P$. Hence $a \in P$. Thus $a\Gamma a \subseteq P$ implies $a \in P$. Therefore P is a completely semiprime ideal of S.

(2) \Rightarrow (1) Let $\alpha \in S$. We have $S\Gamma \alpha \Gamma \alpha \Gamma S$ is an ideal of S. By assumption $S\Gamma \alpha \Gamma \alpha \Gamma S$ is a completely semiprime ideal

of S. Therefore $(a\Gamma a)\Gamma(a\Gamma a) \subseteq S\Gamma a\Gamma a\Gamma S$ implies

 $a\Gamma a \subseteq S\Gamma a\Gamma a\Gamma S$. Hence $a \in S\Gamma a\Gamma a\Gamma S$. This shows that S is an intra-regular Γ -semiring.

(2) \Rightarrow (3) Let $a \in S$. By assumption $(a\Gamma a)$ is a completely semiprime ideal of S. We have $a\Gamma a \subseteq (a\Gamma a)$ always. Therefore $a \in (a\Gamma a)$, for any $a \in S$.

(3) \Rightarrow (4) Let $a \in S$. By (3), $a \in (a\Gamma a)$. Therefore (a) $\subseteq (a\Gamma a)$. Now

 $(a\Gamma a) = N_0(a\Gamma a) + S\Gamma(a\Gamma a) + (a\Gamma a)\Gamma S + S\Gamma(a\Gamma a)\Gamma S \subseteq N_0(S\Gamma a) + S\Gamma a + a\Gamma S + S\Gamma a\Gamma S \subseteq S\Gamma a + a\Gamma S + S\Gamma a\Gamma S \subseteq (a)$. Hence $(a) = (a\Gamma a)$.

(4) \Rightarrow (2) Let **P** be a proper ideal of **S**. For **a** be any element of **S**, $a\Gamma a \subseteq P$. By (4), we have (**a**) = ($a\Gamma a$). Hence $a\Gamma a \subseteq P$ implies ($a\Gamma a$) $\subseteq P$. Therefore $(a) \subseteq P$. Hence $a \in P$. Therefore P is a completely semiprime ideal of S.

Theorem 4.2:-*S* is intra-regular if and only if each interiorideal of *S* is completely semiprime.

Proof :- Let S be an intra-regular Γ -semiring and P be a proper interior-ideal of S. For α be any element of S, $a\Gamma a \subseteq P$. Then we have $a \in S\Gamma a\Gamma a\Gamma S$. Therefore $S\Gamma a\Gamma a\Gamma S \subseteq S\Gamma P\Gamma S \subseteq P$. Hence $a \in P$. Therefore P is a completely semiprime interior-ideal of S. Conversely, assume that each interior-ideal of S is completely semiprime. Let $a \in S$. We have $S\Gamma a\Gamma a\Gamma S$ is an interior-ideal of S. Therefore by assumption $S\Gamma a\Gamma a\Gamma S$ is completely semiprime. Hence $(a\Gamma a)\Gamma(a\Gamma a) \subseteq S\Gamma a\Gamma a\Gamma S$ implies $a\Gamma a \subseteq S\Gamma a\Gamma a\Gamma S$. Hence $a \in S\Gamma a\Gamma a\Gamma S$. This shows

that **S** is an intra-regular Γ -semiring.

Corollary 4.3:-*S* is intra-regular if and only if each ideal of *S* is completely semiprime.

Theorem 4.4:- In **5** following statements are equivalent.

(1) S is intra-regular. (2) $(x)_b \subseteq S\Gamma(x)_b\Gamma(x)_b\Gamma S$ (3)

 $(x)_b \cap (x)_q \subseteq$ $\left(S\Gamma(x)_b \Gamma(x)_q \Gamma S\right) \cap \left(S\Gamma(x)_q \Gamma(x)_b \Gamma S\right)$

(4)
$$(x)_q \subseteq S\Gamma(x)_q \Gamma(x)_q \Gamma S$$

Proof :- (1) \Rightarrow (2) Let $a \in (x)_b$. Therefore
 $a \in S\Gamma a\Gamma a\Gamma s \subseteq S\Gamma(x)_b \Gamma(x)_b \Gamma S$. Hence
 $(x)_b \subseteq S\Gamma(x)_b \Gamma(x)_b \Gamma S$.

(2) \Rightarrow (4) Implication holds as every quasi-ideal is a bi-ideal. (4) \Rightarrow (1) Let $x \in S$. Therefore by assumption, $(x)_q \subseteq S\Gamma(x)_q \Gamma(x)_q \Gamma S$. Now $S\Gamma(x)_q \Gamma(x)_q \Gamma S = (S\Gamma(N_0x + (S\Gamma x) \cap (x\Gamma S)))\Gamma((N_0x + (S\Gamma x) \cap (x\Gamma S))\Gamma S) \subseteq (S\Gamma x)\Gamma(x\Gamma S)$. Hence $x \in (x)_q \subseteq S\Gamma x\Gamma x\Gamma S$. Therefore S is intra-

regular.

and

(1) \Rightarrow (3) Assume that S is an intra-regular Γ -semiring. Let

$$a \in (x)_b \cap (x)_q$$
. Therefore

 $a \in S\Gamma a\Gamma a\Gamma S \subseteq S\Gamma(x)_b \Gamma(x)_q \Gamma S$

 $\in S\Gamma a\Gamma a\Gamma S \subseteq S\Gamma(x)_a\Gamma(x)_b\Gamma S$. Hence

$$\begin{aligned} & (x)_b \cap (x)_q \subseteq \\ & \left(S \Gamma(x)_b \Gamma(x)_q \Gamma S \right) \cap \left(S \Gamma(x)_q \Gamma(x)_b \Gamma S \right) \end{aligned}$$

(3) \Rightarrow (1) Let $x \in S$. Therefore by assumption,

 $S\Gamma(x)_{b}\Gamma(x)_{q}\Gamma S = (S\Gamma(N_{0}x + N_{0}(x\Gamma x) + x\Gamma S\Gamma x))\Gamma((N_{0}x + (S\Gamma x) \cap (x\Gamma S))\Gamma S) \subseteq (S\Gamma x)\Gamma(x\Gamma S)$

. Hence $x \in (x)_{L} \cap (x)_{q} \subseteq S\Gamma x \Gamma x \Gamma S$. Therefore S is intra-regular.

Theorem 4.5 :- In **S** following statements are equivalent.

(1) \mathbf{S} is intra-regular.

(2)
$$(x)_{l} \cap (x)_{b} \subseteq (x)_{l} \Gamma(x)_{b} \Gamma S$$

(3) $(x)_{l} \cap (x)_{q} \subseteq (x)_{l} \Gamma(x)_{q} \Gamma S$
(4) $(x)_{r} \cap (x)_{b} \subseteq S \Gamma(x)_{b} \Gamma(x)_{r}$
(5) $(x)_{r} \cap (x)_{q} \subseteq S \Gamma(x)_{q} \Gamma(x)_{r}$
Proof :- (1) \Rightarrow (2) Let $a \in (x)_{l} \cap (x)_{b}$. Therefore
 $a \in S \Gamma a \Gamma a \Gamma S \subseteq S \Gamma(x)_{l} \Gamma(x)_{h} \Gamma S$. Hence
 $(x)_{l} \cap (x)_{b} \subseteq (x)_{l} \Gamma(x)_{b} \Gamma S$.

(2) \Rightarrow (3) Implication holds as every quasi-ideal is a bi-ideal.

(3) \Rightarrow (1) Let $x \in S$. Therefore by assumption, $(x)_{l} \cap (x)_{\sigma} \subseteq (x)_{l} \Gamma(x)_{\sigma} \Gamma S$. Now

 $(x)_{l}\Gamma(x)_{q}\Gamma S = (N_{0}x + (S\Gamma x))\Gamma((N_{0}x + (S\Gamma x) \cap (x\Gamma S))\Gamma S) \subseteq (S\Gamma x)\Gamma(x\Gamma S)$. Hence

 $x \in (x)_{\sigma} \subseteq S\Gamma x\Gamma x\Gamma S$. Therefore S is intra-regular.

(1) \Rightarrow (4) Assume that *S* is an intra-regular Γ -semiring. Let $a \in (x)_r \cap (x)_b$.

Therefore $a \in S\Gamma a\Gamma a\Gamma S \subseteq S\Gamma(x)_b \Gamma(x)_r$ and $a \in S\Gamma a\Gamma a\Gamma S \subseteq S\Gamma(x)_b \Gamma(x)_r \Gamma S \subseteq S\Gamma(x)_b \Gamma(x)_r$. Hence $(x)_r \cap (x)_b \subseteq S\Gamma(x)_b \Gamma(x)_r$. (4) \Rightarrow (5) Implication holds as every quasi-ideal is a bi-ideal.

(5)
$$\Rightarrow$$
(1) Let $x \in S$. Therefore by
assumption, $(x)_r \cap (x)_q \subseteq S\Gamma(x)_q\Gamma(x)_r$. Now
 $S\Gamma(x)_q\Gamma(x)_r - (S\Gamma(N_0x + (S\Gamma x)))\Gamma(N_0x + (S\Gamma x)))\Gamma(N_0x + (S\Gamma x)) \subseteq (S\Gamma x)\Gamma(x\Gamma S)$

Hence $x \in (x)_r \cap (x)_q \subseteq S\Gamma x \Gamma x \Gamma S$. Therefore S is intra-regular.

Theorem 4.6 :- In **5** following statements are equivalent.

(1) \mathbf{S} is intra-regular.

(2)
$$(x)_i \cap (x)_b \cap (x)_r \subseteq (x)_i \Gamma(x)_b \Gamma(x)_r$$

(3) $(x) \cap (x)_b \cap (x)_r \subseteq (x) \Gamma(x)_b \Gamma(x)_r$
(4) $(x)_i \cap (x)_q \cap (x)_r \subseteq (x)_i \Gamma(x)_q \Gamma(x)_r$
(5) $(x) \cap (x)_q \cap (x)_r \subseteq (x) \Gamma(x)_q \Gamma(x)_r$
Proof :- (1) \Rightarrow (2) Let $a \in (x)_i \cap (x)_b \cap (x)_r$.
Therefore

 $a \in S\Gamma a\Gamma a\Gamma S \subseteq (S\Gamma a\Gamma S)\Gamma(a\Gamma S\Gamma a)\Gamma(a\Gamma S) \subseteq (S\Gamma(x)_i\Gamma S)\Gamma((x)_b\Gamma S\Gamma(x)_b)\Gamma((x)_r\Gamma S) \subseteq (x)_i\Gamma(x)_b\Gamma(x)_r$ (x)_i $\Gamma(x)_b\Gamma(x)_r$. Hence $(x)_i \cap (x)_b \cap (x)_r \subseteq (x)_i\Gamma(x)_b\Gamma(x)_r$.

 $(2) \Rightarrow (3) \text{ and } (4) \Rightarrow (5)$

As every ideal is an interior ideal, implications follow.

(2)
$$\Rightarrow$$
 (4) and (3) \Rightarrow (5)

As every quasi-ideal is a bi-ideal, implications follow.

(5)
$$\Rightarrow$$
 (1) Let $x \in S$. Therefore by assumption,
 $(x) \cap (x)_q \cap (x)_r \subseteq (x)\Gamma(x)_q \Gamma(x)_r$. Now
 $(x)\Gamma(x)_q \Gamma(x)_r = (N_0x + S\Gamma x + x\Gamma S + S\Gamma x\Gamma S)\Gamma(N_0x + (S\Gamma x) \cap (x\Gamma S))\Gamma(N_0x + x\Gamma S) \subseteq (S\Gamma x)\Gamma(x\Gamma S)$. Hence $x \in S\Gamma x\Gamma x\Gamma S$. Therefore S is intra-regular.
Theorem 4.7:- In S following statements are equivalent.
(1) S is intra-regular.
(2) $(x)_t \cap (x)_x \cap (x)_t \subseteq (x)_t \Gamma(x)_x \Gamma(x)_t$

(3) $(x) \cap (x)_b \cap (x)_l \subseteq (x)_l \Gamma(x)_b \Gamma(x)$ (4) $(x)_l \cap (x)_q \cap (x)_l \subseteq (x)_l \Gamma(x)_q \Gamma(x)_l$ (5) $(x) \cap (x)_q \cap (x)_r \subseteq (x)_l \Gamma(x)_q \Gamma(x)$ Proof :- (1) \Rightarrow (2) Let $a \in (x)_i \cap (x)_b \cap (x)_i$.

Therefore

$a \in S\Gamma a\Gamma a\Gamma S \subseteq (S\Gamma S\Gamma a)\Gamma a\Gamma (S\Gamma a\Gamma S) \subseteq (S\Gamma S\Gamma (x)_i)\Gamma (x)_b \Gamma (S\Gamma (x)_i \Gamma S) \subseteq (x)_i \Gamma (x)_b \Gamma (x)_i$

Hence $(x)_i \cap (x)_b \cap (x)_l \subseteq (x)_l \Gamma(x)_b \Gamma(x)_i$

 $(2) \Rightarrow (3) \text{ and } (4) \Rightarrow (5)$

As every ideal is an interior ideal, implications follow.

 $(2) \Rightarrow (4) \text{ and } (3) \Rightarrow (5)$

As every quasi-ideal is a bi-ideal, implications follow.

(5) \Rightarrow (1) Let $x \in S$. Therefore by assumption, (x) $\cap (x)_q \cap (x)_l \subseteq (x)_l \Gamma(x)_q \Gamma(x)$. Now (x)_l $\Gamma(x)_q \Gamma(x) = (N_0 x + S \Gamma x) \Gamma(N_0 x + (S \Gamma x) \cap (x \Gamma S)) \Gamma(N_0 x + S \Gamma x + x \Gamma S + S \Gamma x \Gamma S) \subseteq (S \Gamma x) \Gamma(x \Gamma S)$ Hence $x \in S \Gamma x \Gamma x \Gamma S$. Therefore S is intra-regular.

REFERENCES

- 1. Dutta T.K. and Sardar S.K., Semi-prime ideals and irreducible ideals of Γ -semiring . Novi Sad Jour. Math.. 30(1), (2000),97-108.
- Jagatap R.D. and Pawar, Y.S., Completely Prime and Completely Semiprime ideals in Γ-Semirings; Bulletin of Kerala Math. Asso. Vol.5, No.2, (2009), 55–61.
- Jagatap R.D. and Pawar,Y.S., Quasi-ideals and Minimal Quasiideals in Γ-Semirings; Novi. SAD. Jour. of Mathematics, 39 (2) (2009), 79-87.
- Jagatap R.D. and Pawar, Y.S., Quasi-ideals in Regular Γ-Semirings; Bull. of Kerala Math. Asso. 6 (2) (2010), 51-61.
- Jagatap R.D. and Pawar,Y.S., Regular, Intra-regular and Duo Γ-Semirings; Communicated to Thai Journal of Mathematics.
- Kehayopulu N. and Tsingelis M., On Intra-Regular Ordered Semigroups, Semigroup Forum, 57 (1998), 138-141.
- Lajos S., A Note On Intra-Regular Semigroups, Proc. of Japan Acad. 37 (1963), 626-627.
- 8. Lee D. M. and Lee S. K., On Intra-Regular Ordered Semigroups, Kangweon-Kyungki Math. Jour. 14 (1) (2006), 95-100.
- Lekkoksung S. and Lekkoksung N., On Intra-Regular Ordered Ternary Semigroups, Int. Jour. of Math. Analysis. 6 (2) (2012), 69-73
- 10. Rao M. M. K., F-semirings, Southeast Asian Bull. of Math., 19, (1995), 49-54.
- 11. Shabir M., Ali A. and Batool S., A Note on Quasi-ideals in Semirings, Southeast Asian Bull. of Math., 27, (2004) 923-928.