WEYL GROUP OF SPECIAL LINEAR ALGEBRA

Subhash M Gaded,
Assistant Professor,
R. K. Talreja College of Arts, Science \& Commerce,
Ulhasnagar-03, Dist. Thane, Maharashtra, Email: gadedsubhash@gmail.com

Abstract

In this paper we discuss about the Root space decomposition of Special Linear Algebra. We show that the Weyl group of Special Linear Algebra sl(n, F) is the permutation group on n symbols. The weyl group of A_{3} is calculated.

Keywords:Special linear algebra, Root space decomposition, Weyl group.
Subject Classifications: 17B22.

I. INTRODUCTION

Definition (Lie algebra). A Lie algebra is a vector space L over a field F, with an operation
[,]: $L \times L \rightarrow L$, denoted $(x, y) \mapsto[x, y]$,(called the bracket or commutator of x and y), satisfying the following properties :
(L1) The bracket operation is bilinear.
(L2) $[x, x]=0$, for all $x \in L$.
(L3) $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0$, for all $x, y, z \in L$.
(L3) is called the Jacobi identity.
$0=[x+y, x+y]=[x, x]+[x, y]+[y, x]+[y, y]=[x, y]+[y$, $x]$
Hence, condition (L1) and (L2) implies
(L2') $[x, y]=-[y, x]$ (anticommutativity), for all $x, y \in L$.
If char $F \neq 2$, then putting $x=y$ in (L2'), shows that (L2') implies (L2).

Lie Subalgebra: A subspace K of a Lie algebra L is called a subalgebra if $[x, y] \in K$, whenever $x, y \in K$.
Unless specifically stated, we shall be concerned with Lie algebras L whose underlying vector space is finite dimensional.
Some Examples:
(1) Any vector space V, with $[x, y]=0$, for all $x, y \in V$ is a Lie algebra called Abelian Lie algebra. In particular, the field F may be regarded as a 1dimensional abelian Lie algebra.
(2) Let V be a finite dimensional vector space over F with $\operatorname{dim}(V)=n$. Let End V be the set of all linear transformations from $V \rightarrow V$. This is again a vector space over F of dimension n^{2}.
Define an operation on End V, by $[x, y]=x y-y x$.
With this operation End V becomes a lie algebra over
$F .\left[x_{1}+x_{2}, y\right]=\left(x_{1}+x_{2}\right) y-y\left(x_{1}+x_{2}\right)$
$=x_{1} y+x_{2} y-y x_{1}-y x_{2}$
$=\left(x_{1} y-y x_{1}\right)+\left(x_{2} y-y x_{2}\right)$
$=\left[x_{1}, y\right]+\left[x_{2}, y\right]$ for all $x_{1}, x_{2}, y \in$ End V.
Similarly, $\left[x, y_{1}+y_{2}\right]=\left[x, y_{1}\right]+\left[x, y_{2}\right]$, for all $x, y_{1}, y_{2} \in$ End V.
(L2) $[x, x]=x x-x x=0$, for all $x \in$ End V.
(L3) $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]$
$=[x,(y z-z y)]+[y,(z x-x z)]+[z,(x y-y x)]$
$=(x(y z-z y)-(y z-z y) x)+(y(z x-x z)-(z x-x z) y)+(z(x y-$
$y x)-(x y-y x) z)$
$=x y z-x z y-y z x+z y x+y z x-y x z-z x y+x z y+z x y-z y x$
$-x y z+y x z$
$=0$:
End V (also written $g l(V)$) is called General linear algebra.
Any subalgebra of a Lie algebra $g l(V)$ is called a linear Lie
algebra. $g l(V)$ can be identified with the set of all $n \times n$
matrices over F, denoted $g l(n, F)$, with the Lie bracket
defined by
$[x, y]=x y-y x$
wherexy is the usual product of the matrices x and y. As a
vector space, $g l(n, F)$ has a basis consisting of the matrix
units $e_{i l}$ for $1 \leq i, j \leq \mathrm{n}$. Here, $\theta_{i j}$ is the $n \times n$ matrix which
has 1 in the $i-j$ position and 0 elsewhere.
$\mathrm{As}_{\theta_{i j} \boldsymbol{\theta}_{h i}}=\delta_{j h} \theta_{i l}$
It follows that:
$\left[\theta_{i j}, \theta_{h i]}=\delta_{i n} e_{i l}-\delta_{i i} \theta_{h i j}\right.$.
where $\bar{\sigma}$ is the kronecker delta, defined by,
$\delta_{i j}=1$, if $i=j$ and
$\delta_{i j}=0$, if $i \neq j$.

Classical Lie algebras $\boldsymbol{A n}$

(2) An: Let $\operatorname{dim} V=n+1$. Denote the set of all endomorphism's of V having trace zero, by $s l(V)$ or $s l(n+1, F)$. (Trace of a square matrix is the sum of its diagonal entries). Since $\operatorname{Tr}(x y)=\operatorname{Tr}(y x)$ and $\operatorname{Tr}(x$ $+y)=\operatorname{Tr}(x)+\operatorname{Tr}(y), s l(V)$ is a subalgebra of $g l(V)$, called the Special Linear algebra. $s l(V)$ is a proper subalgebra of $g l(V) . s l(V)$ has a basis consisting of the $\epsilon_{i j}$ for $i \neq j$ together with $a_{\mathrm{it}}-a_{i+1, i+1}$ for 1 $\leq i \leq n$.

Adjoint representation:

Themap
$a d: \mathrm{L} \rightarrow$ DerLsendingxtoadxiscalledadjointrepres entationofL.

Derivation:AderivationofVisalinear $\operatorname{map} D$:
$\mathrm{V} \times \mathrm{V} \rightarrow \mathrm{V}$ such that $D(a b)=a D(b)$
$+D(a) b$,forall $a, b \in V$. Let Der Vbe the set of
derivations of V. This set isclosedunder addition and scalar multiplication and
containsthezero map. Hence, Der V is a vector subspace of $g l(V)$.
Ideals:A subspace I of a Lie algebra L iscalled an ideal of L if $[x, y] \in I$,for all $x \in L, y \in I$.
Derived series: A derived series of a LieAlgebra L is a sequence of ideals of L defined by $L^{(0)}=L, L^{(1)}=[L, L], L^{(2)}=$ $\left[L^{(1)}, L^{(1)}\right], \cdots, L^{(\mathrm{i})}=\left[\mathrm{L}^{(\mathrm{i}-1)}, \mathrm{L}^{(\mathrm{i}-1)}\right]$.
Solvable: A Lie Algebra L is called Solvableif $L^{(n)}=0$ for some n.
Radical: Let L be an arbitrary Lie algebraand let S be a maximal solvable ideal.If I is any otherSolvable ideal of L , then $S+I=S$. By maximality of S, we get $S+I=S$, or $I \subset S$. This proves the existence of a unique maximal solvableideal, called the radical of L and denoted $\operatorname{Rad} \mathrm{L}$.
Semisimple: A Lie algebra L is called semisimpleif Rad $L=0$.
RootSystem:AsubsetФofaEuclideanspace Eiscal ledarootsysteminEifitsatisfiesthefollowingaxims
(R1)Фisfinite,spansE, anddoesnotcontain0.
(R2)If $\alpha \in \Phi$,theonlymultiplesof α in Φ are $\pm \alpha$.
(R3) If $\alpha \in \Phi$, the reflection σ_{a} permutes the elementsof Φ.
(R4) If $\alpha, \beta \in \Phi$, then $<\beta, \alpha>\in Z$.
Rank. The dimension of E is called therankof the root system Φ.
ThebaseforaRootsystemandWeylgroup:
Base: A subset Δ of $\Phi \subseteq \mathrm{V}$ is called abaseif,
(B1) Δ is a basis ofV,
(B2) Each root β in Φ can be writtenas,

$$
\begin{aligned}
& \beta \\
& = \\
& \Sigma_{a \in S} \kappa_{a} \alpha
\end{aligned}
$$

Wherethecoefficients k_{α} areeitherallnonnegativeint egersorallnon-
positiveintegers.Therootsin Δ arecalledsimple
roots.

The Weyl group of a root system:

For each root $\alpha \in \Phi$ the reflection $\sigma_{\alpha c}$ is an invertible lineartransformation on E. The subgroup of $G L(E)$ of invertiblelinear transformations of E generated by the reflections $\sigma_{\alpha}(\alpha \in \Phi)$ is known as the Weyl group of Φ, denoted by W.
Lemma: The Weyl group W associated to Φ finite.
Theorem: Every root system Φ has abase.
Weyl chamber: The Weyl chambers aredefined to be the components of the complement in E ofthe union of all hyperplanes perpendicular to the roots.Each regular $\gamma \in E$, therefore belongs to precisely one(connected component)weyl chamber of $E \backslash \bigcup_{\alpha} P_{\alpha}$, denoted $(\gamma(\gamma)$. The elements of weyl group W are orthogonal andpermute the roots. Therefore, the weyl group W permutesthe Weyl chambers.

Root space decomposition

Asubalgebra is called toral if it consists of semisimple elements.Any toralsubalgebrais abelian by the following reasoning. Let T be toral, $x \in T$, so $a d x$ is semisimple and so over an algebraicallyclosed F it is diagonalizable. So if $a d x$ has only 0 eigenvalues,then ad $x=0$. Suppose it has an eigenvalue $a \neq 0$, i.e. there is a $y \in T$, such that $[x, y]=a y$. Since y isalso semisimple, so is ad y and it has linearly independenteigenvectors $\gamma_{1}=y, \cdots, y_{n}($ since $\operatorname{ad}(y)(y)=0)$ of eigenvalues $0, b_{2},{ }^{\prime 2}, b_{n}$, we can write x in this basis as $x=$ $a_{1} y_{1}+\cdots+a_{n} y_{n}$. Then $-a_{y}=a d y(x)=0 . y+b_{:} a_{2} y_{2}+\cdots$, i.e. y is a linear combination of the other eigenvectors, which is impossible. So $a=0$ and $a d x=0$ for all $x \in T$,i.e. $[x, y]=0$ for all $x, y \in T$.
Let H be a maximal toralsubalgebra of L, i.e. not includedin any other. For any $h_{1}, h_{2} \in H$, we have $a d h_{1} \triangleright a d h_{2}(x)=\left[h_{1}\right.$, $\left.\left[h_{2}, x\right]\right]=-\left[h_{2},\left[x, h_{I}\right]\right]-\left[x,\left[h_{1}, h_{2}\right]\right]=\left[h_{2},\left[h_{1}, x\right]\right]=$ ad $h_{2} \times a d$ $h_{l}(\mathrm{x})$ by the Jacobi identity, so $a d L$ Hconsists of commuting semisimple endomorphism's and by astandard theorem in linear algebra these are simultaneouslydiagonalizable. So we can find Eigen spaces $L a=\{x \in \mathrm{~L} \mid[h, x]=a(h) x$ for all $h \in$ $H\}$ for $a \subset H *$, such that theyform a basis of L, i.e. we can write theRoot space decomposition
(or Cartan decomposition)
$L=\complement_{L}(H) \oplus \coprod_{\alpha \equiv \Phi} L_{\text {■ }}$
Theorem: Let H be a maximal toralsubalgebra of L.
Then $H=C_{L}(H)$.
Root Space Decomposition of $\boldsymbol{s l}(\boldsymbol{n}+\mathbf{1}, \boldsymbol{F})$: Let H consist of the diagonal matrices in the algebra $s l(n+1, F)$ of all $(n+1) \times(n+1)$ matrices with trace zero.

$$
H=\left\{\left.\left(\begin{array}{cccc}
a_{1} & 0 & \cdots & 0 \\
0 & a_{2} & \cdots & 0 \\
\vdots & \vdots & n & \vdots \\
0 & 0 & \cdots & a_{n+1}
\end{array}\right) \right\rvert\, a_{1}+a_{2}+\cdots+a_{n+1}=0\right\}
$$

As a basis of H we take:

$$
\begin{aligned}
& h_{l}=\left(\begin{array}{ccccc}
1 & 0 & 0 & & 0 \\
0 & -1 & 0 & \cdots & 0 \\
0 & 0 & 0 & & 0 \\
\vdots & \vdots & \vdots & 0 & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right) \\
& h_{2}=\left(\begin{array}{ccccc}
0 & 0 & 0 & & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & -1 & & 0 \\
\vdots & \vdots & 1 & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right) \\
& h_{\mathrm{n}}=\left(\begin{array}{ccccc}
0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & 1 & 3 & \vdots \\
0 & 0 & \cdots & 1 & 0 \\
0 & 0 & \cdots & 0 & -1
\end{array}\right)
\end{aligned}
$$

Let $\epsilon_{i} \in H *$ denote the linear function which assigns to eachdiagonal matrix its $i^{\text {th }}$ (diagonal) entry,

$$
\begin{aligned}
& =e_{i}-\frac{\left.2\left(e_{i} \varepsilon_{i}\right)-\left(e_{i} \varepsilon_{i+1}\right)\right)}{\left.\epsilon_{i} \varepsilon_{i}\right)-\left(e_{i} \varepsilon_{i+1}\right)-\left(\varepsilon_{i+1} \varepsilon_{i}\right)-\left(e_{i+1} \varepsilon_{i+1}\right)}\left(e_{i}-e_{i+1}\right) \\
& =e_{1}-\frac{2(1-0)}{(1-0-0+1)}\left(e_{i}-e_{i+1}\right) \\
& =\theta_{i}-\left(\theta_{i}-\theta_{i+1}\right) \\
& =\epsilon_{i+1} \\
& \sigma_{\alpha_{i}}\left(\theta_{i+1}\right) \\
& =\sigma_{\varepsilon_{1}-e_{1+1}}\left(\varepsilon_{i+1}\right) \\
& \left.=\epsilon_{i+1}-\frac{2\left(e_{i+1} \varepsilon_{i}-\varepsilon_{i+1}\right)}{\left\langle\varepsilon_{i} \quad \varepsilon_{i+2}\right.} \varepsilon_{i} \varepsilon_{i+2}\right)\left(\epsilon_{i}-\theta_{i+1}\right) \\
& =e_{i+1} \\
& \frac{\left.2\left(\varepsilon_{i+1} \varepsilon_{i}\right)-\left(\epsilon_{i+1} \varepsilon_{i+1}\right)\right)}{\left(\varepsilon_{i} \varepsilon_{i}\right)-\left(\varepsilon_{i} \varepsilon_{i+1}\right)-\left(\varepsilon_{i+1} \varepsilon_{i}\right)-\left(\epsilon_{i+1} \varepsilon_{i+1}\right)}\left(\theta_{i}-\theta_{i-1}\right) \\
& =\epsilon_{i+1}-\frac{2(0-1)}{[1-0-0+1)}\left(e_{i}-e_{i+1}\right) \\
& =\epsilon_{i+1}+\left(\epsilon_{i}-\epsilon_{i+1}\right) \\
& =\mathrm{E} \\
& \text { For } j \neq i, i+1 \\
& \sigma_{\approx_{i}}\left(a_{j}\right) \\
& =\sigma_{\varepsilon_{i}-\varepsilon_{i-1}}\left(\theta_{j}\right) \\
& =e_{i}-\frac{2\left(\varepsilon_{j} \varepsilon_{i}-\varepsilon_{i+1}\right)}{\left(\varepsilon_{i}-\varepsilon_{i+1} \varepsilon_{i}-\varepsilon_{i+1}\right)}\left(\varepsilon_{i}-\epsilon_{i+1}\right) \\
& =e_{j} \frac{\left.2\left(e_{j+} z_{2}\right)-\left(e_{j+} \varepsilon_{i+1}\right)\right)}{\left(\varepsilon_{i} \varepsilon_{j}\right)-\left(e_{i} \varepsilon_{i+1}\right)-\left(\varepsilon_{i+1} \varepsilon_{i}\right)-\left(e_{i+1} \varepsilon_{i+1}\right)}\left(e_{i}-e_{i+1}\right) \\
& =e_{1}-\frac{2(0-0)}{(1-0-0+1)}\left(e_{1} \quad e_{1+1}\right) \\
& =e_{i} \\
& \text { Therefore, } \sigma_{c i} \text { maps } \\
& \theta_{i} H \theta_{i+1} \\
& \theta_{i+1} \mapsto \epsilon_{i} \\
& \epsilon_{j} \mapsto \theta_{j} \text { for } j \neq i, \quad i+1 .
\end{aligned}
$$

Thus, $\sigma_{x_{l}}$ generate all possible permutations of the $n+$ 1 coordinates. We thus see that the weyl group of $s l(n+1, F)$ is the permutation group S_{n+1} on $n+1$ symbols.

Weyl group of A_{3}

Therootsystemofs $l(n+$
$1, F)$ consistsofvectorsoftheform $\approx_{k l l}=\quad \Xi_{k k^{-}} \quad \Xi_{l l}$. To simplify calculations, identify eache $e_{h z z}$ with unit vector $\boldsymbol{\varepsilon}_{k}$. Wenowhavethe set of roots $\left\{\boldsymbol{\varepsilon}_{i}-\varepsilon_{i} \mid i \neq j\right\}$.The simple rootsare $\alpha_{\mathrm{i}}=c_{\mathrm{i}} \quad c_{\mathrm{i}+1}$.

Then for $A 3$ we have theroot system,

$$
\begin{aligned}
& \Phi=\left\{ \pm \alpha_{1}= \pm(1,-1,0,0), \pm \alpha_{2}= \pm(0,1,-1,0)\right. \\
& \pm \alpha_{3}= \pm(0,0,1,-1) \\
& \pm \alpha_{4}= \pm(1,0,-1,0), \pm \alpha_{5}= \pm(1,0,0 \\
& \left.-1), \pm \alpha_{6}= \pm(0,1,0,-1)\right\}
\end{aligned}
$$

The baseis
$\Delta=\left\{\alpha_{1}=(1,-1,0,0), \alpha_{2}=(0,1,-1,0), \alpha_{3}\right.$
$=0,1,-1)\}$.
To find the element of the Weyl group generated by $\alpha_{1}=(1,-1,0,0)$ we calculate $\sigma_{\alpha_{1}}$ for each of the roots in Φ.
$\sigma_{\alpha_{1}}\left(\alpha_{1}\right)=-\alpha_{1} \sigma_{\alpha_{1}}\left(-\alpha_{1}\right)$
$=\alpha_{1} \cdot \sigma_{\alpha_{1}}\left(\alpha_{2}\right)=\sigma_{\alpha_{1}}((0,1,-1,0))=(0,1,1)-$

$=(0,1,-1,0)+(1,-1,0,0)$

$$
\begin{aligned}
& =(1,0,-1,0) \\
& =\alpha_{4}
\end{aligned}
$$

Similar calculationsshow:

$$
\begin{array}{lrr}
\sigma \alpha 1(-\alpha, 2)=-\alpha 4 & \sigma \alpha 1(\pm \alpha 3)= \pm \alpha 3 & \sigma \alpha 1(\pm \alpha 4)= \pm \alpha 2 \\
\sigma \alpha 1(\pm \alpha 5)= \pm \alpha 6 & & \sigma \alpha 1(\pm \alpha 6)= \pm \alpha 5
\end{array}
$$

ThisgivesoneelementoftheWeylgroup,namelythe permutation
$\left\{\mathbf{\pm} \alpha_{1} \rightleftharpoons \mp a_{1}, \pm \alpha_{2} \rightleftharpoons \pm \alpha_{4}, \pm \alpha_{3} \rightleftharpoons \pm \square_{3}, \pm \square_{4} \rightleftharpoons \pm \square_{2}\right.$,
$\left.\pm \square_{5} \rightleftharpoons \pm \square_{6}, \pm \square_{6} \rightleftharpoons \pm \square_{5}\right\}$.
Table below shows the permutations with respect toallsimpleroots. Weyl group of $A 3$:

Reflection	$\pm \alpha_{1}$	$\pm \alpha_{2}$	$\pm \alpha_{3}$	$\pm \alpha_{4}$	$\pm \alpha_{5}$	$\pm \alpha_{6}$
$\sigma_{\alpha_{1}}$	$\mp \alpha_{1}$	$\pm \alpha_{4}$	$\pm \alpha_{3}$	$\pm \alpha_{2}$	$\pm \alpha_{6}$	$\pm \alpha_{5}$
$\sigma_{\alpha_{2}}$	$\pm \alpha_{4}$	$\mp \alpha_{2}$	$\pm \alpha_{6}$	$\pm \alpha_{1}$	$\pm \alpha_{5}$	$\pm \alpha_{3}$
$\sigma_{\alpha_{3}}$	$\pm \alpha_{1}$	$\pm \alpha_{6}$	$\bar{\mp} \alpha_{3}$	$\pm \alpha_{5}$	$\pm \alpha_{4}$	$\pm \alpha_{2}$

REFERENCES

1. B. C. Hall, Lie Groups, Lie Algebras and Representations, An Elementary Introduction, Springer 2003.
2. H. Samelson, Notes on Lie Algebras, Stanford, 1989.
3. J. E. Humphreys, Introduction to Lie algebra and Representation Theory, Springer Verlag, New York, 1972.
4. J.S.Milne, Lie algebras, Algebraic groups and Lie groups, version 2, 2013
5. K. Erdmann and M. J. Wildon, Introduction to Lie algebras, Springer Verlag, London 2006.
6. William Fulton, Joe Harris, Representation theory, A first course, Springer 1991.
