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Abstract- In this paper we discuss about the Root space decomposition of Special Linear Algebra. We show that the Weyl group of Special 
Linear Algebra sl(n, F) is the permutation group on n symbols. The weyl group of A3 is calculated. 
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I. INTRODUCTION 
 

   Definition (Lie algebra). A Lie algebra is a vector space L 
over a field F, with an operation 
 [,]: L L L, denoted (x, y)  [x, y],(called the bracket or 
commutator of x and y), satisfying the following properties : 
(L1) The bracket operation is bilinear. 
(L2) [x, x] = 0, for all x L. 
(L3) [x, [y, z]] + [y, [z, x]] + [z,[x, y]] = 0, for all x, y, z  L. 
 

(L3) is called the Jacobi identity. 
0 = [x + y, x + y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, 
x] 
Hence, condition (L1) and (L2) implies 
(L2�) [x, y] = -[y, x] (anticommutativity), for all x, y  L. 
If char F  2, then putting x = y in (L2�), shows that (L2�) 
implies (L2). 
 

  Lie Subalgebra: A subspace K of a Lie algebra L is called a 
subalgebra if [x, y]  K, whenever x, y  K. 
Unless specifically stated, we shall be concerned with Lie 
algebras L whose underlying vector space is finite 
dimensional. 
Some Examples: 
(1) Any vector space V, with [x, y] = 0, for all x, y  V is 

a Lie algebra called Abelian Lie algebra. In 
particular, the field F may be regarded as a 1-
dimensional abelian Lie algebra. 

(2)        Let V be a finite dimensional vector space over F 
with dim(V) = n. Let End V be the set of all linear 
transformations from V  V. This is again a vector space 
over F of dimension n2. 
Define an operation on End V, by [x, y] = xy - yx. 
With this operation End V becomes a lie algebra over  
F.[x1 + x2, y] = (x1 + x2)y y(x1 + x2) 
= x1y + x2y  yx1  yx2 

= (x1y  yx1) + (x2y  yx2) 
= [x1, y] + [x2, y] for all x1, x2, y  End V. 
Similarly, [x, y1+y2] = [x, y1] + [x, y2], for all x, y1, y2 End V. 
(L2) [x, x] = xx - xx = 0, for all x  End V. 
(L3)[x, [y, z]] + [y, [z, x]] + [z, [x, y]] 
= [x, (yz  zy)] + [y, (zx  xz)] + [z, (xy  yx)] 

 

= (x(yz  zy)  (yz  zy)x) + (y(zx  xz)  (zx  xz)y) + (z(xy  
yx)  (xy  yx)z) 
= xyz  xzy  yzx + zyx + yzx  yxz  zxy + xzy + zxy  zyx 

 xyz + yxz 
= 0: 
End V (also written gl(V)) is called General linear algebra. 
Any subalgebra of a Lie algebra gl(V) is called a linear Lie 
algebra. gl(V) can be identified with the set of all n  n 
matrices over F, denoted gl(n, F), with the Lie bracket 
defined by  
[x, y] = xy - yx 
   wherexy is the usual product of the matrices x and y. As a 
vector space, gl(n, F) has a basis consisting of the matrix 
units  for 1 i, j  n. Here,  is the n  n matrix which 
has 1 in thei - j position and 0 elsewhere. 
As  
It follows that: 

. 
where  is the kronecker delta, defined by, 

 = 1, if i = j and 
 = 0, if i  j. 

 
Classical Lie algebras An 

(2) An: Let dim V = n + 1. Denote the set of all 
endomorphism�s of V having trace zero, by sl(V) or 
sl(n + 1, F). (Trace of a square matrix is the sum of 
its diagonal entries). Since Tr(xy) = Tr(yx) and Tr(x 
+ y) = Tr(x) + Tr(y), sl(V) is a subalgebra of gl(V), 
called the Special Linear algebra.sl(V) is a proper 
subalgebra of gl(V). sl(V) has a basis consisting of 
the  for i  j together with  for 1 

i n.   

Adjoint representation: 
Themap 
ad:L→DerLsendingxtoadxiscalledadjointrepres 

entationofL. 

   Derivation:AderivationofVisalinear mapD: 
V × V → V such that D(ab) = aD(b) 
+D(a)b,foralla,b∈V. Let Der Vbe the set of  
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derivations of V. This set isclosedunder 
addition and scalar multiplication and  
 

containsthezero map. Hence, Der V is a vector 
subspace of gl(V). 
Ideals:A subspace I of a Lie algebra L iscalled an ideal of L 
if [x, y] I,for all x L, y I. 
Derived series: A derived series of a LieAlgebra L is a 
sequence of ideals of L defined by L(0) = L,L(1)= [L, L], L(2)= 
[L(1), L(1)],  ,L(i)= [L(i-1), L(i-1)]. 
Solvable: A Lie Algebra L is called Solvableif L(n) = 0 for 
some n. 
Radical: Let L be an arbitrary Lie algebraand let S be a 
maximal solvable ideal.If I is any otherSolvable ideal of L, 
then S+ I = S. By maximality of S, we get S + I = S, or I S. 
This proves the existence of a unique maximal solvableideal, 
called the radical of L and denoted Rad L. 
Semisimple: A Lie algebra L is called semisimpleif Rad 
 L = 0. 
RootSystem:AsubsetÖofaEuclideanspaceEiscal
ledarootsysteminEifitsatisfiesthefollowingaxioms: 

(R1)Öisfinite,spansE,anddoesnotcontain0. 

(R2)Ifá∈Ö,theonlymultiplesofáinÖare±á. 

(R3)  If á ∈Ö, the reflection permutes the elementsofÖ. 

(R4) If á, â ∈Ö, then   <â,á >∈Z. 

Rank. The dimension of E is called therankof 
the root systemÖ. 
  ThebaseforaRootsystemandWeylgroup: 
Base: A subset ∆ of Ö ⊆V is called abaseif, 
(B1)  ∆ is a basis ofV, 

(B2)  Each root â in Ö can be writtenas, 

â

=

 
    
Wherethecoefficientskáareeitherallnonnegativeint
egersorallnon-
positiveintegers.Therootsin∆arecalledsimple 
roots. 

  The Weyl group of a root system: 
For each root  the reflection  is an invertible 
lineartransformation on E. The subgroup of GL(E) of 
invertiblelinear transformations of E generated by the 
reflections  ( ) is known as the Weyl group of , 
denoted by W. 
Lemma:  The Weyl group W associated to finite. 
Theorem: Every root system Ö has abase. 
Weyl chamber: The Weyl chambers aredefined to be the 
components of the complement in E ofthe union of all 
hyperplanes perpendicular to the roots.Each regular E, 
therefore belongs to precisely one(connected 
component)weyl chamber of E\ , denoted ( ). The 
elements of weyl group W are orthogonal andpermute the 
roots. Therefore, the weyl group W permutesthe Weyl 
chambers. 

 
 

Root space decomposition 
 

  Asubalgebra is called toral if it consists of semisimple 
elements.Any toralsubalgebrais abelian by the following 
reasoning. Let T be toral,x T, so adx is semisimple and so 
over an algebraicallyclosed F it is diagonalizable. So if ad x 
has only 0 eigenvalues,then ad x = 0. Suppose it has an 
eigenvalue a 0, i.e. there is a y T, such that [x, y] = ay. 
Since y isalso semisimple, so is ad y and it has linearly 
independenteigenvectors  = y, , (since ad(y)(y) = 0) of 
eigenvalues0, , , , we can write x in this basis as x = 

 +  + . Then  = ady(x) = 0.y + + , 
i.e. y is a linear combination of the other eigenvectors,which 
is impossible. So a = 0 and ad x = 0 for all x T,i.e. [x, y] = 0 
for all x, y T. 
Let H be a maximal toralsubalgebra of L, i.e. not includedin 
any other. For any H, we have adh1 ad h2(x)= [h1, 
[h2, x]] = -[h2, [x, h1]] - [x, [h1, h2]] = [h2, [h1, x]] = ad h2 ad 
h1(x) by the Jacobi identity, so adL Hconsists of commuting 
semisimple endomorphism�s and by astandard theorem in 

linear algebra these are simultaneouslydiagonalizable . So we 
can find Eigen spaces L  = {x  L | [h,x] = (h)x for all h  
H} for  H , such that theyform a basis of L, i.e. we can 
write theRoot space decomposition 
 (or Cartan decomposition) 
L = (H)  
 
Theorem: Let H be a maximal toralsubalgebra ofL.  
Then H = CL(H). 
 

  Root Space Decomposition of sl(n + 1, F): Let H consist 
of the diagonal matrices in the algebra sl(n + 1, F) of all 
 (n + 1)  (n+ 1) matrices with trace zero. 

H={ |  +  +  + = 0} 

 

As a basis of H we take: 

h1 =  

 

 

h2 =  

 

 

 

=  

 

  Let i H denote the linear function which assigns to 
eachdiagonal matrix its ith (diagonal) entry, 
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i.e. if h = H 

i(h) = [h, ] = h h =  
 = (h  = ( ) (h)  

 [h, ] = ( ) (h) , for all h H. 
 

   Thus, we see that  is a joint eigenvector for the mapsad 
(h) with h H and with eigenvalue H . Thisshows 
that H is a maximal commutative subalgebra of sl(n + 1, F). 
Any x sl(n + 1, F) can be written as the sumof some element 
h' H and the matrices  with i j.Vanishing of [h, x], for all 
h H then immediately impliesthat all the coefficients of the 

have to vanish. On theother hand, for any element h H the 
map ad (h) :sl(n + 1, F) sl(n + 1, F) is diagonalizable, so H 
is a MaximalToralsubalgebra of sl(n + 1, F). 
The linear functions of the form  = {  : i j} are the 
roots of sl(n + 1, F) relative to H.Each of the root 
spaces = {x sl(n + 1, F) |[h, x] 

)(h)x}is one dimensional and spanned by . 
The Root Space Decomposition (or Cartan decomposition)of 
sl(n + 1, F) is given by, 
sl(n + 1, F) = H (F F ) 
   

Cartan matrix of sl(n + 1, F):    

   The base for sl(n + 1, F) is given by {  = }. 
Thismeans that for any two consecutive simple roots we 
have ,  = ,  = 1, ,  = 2, and 

,  = 0 otherwise. This gives the following Cartan 
matrix oftype An 

. 

 
 

  Thus the Cartan matrix ofsl(n + 1, F) has each entry onthe 
main diagonal equal to 2, in the two diagonals aboveand 
below the main diagonal all entries equal -1, while allother 
entries are zero. 
 
Weyl group of An 
 

  The Weyl group is generated by reflections in the hyper 
planesorthogonal to the roots and thus consist only of 
orthogonaltransformations. Consider the orthonormal basisof 
the root space such that the coordinates of any root 
areintegers between -2 and 2. The simple roots of are 
givenby i = { : 1 i  n}Consider the 
reflection : 

( )  

= ( ) 

=  � ( ) 

= � ( ) 

=  � ( ) 

=  � ( )  
=  

 ( )  

= ( ) 

=  �  ( ) 

= � 

( ) 

=  � ( ) 

=  ( )  
=  

For j i, i + 1 
 ( )  

= ( ) 

=  �  ( ) 

= � ( ) 

=  � ( ) 

=  

Therefore, maps 

 
 

forj  i,  i+1. 

Thus, generate all possible permutations of the n + 

1coordinates. We thus see that the weyl group of sl(n  1,F) 
is the permutation group on n + 1 symbols. 

Weyl group ofA3 

  Therootsystemofsl(n  
1,F)consistsofvectorsoftheform = - . To 
simplify calculations, identify each with unit 
vector .Wenowhavethe set of roots{ | i j}.The 
simple rootsare . 

Then for A3 we have theroot s y s t e m , 

Ö = {±á1=±(1, -1, 0, 0), ±á2= ±(0, 1, -1, 0), 
±á3=±(0, 0, 1,-1), 
±á4= ± (1, 0, -1, 0), ±á5= ±(1, 0, 0,  
-1), ±á6=±(0,1, 0,-1)}. 

The baseis 

∆ = {á1= (1, -1, 0, 0), á2= (0, 1, -1, 0), á3 

= 0,1,-1)}. 

    To find the element of the Weyl group 
generated by á1=(1, -1, 0, 0) we calculate 
óá1

for each of the roots inÖ. 
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óá1
(á1)=-á1óá1

(-á1) 

=á1.óá1
(á2)=óá1

((0,1,−1,0))=(0,1,1)�

2 (1,−1,0,0) 

=(0,1,−1,0)+(1,−1,0,0) 
=(1,0,−1,0) 

=  

Similar calculationsshow: 

óá1(-á_2)=-á4 óá1(±á3)=±á3 óá1(±á4)=±á2 

óá1(±á5)=±á6 óá1(±á6)=±á5. 
ThisgivesoneelementoftheWeylgroup,namelythe
permutation 

{ 1 1, 2 4, 3 3, 4 2, 
5 6, 6 5}. 

Table below shows the permutations with 
respect toallsimpleroots. 

Weyl group ofA3: 

Reflection ±á1 ±á2 ±á3 ±á4 ±á5 ±á6 

óá1
 ∓á1 ±á4 ±á3 ±á2 ±á6 ±á5 

óá2
 ±á4 ∓á2 ±á6 ±á1 ±á5 ±á3 

óá3
 ±á1 ±á6 ∓á3 ±á5 ±á4 ±á2 
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