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Abstract- In this Paper, Modified differential transform method successfully applied for finding the approximate solution of the Time- 
Fractional Advection �Dispersion Equation. The fractional derivatives are considered in the Caputo sense. We discussed some numerical 
examples to demonstrate the efficiency and the accuracy of the proposed Method. 
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I. INTRODUCTION 
    Nowadays fractional differential equations (FDEs) or 
fractional Partial differential equations (FPDEs) have been 
used to Model a variety of problems in the field of 
mechanical engineering, physics, control theory, fluid  
mechanics, signal processing, viscoelasticity, 
electromagnetism,electrochemistry, 
thermal engineering, and many other physical processes 
[19],[14],[7],[12],[24]. Due to its Importance in several 
disciplines, many authors have been interested in studying the 
fractional calculus and finding accurate and efficient methods 
for solving FDEs or FPDEs. Some of the recent 
analytic/numerical methods are Adomian decomposition 
methods (ADM) [15],[18],[20], finite difference method [13], 
variational iteration method (VIM) [25],[5], fractional 
differential transform method [1], generalized differential 
transform method [17], operational matrix method [22], finite 
element method [23], Bernstein polynomial [21], iterative 
method [6] and the references therein. 
 

           In this paper, we consider [8] the Time- Fractional 
Advection �Dispersion Equation with the initial condition: 
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x>0, t>0, 0<á≤1,          (1) 
 

 u(x,0) = u 0 (x),   

                                                                                                   
(2) 
           where u(ݐ ,ݔ), (ݐ ,ݔ)ߢ, and   represent the solute (ݐ ,ݔ)
concentration, the dispersion coefficient, and the average 
fluid velocity, respectively. 
Fractional advection-dispersion equations are used in 
groundwater hydrology to model the transport of passive 
tracers carried by fluid flow in a porous medium. 
In this paper, we apply Modified differential transform 
method (MDTM) [3], [2] to solve Time-Fractional  

 

Advection�Dispersion Equation. The concept of differential 
transform (one-dimension) was first proposed and applied to 
solve linear and nonlinear initial value problems in electric 
circuit analysis by Zhou [27]. 
 
Basic Definitions of Fractional Calculus:  
Definition 1: A real function f(x), x>0, in the space c  , 

  R if there exists a real number p>  , such that f(x) = 

x p f 1 (x), where f 1 (x)c[0, ∞) and it is said to be in the 

space mc  if f m
  c  , mN. 

Definition 2: The left-sided Riemann�Liouville fractional 

integral operator of order á ≥ 0, of a function f   c  , µ≥-1 

is defined as 
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  , á>0, x>0                                                         

(3) 
And   J0f(x) = f(x). 
 
Definition 3: The fractional derivative of f(x) in the Caputo 
sense is defined as  

1
*

0

1
( ) ( ) ( )

( )

x
m mD f x x t f t dt

m
 



 
 
                                                                

(4) 

           For m-1<á<m, m N , x>0, f   c n
1 . The unknown 

function f = f(x, t) is assumed to be a casual function of 
fractional derivatives (i.e., vanishing for á < 0) taken in 

Caputo sense as follows. 
 

Definition 4:  For m as the smallest integer that exceeds á, 

the Caputo time-fractional derivative operator of order á > 0 
is defined as 
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Two-Dimensional Differential Transform Method:  
   Consider two variable function u(x, t) and suppose that 
u(x,t) can be represented as a product of two single-variable  
functions i.e., u(x, t) = f(x)g(t). Based on the properties of 
two-dimensional differential transform, the function u(x, t) 
can be represented as  

,1 0 0
0 0

( , ) ( , )( ) ( )k h

k h

u x t U k h x x t t 



 

 

       (6) 

where 0 < á, U 1, (k, h) is called the spectrum of u(x, t). 

           The generalized two-dimensional differential 
transform of the function u(x, t) is given by 

0 0
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0t
D  (h times).      

The function u(x, t) is represented by a finite series of (6) can 
be written as 

,1 ln
0 0

( , ) ( , ) ( , )
l n

k h

k h

u x t U k h x t R x t



 

   �.  (8)  

and (6) implies that ln ,1
1 1

( , ) ( , ) k h

k l h n

R x t U k h x t 



 

   

    is 

 
 negligibly small. Usually, the values of l and n are decided 
by convergence of the series solution. In case of á = 1, the 

generalized two-dimensional differential transform (6) 
reduces to the classical two-dimensional differential 
transform [4], [7], [9], [26], [27]. 
 

Modified Differential Transform Method: 
      Even though, DTM is a convenient tool in the field of 
numerical approximations, it also encounters some 
complexity to determine the recursive relation for the 
problem containing nonlinear function. For instance, Let us 
consider the differential transform for 
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 (9) Involves four summations. Thus it is necessary to have a 
lot of computational work to calculate such differential 

transform 1, ( , )U h k for the large number of   (k, h). Since,  

 

  
 
 

   DTM is based on the Taylor series for all variables. To 
reduce the complexity in DTM, K. Aruna and A. Kanth in 
[3], [2] introduce the DTM with respect to the specific 
variable for the function u(x, t). Assume that the specific 
variable is the variable t then, we have the Taylor series 
expansion of the function u(x, t) at t = t0 as follows. 
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(10) 
 
Definition 5:  The modified differential transform Uá,1(x, h) 
of u(x, t) with respect to the variable t at t0 is defined by 
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Definition 6: The modified differential inverse transform 
Uá,1(x, h) with respect to the variable t at t0 is defined by 
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(12) The fundamental mathematical operations performed by 
Modified differential transform method are listed in 
following Table . 
 
 

Original function Transformed function 
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,1 ,1 ,1( , ) ( , ) ( , )W x h U x h V x h     
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Approximate Solutions of Time FADEs: In this section, we obtained solution of two Time- Fractional Advection �
Dispersion Equation.  
 
Example 1: Firstly, the following time FADE subject to the initial condition is considered [8] 
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, t > 0, 0 < á ≤ 1,                                                   (13) 
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The transformed version of (13) w. r. t. t is  
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The transformed version of (14) is  

xexU )0,(1,                                                                                                                  (16) 

From the MDTM recurrence equation (15) we get ),(1, hxU values 

 

 x
x eU 






)1(

)1(
)1,(1,




 , xexU 






)12(

)1(
)2,(

2

1,



 , xexU 






)13(

)1(
)3,(

3

1,



 �� �and so on. 

 

Substituting 1,U �s into (12). We obtained the solution in the following form 

 
2 3

2 3( 1) ( 1) ( 1)
( , ) 1 ......

( 1) (2 1) (3 1)
xu x t e t t t    

  

    
     

      
                    (17) 

In the limit of infinitely many terms, Eqs. (17)  yields the solution. 

( , ) ((1 ) )xu x t e E t                                                          (18)                          where ((1 ) )E t  is the Mittag-

Leffler function. 
Which is same solution as the given in [8] Using FVIM. 
 
Example 2: Now, the following time FADE subject to the initial condition is considered [8], [16]. 
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   t > 0, 0 < á ≤1                                          (19)  (0 ,ݔ) ݑ = sin (ݔ)                                                                                                 (20) 
The transformed version of (19) w. r. t. t is  
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The transformed version of (20) is  

 (x)sin )0,(1, xU                                                                                              (22) 

From the MDTM recurrence equation (21) we get ),(1, hxU values 

 )1,(1, xU = ))}cos()sin(({
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Substituting 1,U �s into (12). We obtained the solution in the 

following form 

u(x,t)=sin(x)+ ))}cos()sin(({
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                             (23) 
Which is same solution as the given in [8] using FVIM, [16] 
using ADM 
 
CONCLUSIONS 
   In this paper, MDTM has been successfully applied to 
solve Time- Fractional Advection�Dispersion Equation. This 
method can obtain simple recursive equation. Compared with 
the ADM, FVIM , these illustrative problems  shows  that, 
MDTM does not required to find Adomian Polynomial like 
ADM and Lagrange multiplier like FVIM. Thus it is 
conclude that MDTM is very effective tool and it might be 
applicable for wide class of nonlinear fractional models in 
mathematical physics with high accuracy. 
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