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Abstract- In this paper, we study the travelling wave solution of the Fisher-Kolmogoroff equation. We also study another related Reaction 
Diffusion equation. We analyze the stability of these two systems through phase plane analysis. We perform some simulations. 
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I. INTRODUCTION 
 

      A reaction-diffusion equation comprises of a reaction 
term and a diffusion term, a typical Reaction Diffusion 
equation is as follows: 

 
             

 is a variable which describes concentration of a 
substance or the population at time t. denotes the Laplace 
operator. So the first term on the right hand side describes the 
�diffusion�, including D as diffusion coefficient. The second 
term,  is a smooth function 

  representing reaction kinetics. 
       Instead of a scalar equation, one can also introduce 
systems of reaction diffusion equations, which are of the 
form 

                                

(1) where   t  denotes time and  denotes 
position within a d- dimensional bounded domain  ߗ  with a 
smooth boundary. The States 

 
   describe the concentrations or densities of substances or 
populations,  The functions  are 
called diffusion coefficients or diffusivities. On ߗ, the 
bounded domain introduced earlier, boundary conditions 
need to be specified for equations (1). Typical  
 

conditions would include either Dirichlet, which prescribes 
the value at the boundary   =   or 
Neumann conditions giving the diffusion flux through the 
boundary  or mixed 
boundary conditions. 
   One of the fascinating aspects of the natural world is the 
diversity of shapes that make up the animal and plant 
kingdoms. How these patterns arise is one of the mysteries of 
science. The problem that Turing (Turing, 1952) addressed in 
his seminal paper, �The chemical basis of morphogenesis�  

 

  was precisely this. He presented a theory in which he 
proposed that cells actually respond to a chemical pre-pattern.  

 

  He considered a system of morphogens reacting and 
diffusing in such a way that, in the absence of diffusion, they 
exhibited  
 

a spatially uniform steady state which would be stable. This 
phenomenon, termed diffusion-driven instability, has now 
been shown to occur in chemistry. Experimental results 
illustrate the formation of striped and spotted patterns, as well 
as more complicated patterns. This was the first example of 
what is now called an emergent phenomenon in the sense that 
the behavior of the system, in this case a patterning 
instability, emerges from the components and is not part of 
the components. In his system, the reaction kinetics are 
stabilizing and we know that diffusion is stabilising in the 
sense that it homogenizes spatial patterns. Therefore, two 
stabilizing systems interacted to produce an instability. In 
other words, he recognized that it was the integration of 
components that gave rise to the structures and behaviours we 
observe, rather than each  behaviour  being encoded in its 
own component. Many of these patterns can be exhibited by 
Turing models and there is now a vast amount of theoretical 
and experimental literature in this area (see (Murray, 2002) , 
for a review). Turing systems have the form 

 

 
These equations describe the evolution of the concentrations, 

  at spatial position  and time t, of two 
chemicals due to diffusion, with constant diffusion 
coefficients 
    respectively, and reaction, modeled by the 
functions,  f  and    which are typically non-linear. We now 
examine solutions of the travelling-wave type for reaction-
diffusion equations. 
2.  Travelling Wave Solution 
         Our aim is to examine solutions of the form (P. K. 
Maini, 1997)  
             for  (2). 
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A travelling wave solution is a wave which travels without 
change of shape. If a solution     represents a travelling 
wave the shape of the solution remains the same for all  , in 
addition to this the speed of the propagation of this wave is a 
constant, denoted by   , symbolically we represent this as 

where                                                                
(3)   Then   is a travelling wave which moves with a 
constant speed  in the positive direction of the  X axis. 
Symmetrically we can make the statement that a wave which 
moves in the negative X direction has the form  ,   z  
is called the the wave variable. This kind of a solution is a 
means of separating the variables in a partial differential 
equation. Let us observe that in a traveling wave solution or 
solutions in   and  in the form (3) gives  

       and     . 

Thus partial differential equations in   and   are converted 
to the ordinary differential equations in new variable . Here 

 is bounded for all  z  and nonnegative. The reason being 
that the entities with which we deal with are chemicals or 
populations. 
 3. Fisher�Kolmogoroff  Equation: 
      A reaction diffusion equation is of the form 
    where     is a nonlinear function 

with  where   k and D are positive 
parameters. It was suggested by Fisher (Fisher, 1937) as a 
deterministic version of a stochastic model for the spatial 
spread of a favoured gene in a population. It is also the 
natural extension of the logistic growth population model 
when the population disperses via linear diffusion. This 
equation and its travelling wave solutions have been widely 
studied, as has been the more general form with an 
appropriate class of functions replacing We 
discuss this model equation in some detail, not because in 
itself it has such wide applicability but because it is the 
prototype equation which admits travelling wavefront 
solutions. 
  In a collection of particles like cells, bacteria, chemicals, 
animals each particle move around in a random way. When 
this microscopic irregular movement results in gross regular 
motion of the group, we think of it as a diffusion process. 
The simplest nonlinear reaction diffusion equation is   

                

 
 , (Fisher, 1937) where k and D are positive parameters. 

Let    = k t   ,   

 =      ,   =  

 = (  

Equation  reduces to   k  = k u (1  u)       

Omitting asterisks, 

 =      
 

 The steady states are  which are 
unstable and stable. 
We look for solutions of  for which  
Travelling wave solution is of the form 

 

  where c is wave speed.Equation 
  is invariant for .  c may be positive or negative. We 
assume .From , 

 =    ,   =     ,  =               

  reduces to 

 =                   

         
     

We have to find values of c, for which the wave form 
solution U satisfies   ,      
Let   From   ,                                                                           

(8)This implies          =   =   
 

In order to obtain equilibrium points, we choose 
=    

= 0 
Let  ) be an equilibrium point. At equilibrium point, 

.  
The two equilibrium points  )   are (0, 0) and (1, 0). 
 The Jacobian matrix J is 

J =  =  

At the equilibrium point (0,0), the Jacobean matrix is  J 

 

The Eigenvalues of J are the roots of the characteristic 
equation 

 = 0 
The two roots of this characteristic equation are 

        and         

Looking at Eigenvalues , it can be seen that if    the 
solution is a stable node and  if  ( the Eigenvalues 
become complex) the solution is a stable spiral. 
At the equilibrium point (1, 0), the Jacobian matrix is    J = 

 

The characteristic equation is  = 0.  The two roots 

of this characteristic equation are        and    

  . These roots are real and unequal. The 

equilibrium point (1, 0) is a saddle point.   
The phase plane trajectories in the figure show the stable and 
unstable solution. 
Let  be the minimum value of   where   defined in 
equation (3) is the wave speed. If 

 the origin which is one of the equilibrium 
points is a stable node.  For    ,as mentioned earlier 
the origin is a stable spiral. 
Take     Equations (8) become  
                                                                   

                               
The phase portraits using Mathematica are as follows : 
 fig.1 represents the solution of equations (9) with initial 
conditions U(0)=0,V(0)=1 
fig.2  represents the solution of equations (9) with initial 
conditions U(0)=0,V(0)= -1 
fig.3 represents the solution of equations (9) with initial 
conditions U(0)=0, and different values of V(0)=1, 0.8, 0.6, 
0.4, 0.2, -0.2, -0.4, -0.6, -0.8, -1. 
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 4. A Particular Form of the Fisher Equation: 
  If the coefficient    in equation (4) is of the form  
then the Fisher equation becomes           

 

Using the Travelling wave solution method stated in the 
previous section this equation becomes (after choosing the 
coefficient D=1)  + , where the 
derivative is w.r.t.          
   This gives the system of equations                                                 

   

(9)Let us choose                                                            

(10)The equilibrium points of (9) are given by  
  = 0   ,  = 0. 
The equilibrium points are    and   

The Jacobian matrix is  

            

and         

I. For the equilibrium point   : 
 
 

The characteristic equation is      
The Eigenvalues are 
         

      and   

Case :   When   . 
The roots are real with opposite signs.  The point  is a 
saddle point 
Case :   When   . The roots  are real 
and equal. The point  is a node. 
Case   When   . The roots are 
purely imaginary. The point  is a center. 
   II. For the equilibrium point  :  

The characteristic equation is 
 

 

  The Eigenvalues are               and   

             
Case  When ,   . The 
point  is  a center. 
Case :  When  , .  .  .The 
point (1, 0)  is a node. 
Case  When  = ,     .   
.The point (1,0) is a saddle point. 
We now calculate the energy level lines of the system of 
equations (9).  
Set , where k takes on values 1,-1 and 0. 

From (9),        

  
Suppose   ,   at  . 

 
  

 
                                             Total   Energy. 
Case(i):  When  , the Total Energy is 

 
  To obtain the individual energy level lines we choose some 
particular points through which the level lines pass. We plot 
the energy level curves using Mathematica. 

 
Figure 4: The energy level line for  passing 

through the point (0, 0) is 
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 h = E (0, 0)  +  
 

 
Figure 5: The energy level line for  passing 

through the point (0, 1) is 
 h = E (0, 1)  +  

 

 
 

Figure 6: The energy level lines passing through different 
points 
 
Case (ii) : When    The general energy equation  is   

 

The level line through any general point  is  

   

The equation of the level line through the point  is                       

 
 

When  , it reduces to  . 
  In this case energy level curves are straight lines of the form 

 which are parallel to the U axis. 
Case (iii) :  When    

We plot energy level curves for different values of E as  

 
 
Figure 7: The energy level line for  passing through 

the point (1, 0) is 
                    h = E (1, 0)  + . 
 

 

 
 

Figure 8: The energy level line for  passing through 
the point (-1, 0) is 

h = E (-1, 0)  + . 
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Figure 9: The energy level lines passing through different 
points. 

 
Conclusion:  
We performed the phase plane analysis after using a 
travelling wave solution for the general Fisher-Kolmogoroff 
Equation and a particular form of the Fisher-Kolmogoroff 
Equation. For the general form, we obtained two equilibrium 
points and in particular form of the Fisher-Kolmogoroff 
Equation we obtained some closed orbit and a homoclinic 
orbit. 
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