

EXISTENCE OF FUZZY MIXED INTEGRODIFFERENTIALEQUATION

A.D.LOKHANDE,V.V.KHARAT AND A.H.KANGALE

Abstract- The aim of the present paper is to establish the existence of solution of Fuzzy mixed integro-di erential equation.

I. INTRODUCTION

Integro-differential equations play an important role in characterizing many social, physical, biological and engineering problems. The study of fuzzy integro-differential equation has gained importance in recent times. In [9, 11], Lakshmikantham et. al. and D. O' Regana et. al. assumed that even if only the initial value is fuzzy, the solution is a fuzzy function, and consequently the derivative in the integrodifferential equation must be considered as fuzzy derivatives.

In this paper we study the following fuzzy mixed integrodifferential equation
$x^{\prime}(t)=F\left(t, x(t), \int_{0}^{t} k(t, s) x(s) d s \int_{0}^{T} h(t, s) x(s) d s\right)$
$x(0)=x_{0}, t \in I=[0, T]$, (1.2)
where, $F: I x E^{n} \times E^{n} x E^{n} \rightarrow E^{n}$.
Many authors deal with existence, uniqueness and other properties of solution of special forms of (1.1) - (1.2), see [1, 2, 3, 13] and references cited therein. Recently, in [6] T. Donchev proved existence of special form of (1.1) - (1.2). The aim of present paper is to prove existence of solution of first order fuzzy mixed integro-differential equation subject to given fuzzy initial condition. The main tool employed in our analysis is fixed point theorem.

2. Basic concepts

The Fuzzy set space is denoted by $E^{n}=\left\{x / x: R^{n} \rightarrow[0,1] ; x\right.$ satisfies conditions (1) to (4) \}
(1) x is normal i.e there exists $y_{0} \in R^{n}$ such that $x\left(y_{0}\right)=1$,
(2) x is fuzzy convex i.e. for any $y, z \in R^{n}$ and $0 \leq \lambda \leq 1$, $x(\lambda y+(1-\lambda) z) \geq \min \{x(y), x(z)\}$,
(3) x is upper semicontinuous,
(4) $[x]^{0}=\operatorname{cl}\left\{y \in R^{n}: x(y)>0\right\}$ is compact.

The set $[x]^{\alpha}=\left\{y \in R^{n}: x(y) \geq \alpha\right\}$ is called as α-level set of a $x \forall \alpha \in(0,1)$.
Let fuzzy zero is defined by,

$$
\theta(y)= \begin{cases}0 & y=0 \\ 1 & y=0\end{cases}
$$

Key words and phrases. Fuzzy integro-differential equation, existence of solution.

A. D. LOKHANDE, V. V. KHARAT AND A. H. KANGALE

Let $D: E^{n} x E^{n} \rightarrow[0, \infty)$ defined as

is the Housdroff distance between the convex compact subset of R^{n}. Here D is a metric on E^{n}. From [7], E^{n} can be embedded as a closed convex cone in Banach space X, the embedding map $J: E^{n} \rightarrow X$ is isometric and isomorphic. The function $g: I \rightarrow E^{n}$ is said to be simple function if there exists
a finite number of pairwise disjoint measurable subsets $I_{1}, I_{2}, I_{3}, \ldots, I_{n}$ of I with $\mathrm{I}=\mathrm{U}_{k=1} I_{k}$ such that $g(\cdot)$ is constant on every I_{k}. The map
$F: I \rightarrow E^{n}$ is said to be strongly measurable if there exists a sequence $\left\{\mathrm{F}_{\mathrm{m}}\right\}_{\mathrm{m}=1}$ of simple functions $F_{m}: I \rightarrow E^{n}$ such that $D\left(F_{m}(t), F(t)\right) \rightarrow \mathrm{o}$ as $\mathrm{m} \rightarrow \infty \forall \mathrm{t} \in \mathrm{I}$.
In the fuzzy set literature, the integral of fuzzy function is defined levelwise i.e. there
exists $g(t) \in E^{n}$ such that $[g]^{\alpha}(t)=\int_{0}^{t}[F]^{\alpha}(s) d s$
If $g(\cdot): I \rightarrow E^{n}$ is strongly measurable and integrable then $J(g)(\cdot)$ is strongly measurable and Bochner integrable and J $\left(\int_{0}^{t} g(s) d s\right)=\int_{0}^{t} J(g)(s) d s v^{t} t=1$

From [7] we recall some properties of integrable fuzzy set valued mapping.

Theorem 2.1. Let $G, K: I \rightarrow E^{n}$ is integrable and $\lambda \in R$ then

$$
\begin{equation*}
\int_{2}\left(G(t)+K(t) d t=\int_{2} G(t) d t+\int_{2} K(t) d t\right. \tag{i}
\end{equation*}
$$

(ii) $\int_{2} \lambda G(t) d t=\lambda \int_{2} G(t) d t$
$D(G, K)$ is integrable
(iv)
(v) $\quad \leq \int_{2}(D(G(t) K(t)) d t$

Definition 1. A mapping $F: I \quad \rightarrow \quad E^{n}$ is said to be differentiable at $t \in I$ such that there exists $F(t) \in E^{n}$ and limits
$\lim _{\mathrm{h} \rightarrow 0^{+}} \frac{F(t+h)-f(t)}{h}$ and $\lim _{\mathrm{h}_{\rightarrow 0}}{ }^{+} \frac{F(\mathrm{t})-\bar{F}\left(t-h_{i}^{5}\right.}{h}$ exists and equal to $F(t)$.

At the end point of I we consider only one sided derivative. Note that E^{n} is not locally compact [12]. Consequently we need compactness type assumption to prove existance of solution [5].

Let Y be complete metric space with metric $\rho_{y}(\cdot, \cdot)$. The Housedroff measure of non-compactness $\beta: Y \rightarrow R$ for the bounded subset A of Y
$\beta(A)=\inf (d>0 / A$ can be covered by finite many balls with radius $\leq d$)
and Kuratowski measure of noncompactness $\rho: Y \rightarrow R$ for bounded subset A of Y is defined as.
$\rho(A)=\inf (d>0 / A$ can be covered by finite many subset with diameter $\leq d$).
$\operatorname{diam}(A)-\sup _{\mathrm{a}, \mathrm{b} \in \mathrm{A}} p_{\mathrm{y}}(\mathrm{a}, \mathrm{b}) .[11] \quad \rho(A) \leq \beta(A) \leq 2 p(\mathrm{~A})$. Let $\mathrm{v}(\cdot)$ represent the both $\rho(\cdot), \beta(\cdot)$ then some properties of $v(\cdot)$ are listed below.
(i) $v(A)=0$ iff A is precompact i.e $c l(A)$ is compact
(M) $v(A+B)=v(A)+v(B)$
(in) If $A \subset B$ then $v(A) \leq v(B)$
(iv) $v(A \cup B)=\max (v(A), v(B))$
(iv) $v(\cdot)$ is continuous w.r.t Hausdroff distance.

Theorem 2.2. [8] Let X be separable Banach space and let $\left(g_{n}(\cdot)_{n=1}^{n}\right.$ be integrably bounded sequence of measurable functions from I into X then $t \rightarrow \beta\left(g_{n}(t), n \geq 1\right)$ is measurable and β
$\left(\int_{t}^{t+h} U g i(s) d s\right) \& \int_{t}^{t+h} \beta(\operatorname{ugi}(s))$ where $t . t+h \in l$

EXISTENCE OF FUZZY MIXED INTEGRODIFFERENTIAL EQUATION

The map $t \rightarrow(\cup \operatorname{gi}(\mathrm{t}))$ is a set valued (multifunction).The integral is denned in Auman sence i.e. union of the values of integrals of all (strongly) measurable selections.
Remark 2.1. Since the embedding map J : $E^{n} \rightarrow X$ is isometry and isomorphism. It preserves diameter of any closed subset $p(A)=p(J(A))$ for any closed and bounded set $A \in E^{n}$.

Theorem 2.3. let $\mathfrak{f}_{\mathrm{n}} \mathrm{H}_{\mathrm{N}=1}$ be a integrally bounded sequence of strongly measurable fuzzy functions defined from I into E^{n} then $t \rightarrow \rho\left(f_{m}(t), m \geq 1\right)$ is measurable and
$\rho\left(\int_{a}^{D} u f_{m}(s) d s\right) \leq 2 \int_{a}^{b} \rho\left(U f_{m}(s)\right) d s$.
Theorem 2.4. Let $u(t), f(t), g(t), h(t) \in C\left(I, R_{+}\right)$and suppose for
$t \in \mathrm{I}, \mathrm{u}(\mathrm{t}) \leq \mathrm{c}+$
$\int_{s_{0}}^{t} f(t)+\left\lceil u(s)+\int_{s_{0}}^{s} g(\sigma) u(\sigma) d \sigma+\int_{r_{s}}^{s} h(\sigma) u(\sigma) d \sigma\right\rceil d s_{0}$
where
$c \geq 0$ is constant.
If $\left.d=\int_{t_{0}}^{\theta} h(s) \exp \left(\int_{\varepsilon_{\mathbb{1}}}^{\sigma}[f(\tau)+g(\tau)] d \tau\right)\right) d \sigma<1$ then
$u(t) \leq \frac{\varepsilon}{1-4} \exp \left(\int_{t_{\mathrm{d}}}^{t}[f(s)+g(s)] d s\right)$

3. Main Results

In this section we state and prove the existence of solution of Fuzzy mixed integro-differential equation.
Theorem 3.1. Let in the domain $Q=\left\{(t, x, y, z) \in I \times E^{n} \times E^{n} \mathrm{x}\right.$ $\left.E^{n}\right\}$ the following conditions hold
(I) Let F:I $\times E^{n} \times E^{n} \times E^{n} \rightarrow E^{n}$ is such that
(i) $t \rightarrow F(t, x, y, z)$ is strongly measurable $\forall x, y, z \in E^{n}$,
(ii) $(x, y, z) \rightarrow F(t, x, y, z)$ is continuous for all most all $t \in I$.
(II) For all non-empty bounded subset A, B, C

$$
\begin{aligned}
& \in E^{n} \text { and } \lambda(\cdot) \in L^{l}\left(I, R_{+}\right) \\
& \rho(F(t, A, B, C)) \leq \lambda(t)(p(A)+p(B)+p(C)) .
\end{aligned}
$$

(III) There exists $a(\cdot), b(\cdot) \in L^{l}\left(I, R_{+}\right)$such that
$D(F(t, x, y, z), \hat{\theta}) \leq a(t)+b(t)(D(x, \hat{\theta})+D(y, \hat{\theta})+D(z, \hat{\theta}))$
forall $(t, x, y, z) \in Q$.
(IV) $K, H: \Delta=(t, \mathrm{~s}) ; 0 \leq \mathrm{s} \leq t \leq a \rightarrow R_{+}$is continuous function.
Then equation (1.1) - (1.2) has at least one solution on the interval I.
Proof. We will show that the solution of (1.1) - (1.2) is bounded.

$$
\begin{aligned}
& D(x(t), \hat{\theta})=D\left(x_{0} \hat{\theta}\right)+D\left(\int_{n}^{t} F\left(s, x(s) \int_{n}^{t} h(t, s) x(s) d s, \int_{n}^{T} h(t, s) x(s) d s\right) d s, \hat{\theta}\right) \\
& \leq D\left(x_{0}, \delta\right)+\int_{0}^{t} D\left(F\left(s, x(s), \int_{0}^{t} k(t, s) x(s) d s, \int_{0}^{T} h(t, s) x(s) d s\right) d s, \delta\right) \\
& \leq D\left(x_{0}, \hat{\theta}\right)+\int_{0}^{t}\left\{a(s)+b(s)\left[\begin{array}{c}
D\left(x_{0} \hat{\theta}\right)+D\left(\int_{0}^{t} k(t, s) x(s) d s, \hat{\theta}\right) \\
+D\left(\int_{0}^{T} h(t, s) x(s) d s, \hat{\theta}\right)
\end{array}\right]\right\} d s
\end{aligned}
$$

A. D. LOKHANDE, V. V. KHARAT AND A. H. KANGALE
where,
$K_{\Delta}=\max _{(\mathrm{t}, \mathrm{s}) \in \Delta}|k(t, \mathrm{~s})|$ and $H_{\Delta}=\max _{(\mathrm{t}, \mathrm{s}) \in \Delta}|\mathrm{h}(\mathrm{t}, \mathrm{s})|$.
Let $m(t)=D(x(t), \hat{\theta})$ hence we get
$m(t)=m(0)+\int_{0}^{t} a(G)+b(s)\left[m(s)+K_{3} \int_{0}^{1} n(t) d t+H_{2} \int_{0}^{t} m(t) d t\right] d s$
By theorem there exists $\mathrm{M}_{0}>0$ such that $m(t)=D(x(t), \hat{\boldsymbol{\theta}}) \leq \mathrm{M}_{0}$.
Now, consider
$D\left(\int_{0}^{\Sigma} k(t, s) x(s) d s, \theta\right) \leq \int_{0}^{\pi} D(k(t, s) x(s), \theta) d s$
$\leq K_{s} \int_{0}^{\mathrm{t}} D(x(s), \hat{\theta}) d s \leq K_{R} \mathrm{M}_{0} \mathrm{~T}=\mathrm{M}_{1}$,
$D\left(\int_{0}^{T} h(t, s) x(s) d s, \hat{\theta}\right) \leq \int_{0}^{T} D(h(t, s) x(s), \hat{\theta}) d s$
$\leq H_{\Delta} \int_{0}^{t} D(x(s), \hat{\theta}) d s \leq H_{\Delta} \mathrm{M}_{0} \mathrm{~T}=\mathrm{M}_{2}$,
Therefore,
$D\left(F\left(t, x(t) \int_{0}^{t} k(t, s) x(s) d s \int_{0}^{T} h(t, s) x(s) d s\right) \hat{\theta}\right) \leq a(t)+M b(t)=\mu(t)$,
where, $\mathrm{M}=\mathrm{M}_{0}+\mathrm{M}_{1}+\mathrm{M}_{2}, \mathrm{a}(\cdot)$ and $\mathrm{b}(\cdot) \in \mathrm{L}^{1}\left(\mathrm{I}, \mathrm{R}_{+}\right)$and μ $(\cdot) \in L^{1}\left(I, R_{+}\right)$.

Let $\mathrm{c}=\int_{0}^{T} \mu(s) d s+1$. Define
$\Omega=\left\{\mathrm{x}(\cdot) \in \mathrm{c}\left([0, \mathrm{~T}], \mathrm{E}^{\mathrm{n}}\right) / \sup _{\mathrm{t} \in[0, \mathrm{~T}]} \mathrm{D}\left(x(\mathrm{t}), x_{0}\right) \leq \mathrm{c}\right\}$
Clearly Ω is closed, bounded and convex set.
We now define the operator $P: \mathrm{c}\left\{[0, \mathrm{~T}], \mathrm{E}^{\mathrm{n}}\right\} \rightarrow \mathrm{c}\left\{[0, \mathrm{~T}], \mathrm{E}^{\mathrm{n}}\right\}$ by
$P[x(t)]=x_{0}+\int_{0}^{t} F\left(s, x(s) \int_{n}^{t} k(t, s) x(s) d s \int_{0}^{T} h(t, s) x(0) d s\right) d s, t \in l$.
Now
$D\left(P[x(t)], x_{0}\right)=D\left(\int_{0}^{t} F\left(s, x(s) \int_{0}^{t} k(t, s) x(s) d s \int_{0}^{T} h(t, s) x(s) d s\right), \theta\right)$
$\leq \int_{0}^{t} D\left(F\left(s, x(s), \int_{0}^{t} k(t, s) d s, \int_{0}^{T} h(t, s) x(s) d s\right), \hat{\theta}\right)$
$\leq \int_{0}^{T} \mu(s) d s<c$.
Hence $P[x(t)] \in \Omega$ i.e $\mathrm{P}[\Omega] \subset \Omega$ and $\mathrm{P}(\Omega)$ is uniformly bounded. Now we will show that P is continuous operator on Ω Let $x_{n}(\cdot) \in \Omega$ such that $x_{n}(\cdot) \rightarrow x(\cdot)$ then
$D\left(P\left[x_{\mathrm{n}}(t)\right], P[s(t)]\right)=D\left(\int_{0}^{t} F\left(s, x_{n}(s) \int_{0}^{t} k(t, s) x_{n}(s) d s \int_{0}^{T} h(t, s) x_{n}(s) d s\right) d s\right.$,
$\left.\int_{0}^{t} F\left(s, x(s), \int_{0}^{t} k(t, s) x(s) d s, \int_{0}^{T} h(t, s) x(s) d s\right) d s\right)$

EXISTENCE OF FUZZY MIXED INTEGRO DIFFERENTIAL EQUATION

Now
$D\left(\int_{0}^{\mathrm{T}} k(t, s) x_{n}(s) d s \int_{0}^{\mathrm{T}} k(t, s) x(s) d s\right) s \int_{0}^{\mathrm{T}} D\left(k(t, s) x_{\mathrm{r}}(s), k(t, s) x(s)\right) d s$ $\leq R_{\Delta} \int_{n}^{t} D\left(x_{n}(s), x(s)\right) \mathrm{d} s \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$.
$D\left(\int_{0}^{T} h(t, s) x_{n}(s) d s \int_{0}^{T} h(t, s) x(s) d s\right) \leq \int_{0}^{T} D\left(h(t, s) x_{n}(s), h(t, s) x(s)\right) d s$ $\leq H_{S} \int_{0}^{\mathrm{t}} D\left(x_{2}(s), x(s)\right) \mathrm{d} s \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$.

Thus by (7) it follows that $D\left(P\left[x_{n}(t)\right], P[x(t)]\right) \rightarrow 0$ as $\mathrm{n} \rightarrow$ ∞ uniformly on I. Hence P is continuous operator on Ω.
The function $\mathrm{t} \rightarrow \int_{0}^{\mathrm{t}} \mu(s) d s$ is uniformly continuous on closed set I i.e there exists $\eta>0$ such that
$\left|\int_{0}^{*} \mu(\tau) d \tau\right| \leq \frac{\Sigma}{2} \forall t, s \in I$, with $|\mathrm{t}-\mathrm{s}|<\eta$. Further for each m ≥ 1 we divide I into m subintervals $\left[\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}+1}\right.$] with $t_{i}=\frac{i T}{m}$.

Then $x_{m} \in \Omega$ for every $\mathrm{m} \geq 1$. For $t \in\left[0, \mathrm{t}_{1}\right]$
$D\left(P\left[x_{m}(t)\right] x_{m}(t)\right)=D\left(\int_{0}^{t} F\left(s, x_{m}(s) \int_{0}^{t} k(t, s) x_{m}(s) d s \int_{0}^{T} h(t, s) x_{m}(s) d s\right) d s, \theta\right)$
$\leq \int_{0}^{t_{1}} D\left(F\left(s_{t} x_{m}(s) \int_{0}^{t} k(t, s) x_{m}(s) d s_{t} \int_{0}^{T} h(t, s) x_{m}(s) d s\right), \hat{\theta}\right) d s$ $\leq \int_{0}^{t_{1}} \mu(s) d s$
And for $\mathrm{t} \in\left[\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}+1}\right], \mathrm{t}-\mathrm{t}_{\mathrm{i}} \leq \frac{T}{\mathrm{~m}}$ and hence
$D\left(P\left[x_{m}(t)\right], x_{m}(t)\right)=D\left(P\left[x_{m}(t)\right], P\left[x_{m}\left(\begin{array}{ll}t & \left.\left.\left.t_{1}\right)\right]\right)\end{array}\right.\right.\right.$
$\leq D\left(\int_{t-t_{i}}^{t} F\left(s, x_{m}(s) \int_{0}^{t} k(t, s) x_{m}(s) d s_{i} \int_{0}^{T} h(t, s) x_{m}(s) d s\right) d s_{i} \hat{\theta}\right)$
$\leq \int_{t-\frac{T}{m}}^{t_{1}} D\left(F\left(s, x_{\mathrm{m}}(s), \int_{0}^{t} k(t, s) x_{m}(s) d s \int_{0}^{T} h(t, s) x_{\mathrm{m}}(s) d s\right), \theta\right) d s$
$\leq \int_{t-\frac{T}{m}}^{t_{1}} \mu(s) d s$.
Therefore $\lim _{\mathrm{m}} \rightarrow \infty \mathrm{D}\left(\mathrm{P}\left[\mathrm{x}_{\mathrm{m}}(\mathrm{t})\right], \mathrm{x}_{\mathrm{m}}(\mathrm{t})\right)=0$ on [0, T]. Let $\mathrm{A}=\left\{\mathrm{X}_{\mathrm{m}}(\cdot) \backslash \mathrm{m} \geq 1\right\}$
Now we claim that A is equicontinuous on $[0, \mathrm{~T}]$. If $\mathrm{t}, \mathrm{s} \in$ $\left[0, \frac{T}{m}\right]$ then $D\left(x_{m}(t), x_{m}(s)\right)=0$ if0 $\leq \mathrm{s} \quad \leq \frac{T}{m} \leq \mathrm{t} \leq \mathrm{T}$ then
$D\left(x_{1 m}(t) x_{m}(s)\right)=D\left(x_{0}+\int_{0}^{t-\frac{T}{m_{m}}} F\left(c_{1} x_{m}(\sigma) \int_{0}^{t} h\left(t_{i}\right) x_{m}(\sigma) d \sigma_{n} \int_{0}^{T} h(s, \sigma) x_{m}(\sigma) d \sigma\right), x_{0}\right)$
$\leq \int_{0}^{t-\frac{T}{m} D}\left(F\left(\sigma, x_{m}(\sigma), \int_{0}^{t} k(t, \sigma) x_{m}(\sigma) d \sigma_{1} \int_{0}^{T} h\left(s_{,} \sigma\right) x_{m}(\sigma) d \sigma\right), \hat{\theta}\right) \leq 2 \int_{0}^{t} \int_{0}^{t} F_{\Delta} \rho(A(v)) d \tau d s$

A. D. LOKHANDE, V. V. KHARAT AND A. H. KANGALE

$\leq \int_{0}^{t-\frac{T}{m}} \mu(\sigma) d \sigma \leq \int_{0}^{t} \mu(\sigma) d \sigma \leq \frac{\varepsilon}{2}$ for $|t-s|<\eta$
And if $\quad \frac{T}{m} \leq \mathrm{s} \leq t \leq T$ then $D\left(x_{m}(t), x_{m}(s)\right) \leq \frac{z}{2}$ for $|t-s|<\varepsilon$.
Hence A is equicontinuous on $[0, T]$. Now we will prove that A is precompact for each $\mathrm{t} \in[0, \mathrm{~T}]$. We have
$\rho(A(t)) \leq_{\rho}\left(\int_{0}^{t-\frac{T}{m}} F\left(s, A(s), \int_{0}^{t} k(t, s) A(s) d s \int_{0}^{T} h(t, s) A(s) d s\right)\right)$
$+\rho\left(\int_{s-\frac{T}{m}}^{T} F\left(s, A(s), \int_{0}^{T} k(t, s) A(s) d s \int_{0}^{T} h(t, s) A(s) d s\right)\right)$ Given $\boldsymbol{z}>0$ we define $m(\boldsymbol{z})>0$ such that $\int_{\mathrm{t}-\frac{\mathrm{I}}{\mathrm{m}}}^{\mathrm{I}} \mu(\mathrm{s}) d s<\frac{\mathrm{z}}{2} \forall \mathrm{t}$ $\in[0, \mathrm{~T}]$ and $\mathrm{m} \geq \mathrm{m}(\boldsymbol{z})$
Therefore.

$$
\leq 2 \int_{0}^{t} \rho\left(F\left(s, A(s), \int_{0}^{t} k(t, s) A(s) d s, \int_{0}^{\pi} h(t, s) A(s) d s\right)\right) d s
$$

$$
\leq 2 \int_{0}^{t} \lambda(s)\left[\rho\left(A(s)+\rho\left(\int_{0}^{t} k(t, s) A(s) d s\right)+\rho\left(\int_{0}^{T} h(t, s) A(s) d s\right)\right] d s\right.
$$

Now
$\rho\left(\int_{0}^{s} K(s, t) A(s) d s\right) \leq \rho\left(\int_{0}^{\mathrm{s}} k(s, t) x_{m}(s) d s, m \geq 1\right)$ $\leq 2 \int_{0}^{t} f\left(k(s, t) x_{m}(s), m \geq 1\right) d s$ $\leq 2 \int_{0}^{t} K_{\Delta} p\left(x_{\mathrm{m}}(s) m \geq 1\right) d s$ $\leq 2 \int_{0}^{t} K_{\Delta} \rho(A(s)) d s$ $\int_{0}^{t} \rho\left(\int_{0}^{\pi} k(t, s) A(s) d s\right) \leq \int_{0}^{\pi} 2 \int_{0}^{2} K_{\Delta} \rho(A(x)) d \tau$

$$
\begin{aligned}
& =\rho\left(\int_{i=\frac{T}{m}}^{t} F\left(s, x_{0 n}(s), \int_{0}^{t} k(t, s) x_{m}(s) d s \int_{0}^{T} h(t, s) x_{m}(s) d s\right) d s_{m} m \geq(s)\right) \\
& \leq 2\left(\int_{\mathrm{t}-\frac{\mathrm{T}}{\mathrm{~m}}}^{\mathrm{a}} \mu(\mathrm{~s}) \mathrm{ds}\right) \leq \varepsilon \\
& \therefore \rho(A(t)) \leq p\left(\int_{0}^{t} F\left(s, A(s), \int_{0}^{t} k(t, s) A(s) d s \int_{0}^{T} h(t, s) A(s) d s\right) d s\right)
\end{aligned}
$$

$$
\leq 2 \int_{0}^{t} K_{\Delta}(t-\tau) \rho(A(\tau)) d \tau
$$

$$
\leq K_{B} \mathrm{~T} \int_{0}^{\mathrm{t}} \rho(A(\tau)) d \tau
$$

EXISTENCE OF FUZZY MIXED INTEGRO-

IFFERENTIAL EQUATION

$$
\begin{aligned}
& \text { Similarly } \\
& \mu\left(\int_{0}^{T} h(s, L) A(s) d s\right) \leq p\left(\int_{0}^{T} h(s, D) x_{m}(s) d s, m \geq 1\right) \\
& \leq 2 \int_{0}^{T} p\left(h(s, t) x_{v n}(s) m \geq 1\right) d s \\
& \leq 2 \int_{0}^{T} H_{\Delta \rho}\left(x_{m}(s) m \geq 1\right) d s \\
& \leq 2 \int_{0}^{T} H_{\Delta \rho} \rho(A(s)) d s \cdot A n d \\
& \int_{0}^{t} p\left(\int_{0}^{T} h(t, s) A(s) d s\right) d s \leq \int_{0}^{t} 2 \int_{0}^{T} H_{\Delta} \rho(A(\tau)) d \tau d s \\
& \leq 2 \int_{0}^{t} \int_{\tau}^{T} H_{\Delta} \rho(A(\sigma)) d s d \tau \\
& \left.\leq \int_{0}^{t} H_{\Delta}(t-\tau) \rho(A(\tau))\right) d \tau \\
& \leq H_{\Delta} T \int_{0}^{t} \rho(A(\tau)) d \tau
\end{aligned}
$$

Therefore we obtain

$$
\rho(A(t)) \leq 2 \int_{0}^{t} \lambda(s)\left[\rho(A(s))+K_{\Delta} T \rho(A(s))+H_{\Delta} T \rho(A(s))\right] d s
$$

Due to Gronwall inequality

$$
\begin{aligned}
& \rho(A(t)) \leq R \int_{0}^{t} \rho(A(s)) d s \\
& \text { where } R=\exp \left(2\left(1+K_{S} T+H_{S}\right) T \int_{0}^{T} \lambda(t) d t\right) \\
& \therefore p(A(t)) \leq \int_{0}^{t} p(A(s)) d s .
\end{aligned}
$$

Therefore $\rho(\mathrm{A}(\mathrm{t}))=0$ and hence $\mathrm{A}(\mathrm{t})$ is preconpact for every $t \in[0, T]$. Since A is equicontinuous and precompact hence Arzela-Ascoli theorem hold in this case. Thus the sequence $\left\{x_{\mathrm{n}}(\mathrm{t})\right\}_{\mathrm{I}=1}^{\mathbb{E}}$ converges uniformly on $[0, \mathrm{~T}]$ to a continuous function $x(\cdot) \in \Omega$. Due to triangle inequality
$D(P[x(t)], x(t)) \leq D\left(P[x(t)], P\left[x_{n}(t)\right]\right)+D\left(P\left[x_{n}(t)\right], x_{n}(t)\right)+D$ $\left(x_{n}(t), x(t)\right) \rightarrow 0$.
Hence we have $P[x(t)]=x(t)$ for all $t \in[0, \mathrm{~T}]$, i.e. $x(t)$ is solution of (1.1) - (1.2).

REFERENCES

1. K. Balachadran and P. Prakash; Existance of solution of nonlinear fuzzy Voltera-fredholm integral equation, Indian J. Pure Appl. Math., 33 (2002) ,329-343.
2. P. Balasubramaniam and M. Chandrasekaran; Existance of solution of non-linear Integra-differential equation with nonlocal boundary condition in Banach space, Atti. sere Mat. fis. univ. mode.ua XLVI, (1998), 1-13.
3. P. Balasubrameniam and S. Muralisankar; Existence and uniqueness of fuzzy solution for the non-linear fuzzy integro-differeiitial equation, Appl. Math, left., 14 (2001), 455-462.
4. J. Banas and B. Rzepka; An application of measure of Asymptotic stability, Appl. Math, lett, 16 (2003),1-6.
